Molecular Regulation of Fibrinolysis

  • H. Roger Lijnen
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 193)


Mammalian blood contains a fibrinolytic system comprised of a proenzyme, plasminogen, that can be converted to the active enzyme, plasmin, by several types of plasminogen activators. Plasmin, in turn, degrades fibrin into soluble fibrin degradation products [1]. Two physiological plasminogen activators have been identified that are immunologically distinct, the tissue-type (t-PA) and the urokinase-type plasminogen activator (u-PA). t-PA-mediated plasminogen activation is mainly involved in the dissolution of fibrin in the circulation [1]. u-PA binds to a specific cellular receptor (u-PAR) and activates cell-bound plasminogen; its main role appears to be in the induction of pericellular proteolysis via the degradation of matrix components or via activation of latent proteases or growth factors. Thus, u-PA may play a role in events such as tissue remodeling and repair, macrophage function, ovulation, embryo implantation, and tumor invasion [2,3]. The recent observation that mice deficient in u-PAR display a virtually normal phenotype has, however, somewhat challenged an important role of the u-PA/u-PAR system in these phenomena [4].


Plasminogen Activator Plasminogen Activation Human Plasminogen Plasmin Inhibitor Lysine Binding Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Collen D, Lijnen HR. Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 78:3114, 1991.PubMedGoogle Scholar
  2. 2.
    Blasi F. Urokinase and urokinase receptor: A paracrine/autocrine system regulating cell migration and invasiveness. BioEssays 15:105, 1993.PubMedCrossRefGoogle Scholar
  3. 3.
    Bachmann F. The plasminogen-plasmin enzyme system. In Colman RW, Hirsch J, Marder VJ, Salzman FW (eds). Hemostasis and Thrombosis: Basic Principles and Clinical Practice, 3rd ed. Philadelphia: JB Lippincott 1993:1592.Google Scholar
  4. 4.
    Bugge TH, Suh TT, Flick MJ, Daugherty CC, Romer J, Solberg H, Ellis V, Dane K, Degen JL. The receptor for urokinase-type plasminogen activator is not essential for mouse development or fertility. J Biol Chem 270:16886, 1995.PubMedCrossRefGoogle Scholar
  5. 5.
    Lijnen HR, Collen D. Congenital and acquired deficiencies of components of the fibrinolytic system and their relation to bleeding or thrombosis. Fibrinolysis 3:67, 1989.CrossRefGoogle Scholar
  6. 6.
    Wiman B, Hamsten A. The fibrinolytic enzyme system and its role in the etiology of thromboembolic disease. Semin Thromb Hemost 16:207, 1990.PubMedGoogle Scholar
  7. 7.
    Sottrup-Jensen L, Petersen TE, Magnusson S. Atlas of Protein Sequence and Structure, Vol. 5, Suppl. 3. Dayhoff MO(ed). Washington DC: National Biomedical Research Foundation 1978:91.Google Scholar
  8. 8.
    Forsgren M, Raden B, Israelsson M, Larsson K, Heden LO. Molecular cloning and characterization of a fulllength cDNA clone for human plasminogen. FEBS Lett 213:254, 1987.PubMedCrossRefGoogle Scholar
  9. 9.
    Menhart N, McCance SG, Sehl LC, Castellino FJ. Functional independence of the kringle 4 and kringle 5 regions of human plasminogen. Biochemistry 32:8799, 1993.PubMedCrossRefGoogle Scholar
  10. 10.
    Wu TP, Padmanabhan KP, Tulinsky A. The structure of recombinant plasminogen kringle 1 and the fibrin binding site. Blood Coagul Fibrinolysis 5:157, 1994.PubMedCrossRefGoogle Scholar
  11. 11.
    Berglund L, Petersen TE. The gene structure of tetranectin, a plasminogen binding protein. FEBS left 309:15, 1992.CrossRefGoogle Scholar
  12. 12.
    Marshall JM, Brown AJ, Ponting CP. Conformational studies of human plasminogen and plasminogen fragments: Evidence for a novel third conformation of plasminogen. Biochemistry 33:3599, 1994.PubMedCrossRefGoogle Scholar
  13. 13.
    Robbins KC, Summaria L, Hsieh B, Shah RJ. The peptide chains of human plasmin. Mechanism of activation of human plasminogen to plasmin. J Biol Chem 242:2333, 1967.PubMedGoogle Scholar
  14. 14.
    Holvoet, P, Lijnen HR, Collen D. A monoclonal antibody specific for Lys-plasminogen. Application to the study of the activation pathways of plasminogen in vivo. J Biol Chem 260:12106, 1985.PubMedGoogle Scholar
  15. 15.
    Sottrup-Jensen L, Claeys H, Zajdel M, Petersen TE, Magnusson S. The primary structure of human plasminogen: Isolation of two lysine-binding fragments and one “mini-” plasminogen (MW, 38,000) by elastase-catalyzed-specific limited proteolysis. In Davidson JF, Rowan RM, Samama MM, Desnoyers PC (eds). Progress in Chemical Fibrinolysis and Thrombolysis, 3rd ed. New York: Raven Press 1978:191.Google Scholar
  16. 16.
    Nakajima K, Nagata K, Hamanoue M, Takemoto N, Kohsaka S. Microglia-derived elastase produces a low-molecuJar-weight plasminogen that enhances neurite outgrowth in rat neocortical explant cultures. J Neurochem 61:2155, 1993.PubMedCrossRefGoogle Scholar
  17. 17.
    O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79:315, 1994.PubMedCrossRefGoogle Scholar
  18. 18.
    Pennica D, Holmes WE, Kohr WJ, Harkins RN, Vehar GA, Ward CA, Bennett WF, Yelverton E, Seeburg PH, Heyneker HL, Goeddel DV, Collen D. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 301:214, 1983.PubMedCrossRefGoogle Scholar
  19. 19.
    Nienaber VL, Young SL, Birktoft JJ, Higgins DL, Berliner LJ. Conformational similarities between one-chain and two-chain tissue plasminogen activator (t-PA): Implications to the activation mechanism on one-chain t-PA. Biochemistry 31:3852, 1992.PubMedCrossRefGoogle Scholar
  20. 20.
    Madison EL, Kobe A, Gething M-J, Sambrook JF, Goldsmith EJ. Converting tissue plasminogen activator to a zymogen: A regulatory triad of Asp-His-Ser. Science 262:419, 1993.PubMedCrossRefGoogle Scholar
  21. 21.
    Novokhatny VV, Ingham KC, Medved LV. Domain structure and domain-domain interactions of recombinant tissue plasminogen activator. J Biol Chem 266: 12994, 1991.PubMedGoogle Scholar
  22. 22.
    Downing AK, Driscoll PC, Harvey TS, Dudgeon TJ, Smith BO, Baron M, Campbell ID. Solution structure of the fibrin binding finger domain of tissue-type plasminogtn activator determined by H nuclear magnetic resonance. J Mol Biol 225:821, 1992.PubMedCrossRefGoogle Scholar
  23. 23.
    Harris RJ, Leonard CK, Guzzetta AW, Spellman MW. Tissue plasminogen acnvaror has an O-linked fucose attached to threonine-6l in the epidermal growth factor domain. Biochemistry 30:2311, 1991.PubMedCrossRefGoogle Scholar
  24. 24.
    Holmes WE, Pennica D, Blaber M, Rey MW, Günzler WA, Steffens GJ, Heyneker HL. Cloning and expression of the gene for pro-urokinase in Escherichia colt. Biotechnology 3:923, 1985.CrossRefGoogle Scholar
  25. 25.
    Günzler WA, Steffens GJ, Ötting F, Kim SM, Frankus E, Flohe L. The primary structure of high molecular mass urokinase from human urine. The complete ammo acid sequence of the A chain. Hoppe-Seyler’s Z Physiol Chem 363:1155, 1982.PubMedGoogle Scholar
  26. 26.
    Ichinose A, Fujikawa K, Suyama T. The activation of pro-urokinase by plasma kallikrein and its inactivation by thrombin. J Biol Chem 261:3486, 1986.PubMedGoogle Scholar
  27. 27.
    Kobayashi H, Schmitt M, Goretzki L, Chucholowski N, Calvete J, Kramer M, Gunzler WA, Janicke F, Gracff H. Cathepsin B efficiently activates the soluble and the tumor cell receptor-bound form of the proenzyme urokinase-type plasminogen activator (Pro-uPA). J Biol Chem 266:5147, 1991.PubMedGoogle Scholar
  28. 28.
    Brunner G, Vettel U, Jobstmann S, Kramer MD, Schirrmacher U. A T-cell-related proteinase expressed by T-lymphoma cells activates their endogenous prourokinase. Blood 79:2099, 1992.PubMedGoogle Scholar
  29. 29.
    Marcotte PA, Henkin J. Characterization of the activation of pro-urokinase by thermolysin. Biochim Biophys Acta 1160:105, 1993.Google Scholar
  30. 30.
    Stump DC, Lijnen HR. Collen D. Purification and characterization of a novel low molecular weight form of single-chain urokinase-type plasminogen activator. J Biol Chem 261:17120, 1986.PubMedGoogle Scholar
  31. 31.
    Marcotte PA, Kozan IM, Dorwin SA, Ryan JM. The matrix metalloproteinase Pump-I catalyzes formation of low molecular weight (pro)urokinase in cultures of normal human kidney cells. J Biol Chem 267:13803, 1992.PubMedGoogle Scholar
  32. 32.
    de Munk GA, Parkinson JF, Groeneveld E, Bang NU, Rijken DC. Role of the glycosaminoglycan component of thrombomodulin in its acceleration of the inacrivarion of single-chain urokinase-type plasminogen activator by thrombin. Biochem J 290:655, 1993.PubMedGoogle Scholar
  33. 33.
    Molinari A, Giorgetti C. Lansen J. Thrombomodulin is a cofactor for thrombin degradation of recombinant single-chain urokinase plasminogen activator “in vitro” and in a perfused rabbit heart model. Thromb Haemost 67:226, 1992.PubMedGoogle Scholar
  34. 34.
    Buko AM, Kentzer EJ, Petros A, Menon G, Zuiderweg F.R, Sarin UK. Characterization of a posttranscriptional fucosylation in the growth factor domains of urinary plasmmogen activator. Proc Natl Acad Sci USA 88:3992, 1991.PubMedCrossRefGoogle Scholar
  35. 35.
    Winkler KC, DeWaart J, Grootsen C, Zegers BJM, Tellier NF, Vertegt CD. Lysogenic conversion of staphylococci to loss of beta-toxin. J Gen Microbiol 39:321, 1965.PubMedGoogle Scholar
  36. 36.
    Lack CH. Staphylokinase. An activator of plasma protease. Nature 161:559, 1948.CrossRefPubMedGoogle Scholar
  37. 37.
    Collen D, Lijnen HR. Staphylokinase, a fibrin-specific plasminogen activator with therapeutic potential? Blood 84:680, 1994.PubMedGoogle Scholar
  38. 38.
    Damaschun G, Damaschun H, Gast K, Misselwitz R, Zirwer D, Gührs KH, Hartmann M, Schlott B, Triebel H, Behnke D. Physical and conformational properties of staphylokinase in solution. Biochim Biophys Acta 1161:244, 1993.PubMedGoogle Scholar
  39. 39.
    Lijnen HR, Van Hoef B, Vandenbossche L, Collen D. Biochemical properties of natural and recombinanr staphylokinase. Fibrinolysis 6:214, 1992.CrossRefGoogle Scholar
  40. 40.
    Schlott B, Hartmann M, Gührs K-H, Birch-Hirschfeld E, Gase A, Vetterman S, Collen D, Lijnen HR. Functional properties of recombinant staphylokinase variants obtained by site-specific mutagenesis of methionine 26. Biothim Biophys Acta 1204:235, 1994.Google Scholar
  41. 41.
    Silence K, Hartmann M, Gührs K-H, Gase A, Schlott B, Collen D, Lijnen HR. Structure-function relationships in staphylokinase as revealed by “clustered charge-to-alanine” mutagenesis. J Biol Chem, 270:27192, 1995.PubMedCrossRefGoogle Scholar
  42. 42.
    Bangert K, Johnsen AH, Christensen U, Thorsen S. Different N-terminal forms of α,-plasmin inhibitor in human plasma. Biochem J 291:623, 1993PubMedGoogle Scholar
  43. 43.
    Holmes WE, Nelles L, Lijnen HR, Collen D. Primary structure of human (α2-antiplasmin, a serine protease inhibitor (serpin). J Biol Chem 262:1659, 1987.PubMedGoogle Scholar
  44. 44.
    Sugiyama N, Sasaki T, Iwamoto M, Abiko Y. Binding site of α2-plasmin inhibitor to plasminogen. Biochim Biophys Acta 952:1, 1988.PubMedGoogle Scholar
  45. 45.
    Clemmensen I, Thorsen S, Müllertz S, Petersen LC. Properries of three different molecular forms of (α2-plasmin inhibitor. Eur J Biochem 120:105, 1981.PubMedCrossRefGoogle Scholar
  46. 46.
    Kimura S, Aoki N. Cross-linking site in fibrinogen for α2-plasmin inhibitor. J Biol Chem 261:15591. 1986.PubMedGoogle Scholar
  47. 47.
    Sumi Y, Ichikawa Y, Nakamura Y, Miura O, Aoki N. Expression and characterization of pro α2-plasmm inhibitor. J Biochem (Tokyo) 106:703, 1989.Google Scholar
  48. 48.
    Kruithof EKO, Tran-Thang C, Ransijn A, Bachmann F. Demonstration of a fast-acting inhibitor of plasminogen activators in human plasma. Blood 64:907, 1984.PubMedGoogle Scholar
  49. 49.
    Kruithof EKO. Plasminogen activator inhibitors — a review. Enzyme 40:113, 1988.PubMedGoogle Scholar
  50. 50.
    Kruithof EKO, Gudinchet A, Bachmann F. Plasminogen activator inhibitor 1 and plasminogen activator inhibitor 2 in various disease states. Thrumh Haemosr 59:7, 1988.Google Scholar
  51. 51.
    Sherman PM, Lawrence DA, Yang AY, Vandenberg ET, Paielli D, Olson ST, Shore JD, Ginsburg D. Saturation mutagenesis of the plasminogen activator inhibitor-1 reactive center. J Biol Chem 267:7588, 1992.PubMedGoogle Scholar
  52. 52.
    Hekman CM, Loskutoff DJ. Endothelial cells produce a latent inhibitor of plasminogen activators that can be activated by denaturants. J Biol Chem 260:11581, 1985.PubMedGoogle Scholar
  53. 53.
    Vaughan DE, Declerck PJ, Van Houtte E, De Mol M, Collen D. Studies of recombinant plasminogen activator inhibitor-1 in rabbits. Circ Res 67:1281, 1990.PubMedGoogle Scholar
  54. 54.
    Mottonen J, Strand A, Symersky J, Sweet RM, Danley DE, Geoghegan KF, Gerard RD, Goldsmith EJ. Structural basis of latency in plasminogen activator inhibitor-1. Nature 355:270, 1992.PubMedCrossRefGoogle Scholar
  55. 55.
    Declerck PJ, De Mol M, Vaughan DE, Collen D. Identification of a conformationally distinct form of plasminogen activator inhibitor-1, acting as a non-inhibitory substrate for tissue-type plasminogen activator. J Biol Chem 267:11693, 1992.PubMedGoogle Scholar
  56. 56.
    Audenaert A-M, Knockaert I, Collen D, Declerck PJ. Conversion of plasminogen activator inhibitor-1 from inhibitor to substrate by point mutations in the reactive-site loop. J Biol Chem 269:19559, 1994.PubMedGoogle Scholar
  57. 57.
    Declerck PJ, De Mol M, Alessi MC, Baudner S, Paques EP, Preissner KT, Müller-Berghaus G, Collen D. Purification and characterization of a plasminogen activator inhibitor-1 binding protein from human plasma. Identification as a multimeric form of S protein (Vitronectin). J Biol Chem 263:15454, 1988.PubMedGoogle Scholar
  58. 58.
    Seiffert D, Loskutoff DJ. Kinetic analysis of the interaction between type 1 plasminogen activator inhibitor and vitronectin and evidence that the bovine inhibitor binds to a thrombin-derived amino-terminal fragment of bovine vitronectin. Biochim Biophys Acta 1078:23, 1991.PubMedGoogle Scholar
  59. 59.
    Gechtman Z, Sharma R, Kreizman T, Fridkin M, Shaltiel S. Synthetic peptides derived from the sequence around the plasmin cleavage site in vitronectin. Use in mapping the PAI-I binding site.FEBS lett 315:293, 1993.PubMedCrossRefGoogle Scholar
  60. 60.
    Ehrlich HJ, Gebbink PK, Keijer J, Pannekoek H. Elucidation of structural requirements on plasminogen activator inhibitor 1 for binding to heparin. J Biol Chem 267:11606, 1992.PubMedGoogle Scholar
  61. 61.
    Booth NA, Reith A, Bennett B. A plasminogen activator inhibitor (PAI-2) circulates in two molecular forms during pregnancy. Thromb Haemost 59:77, 1988.PubMedGoogle Scholar
  62. 62.
    Wiman B, Collen D. On the kinetics of the reaction between human antiplasrnin and plasmin. Eur J Biochem 84:573, 1978.PubMedCrossRefGoogle Scholar
  63. 63.
    Edelberg JM, Pizzo SV. Lipoprotein (a) promotes plasmin inhibition by (α2-antiplasmin. Biochem J 286:79, 1992.PubMedGoogle Scholar
  64. 64.
    Chmielewska J, Ranby M, Wiman B. Kinetics of the inhibition of plasminogen activators by the plasminogen-activator inhibitor. Evidence for “second site” interactions. Biochem J 251:327, 1988.PubMedGoogle Scholar
  65. 65.
    Madison EL, Goldsmith EJ, Gerard RD, Gething MJ, Sambrook JF, Serpin-resistant mutants of human tissue-type plasminogen activator. Nature 339:721, 1989.PubMedCrossRefGoogle Scholar
  66. 66.
    Adams DS, Griffin LA, Nachajko WR, Reddy VB, Wei CM. A synthetic DNA encoding a modified human urokinase resistant to inhibition by serum plasminogen activator inhibitor. J Biol Chem 266:8476, 1991.PubMedGoogle Scholar
  67. 67.
    Wagner OF, de Vries C, Hohmann C, Veerman H, Pannekoek H. Interaction between plasminogen activator inhibitor type 1 (PAI-1) bound to fibrin and either tissue-type plasminogen activator (t-PA) or urokinase-type plasminogen activator (u-PA). J Clin Invest 84:647, 1989.PubMedGoogle Scholar
  68. 68.
    Reilly CF, Hutzelmann JE. Plasminogen activator inhibitor-1 binds to fibrin and inhibits tissue-type plasminogen activator-mediated fibrin dissolution. J Biol Chem 267:17128, 1992.PubMedGoogle Scholar
  69. 69.
    Hoylaerts M, Rijken DC, Lijnen HR, Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem 257:2912, 1982.PubMedGoogle Scholar
  70. 70.
    Thorsen S. The mechanism of plasminngen activation and the variability of the fibrin effector during tissuetype plasminogen activator-mediated fibrinolysis. Ann N Y Acad Sci 667:52, 1992.PubMedCrossRefGoogle Scholar
  71. 71.
    Suenson E, Petersen LC. Fibrin and plasminogen structures essential to stimulation of plasmin formation by tissue-type plasminogen activator. Biochim Biophys Acta 870:510, 1986.PubMedGoogle Scholar
  72. 72.
    Higgins DL, Vehar GA. Interaction of one-chain and two-chain tissue plasminogen activator with intact and plasmin-degraded fibrin. Biochemistry 26:7786, 1987.PubMedCrossRefGoogle Scholar
  73. 73.
    Collet JP, Soria J, Mirshahi M. Dusard syndrome: A new concept of the relationship between fibrin clot architecture and fibrin clot degradability: Hypofibrinolysis related to an abnormal clot structure. Blood 82:2462, 1993.PubMedGoogle Scholar
  74. 74.
    Liu CY, Koehn JA, Morgan FJ. Characterization of fibrinogen New York 1. A dysfunctional fibrinogen with a deletion of Bβ (9–72) corresponding exactly to exon 2 of the gene. J Biol Chem 260:4390, 1985.PubMedGoogle Scholar
  75. 75.
    Andreasen PA, Petersen LC, Dane K. Diversity in catalytic properties of single chain and two chain tissue-type plasminogen activator. Fibrinolysis 5:207, 1991.CrossRefGoogle Scholar
  76. 76.
    Loscalzo J. Structural and kinetic comparison of recombinant human single-and two-chain tissue plasminogen activator. J Clin Invest 82:1391, 1988.PubMedGoogle Scholar
  77. 77.
    Harpel PC, Hermann A, Zhang X, Ostfeld I, Borth W. Lipoprotein (a), plasmin modulation, and atherogenesis.Thromb Haemost 74:382, 1995.PubMedGoogle Scholar
  78. 78.
    Liu J, Harpel PC, Gurewich V. Fibrin-bound lipoprotein (a) promotes plasminogen binding but inhibits fibrin degradation by plasmin. Biochemistry 33:2554, 1994.PubMedCrossRefGoogle Scholar
  79. 79.
    Gurewich V, Pannell R, Louie S, Kelley P, Suddith RL, Greenlee R. Effective and fibrin-specific clot lysis by a zymogen precursor form of urokinase (pro-urokinase). A study in vitro and in two animal species. J Clin Invest 73:1731, 1984.PubMedCrossRefGoogle Scholar
  80. 80.
    Lijnen HR, Van Hoef B, Nelles L, Collen D. Plasminogen activation with single-chain urokinase-type plasminogen activator (scu-PA). Studies with active site mutagenized plasminogen (Ser 740 → > Ala) and plasmin resistant scu-PA (Lys155 → Cilu). J Biol Chem 265:5252, 1990.Google Scholar
  81. 81.
    Husain SS. Single-chain urokinase-type plasminogen activator docs not possess measurable intrinsic amidolytie or plasminogen activator activities. Biochemistry 30:5797, 1991.PubMedCrossRefGoogle Scholar
  82. 82.
    Liu J, Pannell R, Gurewich V. A transitional state of pro-urokinase that has a higher catalytic efficiency against Glu-plasminogen than urokinase. J Biol Chem 267:15289, 1992.PubMedGoogle Scholar
  83. 83.
    Liu J, Gurewich V Fragment E-2 Irom fibrin substantially enhances pro-urokinase-induced Glu-plasminogen activation. A kinetic study using the plasmin-resistant mutant pro-urokinase Ala-158-rpro-UK. Biochemistry 31:6511, 1992.Google Scholar
  84. 84.
    Fleury V, Gurewich V, Anglés-Cano E. A study oi the activation of fibrin-bound plasminogen by tissue-type plasmmogen activator, single chain urokinase and sequential combinations of the activators. Fibnnolysis 7:87, 1993.CrossRefGoogle Scholar
  85. 85.
    Fleury V, Lijnen HR, Anglés-Cano E. Mechanism of the rnhanced intrinsic activity of single-chain urokinase-type plasminogen activator during ongoing fibrmolysis. J Biol Chem 268:18554, 1993.PubMedGoogle Scholar
  86. 86.
    Husain SS. Fibrin athnity of urokinase-type plasmmogen activator. Evidence that Zn2+ mediates strong and specific interaction of single-chain urokinase with fibrin. J Biol Chem 268:8574, 1993.PubMedGoogle Scholar
  87. 87.
    Declerck PJ, Lijnen HR, Verstreken M, Collen D. Role of α2-antiplasmin in fibrin-specific clot lysis with single-chain urokinase-type plasminogen activator in human plasma, Thromb Haemost 65:594, 1991.Google Scholar
  88. 88.
    Collen D. Schlott B, Bngelborghs Y, Van Hoef B, Ilartmann M. Lijnen HR, Behnke D. On the mechanism of the activation of human plasminogen by recombinant staphylokinase. J Biol Chem 268:8284, 1993.PubMedGoogle Scholar
  89. 89.
    Lijnen HR, Van Hoef B, Collen D. Interaction of staphylokinase with different molecular forms of plasminogen. Eur J Biochem 211:91, 1993.PubMedCrossRefGoogle Scholar
  90. 90.
    Lijnen HR, Van Hoef B, De Cock F, Okada K, Ueshima S, Matsuo O, Collen D. On the mechanism of fibrin-specific plasminogen activation by staphylokinase. J Biol Chem 266:11826, 1991.PubMedGoogle Scholar
  91. 91.
    Sakai M, Watanuki M, Matsuo O. Mechanism of fibrin-specific fibrinolysis by staphylokinase: Participation of α2-plasmin inhibitor. Biochem Biophys Res Commun 162:830, 1989.PubMedCrossRefGoogle Scholar
  92. 92.
    Matsuo O, Okada K, Fukao H, Tomioka Y, Ueshima S, Watanuki M, Sakai M. Thrombolytic properties of staphylokinase. Blood 76:925, 1990.PubMedGoogle Scholar
  93. 93.
    Lijnen HR, Van Hoef B, Matsuo O, Collcn D. On the molecular interactions between plasminogen-staphylokmase, α2-antiplasmin and fibrin. Biochim Biophys Acta 1118:114, 1992.Google Scholar
  94. 94.
    Silence K, Collen D, I.ijncn HR. Interaction between staphylokinase, plasmin (ogen) and α2-antiplasmin. Recycling of staphylokinase after neutralization of the plasmin-staphylokinase complex by α2-antiplasmin. J Biol Chem 268:9811, 1993.PubMedGoogle Scholar
  95. 95.
    Silence K, Collen D, Lijnen HR. Regulation by α2-antiplasmin and fibrin of the activation of plasminogen with recombinant staphylokinase in plasma. Blood 82:1175, 1995.Google Scholar
  96. 96.
    Sabovic M, Lijnen HR, Keber D, Collen D. Effect of retraction on the lysis of human clots with fibrin specific and non-fibnn specific plasminogen activators. Thromb Haemost 62:1083, 1989.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • H. Roger Lijnen

There are no affiliations available

Personalised recommendations