Markers of Thrombosis and Fibrinolysis

  • L. Veronica Lee
  • Dana R. Abendschein
  • Paul R. Eisenberg
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 193)


Thrombosis plays a central role in the pathogenesis of acute coronary syndromes. Currently available therapies, which possess primarily antithrombotic and fibrinolytic properties, have improved the clinical outcome of patients with unstable angina and myocardial infarction. However, because of residual thrombosis, a significant proportion of patients with acute coronary syndromes develop complications such as reocclusion, reinfarction, recurrent ischemia, and stenosis, with clinical manisfestations ranging from stable angina to death. We currently lack critical information regarding the balance between thrombosis and fibrinolysis that would help guide the development of short-term, long-term, and preventive treatments. Plasma markers of thrombosis and fibrinolysis are likely to be crucial to the development and use of current and future therapeutic approaches. The following is an overview of some currently available and novel assays for thrombotic and fibrinolytic activity, and recent clinical data on their potential role in the assessment of acute coronary syndromes and in guiding therapy.


Plasminogen Activator Tissue Factor Deep Venous Thrombosis Tissue Plasminogen Activator Tissue Factor Pathway Inhibitor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bach RR. Initiation of coagulation by tissue factor. CRC Crit Rev Biochem 23:339, 1988.PubMedCrossRefGoogle Scholar
  2. 2.
    Drake TA, Morrissey JH, Edgington TS. Selective cellular expression of tissue factor in human tissues. Am J Pathol 134:1087, 1989.PubMedGoogle Scholar
  3. 3.
    Wilcox JN, Smith KM, Schwartz SM, Gordon D. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci USA 86:2839, 1989.PubMedCrossRefGoogle Scholar
  4. 4.
    Annex BH, Denning SM, Channon KM, Skerch MH Jr, Stack RS, Morrissey JH, Peters KG. Differential expression of tissue factor protein in directional atherectomy specimens from patients with stable and unstable coronary syndromes. Circulation 91:619, 1995.PubMedGoogle Scholar
  5. 5.
    Marmur JD, Rossikhina M, Guha A, Fyfe B, Friedrich V, Medlowitz M, Nemerson Y, Taubman MB. Tissue factor is rapidly induced in arterial smooth muscle after balloon injury. J Clin Invest 91:2253, 1993.PubMedCrossRefGoogle Scholar
  6. 6.
    Taubman MB. Tissue factor regulation in vascular smoorh muscle: A summary of studies performed using in vivo and in vitro models. Am J Cardiol 72:55C, 1993.PubMedCrossRefGoogle Scholar
  7. 7.
    Albrecht S, Luther T, Grossman H, Flossel C, Korzsch M, Muller M. An ELISA for tissue factor using monoclonal antibodies. Blood Coagul Fibrinolysis 3:263, 1992.PubMedCrossRefGoogle Scholar
  8. 8.
    Takahashi H, Satoh N, Wada K, Takakuwa E, Seki Y, Shibata A. Tissue factor in plasma of patients with disseminated intravascular coagulation. Am J Hematol 46:333, 1994.PubMedCrossRefGoogle Scholar
  9. 9.
    Koyama T, Nishida K, Ohdama S, Sawada M, Murakami N, Hirosawa S, Kuriyama R, Matsuzawa K, Hasegawa R, Aoki N. Determination of plasma tissue factor antigen and its clinical significance. Br J Haematol 87:343, 1994.PubMedGoogle Scholar
  10. 10.
    Fukada S, Iijima K, Nakamura K. Measuring tissue factor (factor III) activity in plasma. Clin Chem 35:1897, 1989.Google Scholar
  11. 11.
    Iijima K, Fukuda C, Nakamura K. Measurements of tissue factor-like activity in plasma of patients with DIC. Thromb Res 61:29, 1991.PubMedGoogle Scholar
  12. 12.
    Francis JL, Carvalho M, Francis DA. The clinical value of tissue factor assays. Blood Coagul Fibrinolysis 6:S37, 1995.PubMedCrossRefGoogle Scholar
  13. 13.
    Leatham EW, Bath PMW, Tooze JA, Camm AJ. Increased monocyre tissue factor expression in coronary disease. Br Heart J 73:10, 1995.PubMedCrossRefGoogle Scholar
  14. 14.
    Serneri GGN, Abbate R, Gori AM, Attanasio M, Martini F, Giusti B, Dabizzi P, Poggesi L, Modesti PA, Trotta F, Rostagno C, Boddi M, Gensini GF. Transient intermittent lymphocyte activation is responsible for the instability of angina. Circulation 86:790, 1992.PubMedGoogle Scholar
  15. 15.
    Jude B, Agraou B, McFadden EP, Susen S, Bauters C, Lepelley P, Vanhaesbroucke C, Devos P, Cosson A, Asseman P. Evidence for time-dependent activation of monocytes in the systemic circulation in unstable angina but not in acute myocardial infarction or in stable angina. Circularion 90:1662, 1994.Google Scholar
  16. 16.
    Edwards RL, Silver J, Rickles FR. Human tumor procoagulants: Registry of the Subcommittee on Haemostasis and Malignancy of the Scientific and Standardization Committee, International Society on Thrombosis and Haemostasis. Thromb Haemost 69:205, 1993.PubMedGoogle Scholar
  17. 17.
    Andoh K, Kubota T, Takada M, Tanaka H, Kobayashi N, Maekawa T. Tissue factor activity in leukemia cells. Special reference to disseminated intravascular coagulation. Cancer 59:748, 1987.PubMedCrossRefGoogle Scholar
  18. 18.
    Nawroth PP, Handley DA, Esmon CT, Stern DM. Interleukin 1 induces endothelial cell procoagulant while suppressing cell surface anticoagulant activity. Proc Natl Acad Sci USA 83:3460, 1986.PubMedCrossRefGoogle Scholar
  19. 19.
    Archipoff G, Beretz A, Freyssinet J, Klein-Soyer C, Brisson C, Cazenave JP. Heterogeneous regulation of constitutive thrombomodulin or inducible tissue factor activities on the surface of human saphenous vein endothelial cells in culture following stimulation by interleukin-1, tumor necrosis factor, thrombin or phorbol ester. Biochem J 273:679, 1991.PubMedGoogle Scholar
  20. 20.
    Wada H, Wakita Y, Shiku H. Tissue factor expression in endothelial cells in health and disease. Blood Coagul Fibrinolysis 6:S26, 1995.PubMedGoogle Scholar
  21. 21.
    Nakagaki T, Fosrer DC, Berkner KL, Kisiel W. Initiation of the extrinsic pathway of blood coagulation: Evidence for the factor dependent autoactivation of human coagulation factor VII. Biochemistry 30:10819, 1991.PubMedCrossRefGoogle Scholar
  22. 22.
    Seligsohn U, Casper CK, Osterud B, Rapaport SI. Activated factor VII: Presence in factor IX concentrates and persistence in the circulation after infusion. Blood 53:828, 1979.PubMedGoogle Scholar
  23. 23.
    Nemerson Y, Repke D. Tissue factor accelerates the activation of coagulation factor VII: The role of a bifunctional coagulation cofactor. Thromb Res 40:351, 1985.PubMedCrossRefGoogle Scholar
  24. 24.
    Nemerson Y, Esnouf MP. Activation of a proteolytic system by a membrane lipoprotein: Mechanism of action of tissue factor. Proc Natl Acad Sci USA 70:310, 1973.PubMedCrossRefGoogle Scholar
  25. 25.
    Seligsohn U, Osterud B, Rapaport SI. Coupled amidolytic assay for factor VII: Its use with a clotting assay to determine the activity state of factor VII. Blood 52:978, 1978.PubMedGoogle Scholar
  26. 26.
    Morrissey J. Tissue factor interactions with factor VII: Measurement and clinical significance of factor VIIa in plasma. Blood Coagul Fibrinolysis 6:S14, 1995.PubMedGoogle Scholar
  27. 27.
    Morrissey JH, Macik BG, Neuenschwander PF, Comp PC. Quantitation of activation factor VII levels in plasma using a tissue factor mutant selectively deficient in promoting factor VII activation. Blood 81:734, 1993.PubMedGoogle Scholar
  28. 28.
    Hultin MB. Fibrinogen and factor VII as risk factors in vascular disease. Prog Hemost Thromb 10:215, 1991.PubMedGoogle Scholar
  29. 29.
    Broze GJ, Hickman S, Miletich JP. Monoclonal antihuman factor VII antibodies. Detection in plasma of a second protein antigenically and genetically related to factor VII. J Clin Invest 76:937, 1985.PubMedGoogle Scholar
  30. 30.
    Takase T, Tuddenham E, Chand S, Goodall AH. Monoclonal antibodies to human factor VII: A one step immunoradiometric assay for VII:Ag. J Clin Pathol 41:337, 1988.CrossRefGoogle Scholar
  31. 31.
    Bom VJJ, van Tilburg NH, Krommenhoek-van Es C, Bertina RM. Immunoradiometric assays for human coagulation factor VII using polyclonal antibodies against the Ca(II)-dependent and Ca(II)-independent conformation. Thromb Haemost 56:343, 1986.PubMedGoogle Scholar
  32. 32.
    Kitchen S, Malia RG, Preston FE. A comparison of methods for the measurement of activated factor VII. Thromb Haemost 68:301, 1992.PubMedGoogle Scholar
  33. 33.
    Mann KG. Factor VII assays, plasma triglyceride levels, and cardiovascular disease risk. Arteriosclerosis 9:783, 1989.PubMedGoogle Scholar
  34. 34.
    Waxman E, Ross JB, Laue TM, Guha A, Thiruvikraman SV, Lin TC, Konigsberg WH, Nemerson Y. Tissue factor and its extracellular soluble domain. The relationship between intermolecular association with factor VIIa and enzymatic activity of the complex. Biochemistry 31:3998, 1992.PubMedCrossRefGoogle Scholar
  35. 35.
    Waxman E, Laws WR, Laue TM, Yale N, Ross JBA. Human factor VIIa and its complex with soluble tissue factor: Evaluation of asymmetry and conformational dynamics by ultracentrifugation and fluorescence anisotropy decay methods. Biochemistry 32:3005, 1993.PubMedCrossRefGoogle Scholar
  36. 36.
    Paborsky LR, Caras IW, Fisher KL, Gorman CM. Lipid association, but not the transmembrane domain, is required for tissue factor activity. Substitution of the transmembrane domain with a phosphatidylinositol anchor. J Biol Chem 32:3005, 1991.Google Scholar
  37. 37.
    Neuenschwander PF, Morrissey JH. Deletion of the membrane-anchoring region of tissue factor abolishes autoactivation of factor VII, but not cofactor function: Analysis of a mutant with a selective deficiency in activity. J Biol Chem 267:14477, 1992.PubMedGoogle Scholar
  38. 38.
    Kario K, Sakata T, Matsuo T, Miyata T. Factor VII in non-insulin-dependent diabetic patients with microalbuminuria. Lancet 342:1552, 1993.PubMedCrossRefGoogle Scholar
  39. 39.
    Kario K, Miyata T, Sakata T, Matsuo T, Kato H. Fluorogenic assay of activated factor VII: Plasma factor VIIa levels in relation to arterial vascular diseases in Japanese. Arterioscler Thromb 14:265, 1994.PubMedGoogle Scholar
  40. 40.
    Rugman FP, Jenkins JA, Daguid JK, Maggs PB, Hay CRM. Prothrombin fragment F1+2: Correlations with cardiovascular risk factors. Blood Coagul Fibrinolysis 5:335, 1994.PubMedGoogle Scholar
  41. 41.
    Meade TW, Brozovic M, Chakrabarti RA, Haines AP, Imeson JD, Mellows S, Millet GJ, North WRS, Stirling Y, Thompson SG. Haemostatic function and ischaemic heart disease: Principal results of the Northwick Park Heart Study. Lancet 2:533, 1986.PubMedCrossRefGoogle Scholar
  42. 42.
    Balleisen L, Schulte H, Assmann G, Epping PH, Loo JVD. Coagulation factors and the progress of coronary heart disease. Lancet 2:461, 1987.PubMedCrossRefGoogle Scholar
  43. 43.
    Hoffman C, Shah A, Sodums M, Hultin MB. Factor VII activity state in coronary artery disease. J Lab Clin Med 111:475, 1988.PubMedGoogle Scholar
  44. 44.
    Carvalho de Sousa J, Azevedo J, Soria C, Barros F, Ribeiro C, Parreira F, Caens JP. Factor VII hyperactivity in acute myocardial thrombosis: A relation to the coagulation activation. Thromb Res 51:165, 1988.CrossRefGoogle Scholar
  45. 45.
    Cortellaro M, Boschetti C, Cofrancesco E, Zanussi C, Catalano M, Gaetano GD, Gabrielli L, Lombardi B, Specchia G, Tavazzi L, Tremoli E, Volpe AD, Polli E, for The PLAT Study Group. The PLAT study: Hemostatic function in relation to atherothrombotic ischemic events in vascular disease patients — principal results. Arterioscler Thromb 12:1063, 1992.PubMedGoogle Scholar
  46. 46.
    Heinrich J, Balleisen L, Schulre H, Assmann G, Loo JVD. Fibrinogen and factor VII in the prediction of coronary risk: Results from the PROCAM study in healthy men. Arterioscler Thromb 14:54, 1994.PubMedGoogle Scholar
  47. 47.
    Ruddock V, Meade TW. Factor-VII activity and ischaemic heart disease: Fatal and non-fatal events. Q J Med 87:403, 1994.Google Scholar
  48. 48.
    Miller G, Stirling Y, Esnouf MP, Heinrich J, Loo JVD, Kienast J, Wu KK, Morrissey JH, Meade TW, Martin JC, Imeson JD, Cooper JA, Finch A. Factor Vil-deficient substrate plasmas depleted of protein C raise the sensitivity of the factor VII bioassay to activated factor VII: An international study. Thromb Haemost 71:38, 1994.PubMedGoogle Scholar
  49. 49.
    Broze GJ, Girard TJ, Novotony WF. Regulation of coagulation by a multivalent Kunitz-type inhibitor. Biochemistry 29:7539, 1990.PubMedCrossRefGoogle Scholar
  50. 50.
    Rappaport SI. The extrinsic pathway inhibitor: A regulator of tissue factor-dependent blood coagulation. Thromb Haemost 66:6, 1991.Google Scholar
  51. 51.
    Novotny WF, Girard TJ, Miletich JP, Broze GJ. Platelets secrete a coagulation inhibitor functionally and antigenically similar ro the lipoprorein associated coagulation inhibitor. Blood 72:2020, 1988.PubMedGoogle Scholar
  52. 52.
    Erhardtsen E, Ezban M, Madsen MT, Diness V, Glazer S, Hedner U, Nordfang O. Blocking of tissue factor pathway inhibitor (TFPI) shortens the bleeding time in rabbits with antibody induced haemophilia A. Blood Coagul Fibrinolysis 6:388, 1995.PubMedCrossRefGoogle Scholar
  53. 53.
    Lindahl AK, Odegaard OR, Sandset PM, Harbitz TB. Coagulation inhibition and activation in pancreatic cancer: Changes during progress of disease. Cancer 70:2067, 1992.PubMedCrossRefGoogle Scholar
  54. 54.
    Sandset PM, Lund H, Norseth J, Abilgaard U, Ose L. Treatment with hydroxymethylglutaryl-coenzyme A reductase inhibitors in hypercholesterolemia induces changes in the components of the extrinsic coagulation system. Arterioscler Thromb 11:138, 1991.PubMedGoogle Scholar
  55. 55.
    Hansen JB, Olsen JO, Osterud B. Physical exercise enhances plasma levels of extrinsic pathway inhibitor. Thromb Haemost 64:124, 1990.PubMedGoogle Scholar
  56. 56.
    Novotny WF, Brown SG, Miletich JP, Rader DJ, Broze GJ. Plasma antigen levels of the lipoprotein-associated coagulation inhibitor in patient samples. Blood 78:387, 1991.PubMedGoogle Scholar
  57. 57.
    Warr TA, Rao LV, Rapaport SI. Human plasma extrinsic pathway inhibitor activity: II. Plasma levels in disseminated intravascular coagulation and hepato-cellular disease. Blood 74:994, 1989.PubMedGoogle Scholar
  58. 58.
    Sabharwal AK, Ameri A, Bajaj M, Hyers TM, Tricomi SM, Taylor FB, Bajaj SP. Tissue factor pathway inhibitor levels in plasma and lavage fluids in acute lung injury. Am Rev Respir Dis 145:453a, 1992.Google Scholar
  59. 59.
    Sandset PM, Sirnes PA, Abilgaard U. Factor VII and extrinsic pathway inhibitor in acute coronary disease. Br J Haematol 72:391, 1989.PubMedGoogle Scholar
  60. 60.
    Moore E, Hamsten A, Karpe F, Bavenholm P, Blomback M, Silveria A. Relationship of tissue factor pathway inhibitor activity to plasma lipoproteins and myocardial infarction at a young age. Thromb Haemost 71:707, 1994.Google Scholar
  61. 61.
    Hansen JB, Huseby KR, Huseby NE, Sandset PM, Hanssen TA, Nordoy A. Effect of cholesterol lowering on intravascular pools of TFPI and its anticoagulant potential in type II hyperlipoproteinemia. Arterioscler Thromb Vasc Biol 15:879, 1995.PubMedGoogle Scholar
  62. 62.
    Sandset PM, Abilgaard U, Larsen ML. Heparin induces release of extrinsic coagulation pathway inhibitor (EPI). Thromb Res 50:803, 1988.PubMedCrossRefGoogle Scholar
  63. 63.
    Valentin S, Ostergaard P, Kristensen H, Nordfang O. Simultaneous presence of tissue factor pathway inhibitor (TFPI) and low molecular weight heparin has a synergistic effect in different coagulation assays. Blood Coagul Fibrinolysis 2:692, 1991.CrossRefGoogle Scholar
  64. 64.
    Hoppensteadt DA, Jeske W, Fareed J, Bermes EWJ. The role of tissue factor pathway inhibitor in the mediation of the antithrombotic actions of heparin and low-molecular-weight heparin. Blood Coagul Fibrinolysis 6:S57, 1995.PubMedGoogle Scholar
  65. 65.
    Broze GJ. Tissue factor pathway inhibitor and the revised theory of coagulation. Ann Rev Med 46:103, 1995.PubMedCrossRefGoogle Scholar
  66. 66.
    Anderson S, Cohen AT, Melissari E, Scully MS, Kakkar VV. Loss of heparin-releasable tissue factor pathway inhibitor in patients undergoing PTCA. Thromb Haemost 73:324, 1995.Google Scholar
  67. 67.
    Kijowski R, Hoppensteadt D, Walenga J, Borris L, Lassen NR, Fareed J. Role of tissue factor pathway inhibitor in post surgical deep venous thrombosis (DVT) prophylaxis in patients treated with low molecular weight heparin. Thromb Res 74:53, 1994.PubMedCrossRefGoogle Scholar
  68. 68.
    Jeske W, Hoppensteadt D, Klauser R, Kammereit A, Eckenberger P, Haas S, Wyld P, Fareed J. Effect of repeated aprosulate and enoxaparin administration on tissue factor pathway inhibitor antigen levels. Blood Coagul Fibrinolysis 6:119, 1995.PubMedCrossRefGoogle Scholar
  69. 69.
    Teitel JM, Bauer KA, Lau HK, Rosenberg RD. Studies of the prothrombin activation pathway utilizing radioimmunoassays for the F2/F1+2 fragment and thrombin-antithrombin complex. Blood 59:1086, 1983.Google Scholar
  70. 70.
    Miletich JP, Jackson CM, Majerus PW. Properties of the factor Xa binding site on platelets. J Biol Chem 253:6908, 1978.PubMedGoogle Scholar
  71. 71.
    Mann KG, Nesheim ME, Church WR, Haley P, Krishnaswamy S.Surface-dependent reactions of the vitamin K-dependent enzyme complexes. Blood 76:1, 1990.PubMedGoogle Scholar
  72. 72.
    Bauer KA, Rosenberg RD. Activation markers of coagulation. Bailliere’s Clin Haematol 7:523, 1994.CrossRefGoogle Scholar
  73. 73.
    Lau HK, Rosenberg JS, Beeler DL, Rosenberg RD. The isolation and characterization of a specific antibody population directed against the prothrombin activation fragments F2 and F1+2. J Biol Chem 254:8751, 1979.PubMedGoogle Scholar
  74. 74.
    Tripoldi A, Chantarngkul V, Bottasso B, Mannucci PM. Poor comparability of prothrombin fragment 1 + 2 values measured by two commercial ELISA methods: Influence of different anticoagulants and standards. Thromb Haemost 71:605, 1994.Google Scholar
  75. 75.
    Boneu B, Bes G, Pelzer H, Sie P, Boccalon H. D-dimer, thrombin antithrombin III complexes, and prothrombin fagments 1 + 2: Diagnostic value in clinically suspected deep vein thrombosis. Thromb Haemost 65:28, 1991.PubMedGoogle Scholar
  76. 76.
    Boisclair MD, Ireland H, Lane DA. Assessment of hypercoagulable states by measurement of activation fragments and peptides. Blood Rev 4:25, 1990.PubMedCrossRefGoogle Scholar
  77. 77.
    Kienast J, Thompson SG, Raskino C, Pelzer H, Fechtrup C, Ostermann H, Loo JVD. Prothrombin activation fragment 1 + 2 and thrombin antithrombin III complexes in patients with angina pectoris: Relation to the presence and severity of coronary atherosclerosis. Thromb Haemost 70:550, 1993.PubMedGoogle Scholar
  78. 78.
    Merlini PA, Bauer KA, Oltrona L, Ardissino D, Cattaneo M, Belli C, Mannucci PM, Rosenberg RD. Persistent activation of coagulation mechanism in unstable angina and myocardial infarction. Circulation 90:61, 1994.PubMedGoogle Scholar
  79. 79.
    Bruhn HD, Liebsch J, Wagner C. Documentation of hypocoagulability by measurement of prothrombin fragment F1+2 when introducing oral anticoagulant therapy. Thromb Res 68:317, 1992.PubMedCrossRefGoogle Scholar
  80. 80.
    Estivals M, Pelzer H, Sie P, Pichon J, Boccalon H, Boneu B. Prothrombin fragment 1 + 2, thrombin-antithrombin III complexes and D-dimers in acute deep vein thrombosis: Effects of heparin treatment. Br J Haematol 78:421, 1991.PubMedGoogle Scholar
  81. 81.
    Slaughter TF. Characterization of prothrombin activation during cardiac surgery by hemostatic molecular markers. Anesthesiology 80:520, 1994.PubMedCrossRefGoogle Scholar
  82. 82.
    Smith RC, Leung JM, Mangano DT, The SPI Research Group. Postoperative myocardial ischemia in patients undergoing coronary artery bypass graft surgery. Anesthesiology 74:464, 1991.PubMedCrossRefGoogle Scholar
  83. 83.
    Bauer KA, Rosenberg RD. The parhophysiology of the prechrombotic state in humans: Insights gained from studies using markers of hemostatic system activation. Blood 70:343, 1987.PubMedGoogle Scholar
  84. 84.
    Li Z, Wu J, Mammen EF. Prothrombin fragment F1+2 and oral anticoagulant therapy. Thromb Res 75:601, 1994.PubMedCrossRefGoogle Scholar
  85. 85.
    Hafner G, Swars H, Erbel R, Ehrenthal W, Rupprecht HJ, Lotz J, Meyer J, Prellwitz W. Monitoring prothrombin fragment 1 + 2 during initiation of oral anticoagulant therapy after intercoronary stencing. Ann Hematol 65:83, 1992.PubMedCrossRefGoogle Scholar
  86. 86.
    van den Bos AA, Deckers JW, Heyndrickx GR, Laarman GJ, Suryapranata H, Zijlstra F, Close P, Rijnierse JJMM, Buller HR, Serruys PW.Safety and efficacy of recombinant hirudin (CGP 39 393) versus heparin in patients with stable angina undergoing coronary angioplasty. Circulation 88:2058, 1993.PubMedGoogle Scholar
  87. 87.
    Kaiser B, Fareed J, Walenga JM, Hopensteadt D, Markwardt F. In vitro studies in thrombin generation in citrated, r-hirudinized and heparinized whole blood. Semin Thromb Res 64:589, 1991.CrossRefGoogle Scholar
  88. 88.
    Gallitz S, Muntean W. Thrombin-hirudin complex formation, thrombin-antithrombin III complex formation, and thrombin generation after intrinsic activation of plasma. Thromb Haemost 72:387, 1994.Google Scholar
  89. 89.
    Eisenberg PR, Sobel BE, Jaffe AS. Activation of prothrombin accompanying thrombolysis with recombinant tissue-type plasminogen activator. J Am Coll Cardiol 19:1065, 1992.PubMedGoogle Scholar
  90. 90.
    Merlini PA, Bauer KA, Oltrona L, Ardissino D, Spinola A, Cattaneo M, Broccolino M, Mannuci PM, Rosenberg RD. Thrombin generation and activity during thrombolysis and concomitant heparin therapy in patients with acute myocardial infarction. J Am Coll Cardiol 25:203, 1995.PubMedCrossRefGoogle Scholar
  91. 91.
    Ewald GA, Eisenberg PR. Plasmin-mediated activation of the contact system in response to pharmacologic thrombolysis. Circulation 91:28, 1995.PubMedGoogle Scholar
  92. 92.
    Scharfstein JS, Abendschein DR, Eisenberg PR, George D, Cannon CP, Becker RC, Sobel BE, Cupples LA, Braunwald E, Loscalzo J, for the TIMI-5 Investigators. Fibrino(geno)lytic and procoagulant markers during thrombolytic therapy with rt-PA and adjunctive antithrombotic therapy predict clinical outcomes. Am J Cardiol 78:503, 1996.PubMedCrossRefGoogle Scholar
  93. 93.
    Nossel HL, Yudelman RE, Canfield VP, Butler VP, Spanondis K, Wilner GD, Qureshi GD. Measurement of fibrinopeptide A in human blood. J Clin Invest 54:43, 1974.PubMedGoogle Scholar
  94. 94.
    Blomback B, Hessel B, Hogg D, Therkidsen L. A two-step fibrinogen-fibrin transition in blood coagulation. Nature 275:501, 1978.PubMedCrossRefGoogle Scholar
  95. 95.
    Blomback B, Vestermark A. Isolation of fibrinopeptides by chromatography. Arkiv Kemi 12:173, 1958.Google Scholar
  96. 96.
    Bilizekian SB, Nossel HL, Butler VP, Canfield R. Radioimmunoassay of human fibrinopeptide B and kinetics of fibrinopeptide cleavage by different enzymes. J Clin Invest 6:438, 1975.Google Scholar
  97. 97.
    Laudano AP, Doolittle RF. Influence of calcium ion on the binding of fibrin amino terminal peptides to fibrinogen. Science 212:457, 1981.PubMedCrossRefGoogle Scholar
  98. 98.
    Hermans J, McDonagh J. Fibrin: Structure and interactions. Semin Thromb Hemost 8:11, 1982.PubMedGoogle Scholar
  99. 99.
    Shainoff J, Page T. Significance of cryoprofibrin in fibrinogen-fibrin conversion. J Exp Med 116:687, 1962.PubMedCrossRefGoogle Scholar
  100. 100.
    Yudelman IM, Nossel HL, Kaplan KL, Hirsh J. Plasma fibrinopeptide A levels in symptomatic venous thromboembolism. Blood 51:1189, 1978.PubMedGoogle Scholar
  101. 101.
    Blomback B, Blomback M, Edman P, Hessel B. Human fibrinopeptides: Isolation, characterization and structure. Biochim Biophys Acta 115:371, 1966.PubMedGoogle Scholar
  102. 102.
    Koehn JA, Canfield RE. Purification of human fibrinopeptides by high performance liquid chromatography. Anal Biochem 116:349, 1981.PubMedCrossRefGoogle Scholar
  103. 103.
    Seydewitz HH, Witt I. Increased phosphorylation of human fibrinopeptide A under acute phase conditions. Thromb Res 40:29, 1985.PubMedCrossRefGoogle Scholar
  104. 104.
    Alkjaersig N, Fletcher AP. Catabolism and excretion of fibrinopeptide A. Blood 60:148, 1982.PubMedGoogle Scholar
  105. 105.
    Leeksma OC, Meijer-Huizinga F, Stoepman-van Dalen EA, van Aken WG, van Mourik JA. Fibrinopeptide A in urine from patients with venous thromboembolism, disseminated intravascular coagulation and rheumatoid arthritis — evidence for dephosphorylation and carboxyterminal degradation of the peptide by the kidney. Thromb Haemost 54:792, 1985.PubMedGoogle Scholar
  106. 106.
    Wilensky RL, Zeller JA, Wish M, Tulchinsky M. Urinary fibrinopeptide A levels in ischemic heart disease. J Am Coll Cardiol 14:597, 1989.PubMedGoogle Scholar
  107. 107.
    Nossel H, Younger L, Wilner G, Procupez T, Canfield R, Butler VPJ. Radioimmunoassay of human fibrinopeptide A. Proc Natl Acad Sci USA 68:2350, 1971.PubMedCrossRefGoogle Scholar
  108. 108.
    Wilner GD, Nossel HL, Canfield RE, Butler VPJ. Immunochemical studies of human fibrinopeptide A using synthetic peptide homologues. Biochemistry 15:1209, 1976.PubMedCrossRefGoogle Scholar
  109. 109.
    Soulier J. A new adsorption agent for coagulation factors. J Clin Pathol 12:303, 1959.PubMedCrossRefGoogle Scholar
  110. 110.
    Soulier JP, Prou-Wartelle O. Action de divers “adsorbants” sur les facteurs de coagulation. Nouv Rev Ft Hematol 15:195, 1975.Google Scholar
  111. 111.
    Cronlund M, Hardin J, Burton J, Lee L. Haber E, Bloch K. Fibrinopeptide A in plasma of normal subjects and patients with disseminated intravascular coagulation and systemic lupus erythematosis. J Clin Invest 58:142, 1976.PubMedGoogle Scholar
  112. 112.
    Kockum C. Radioimmunoassay of fibrinopeptide A: clinical applications. Thromb Haemost 8:225, 1976.Google Scholar
  113. 113.
    Gerrits W, Flier O, Meer JVD. Fibrinopeptide A immunoreactivity in human plasma. Thromb Res 5:197, 1974.PubMedCrossRefGoogle Scholar
  114. 114.
    Budzynski A, Marder V. Determination of human fibrinopeptide A by radioimmunoassay in purified systems and in the blood. Thromb Diath Haemorrh 34:709, 1975.PubMedGoogle Scholar
  115. 115.
    Nossel HL, Butler VP, Wilner GD, Canfield RE, Harfenist EJ. Specificity of antisera to human fibrinopeptide A used in clinical fibrinopeptide A assays. Thromb Haemost 35:101, 1976.PubMedGoogle Scholar
  116. 116.
    Kudryk B, Robinson D, Netre C, Hessel B, Blomback M, Blomback B. Measurement in human blood of fibrinogen/fibrin fragments containing the Bβ15–42 sequence. Thromb Res 25:277, 1982.PubMedCrossRefGoogle Scholar
  117. 117.
    Nossel ML, Butler VP, Canfield AG, Yudelman I, Kalliope-Spanondis MT, Soland T. Potential use of fibrinopeptide A measurement in the diagnosis and management of thrombosis. Thromb Diathes Haemorrh 33:426, 1975.Google Scholar
  118. 118.
    Eisenberg PR. Novel antithrombotic strategies for the treatment of coronary artery thrombosis: A critical appraisal. J Thromb Thrombolysis 1:237, 1995.PubMedCrossRefGoogle Scholar
  119. 119.
    Hotchkiss KA, Chesterman CN, Hogg PJ. Inhibition of heparin activity in plasma by soluble fibrin: Evidence for ternary thrombin-fibrin-heparin complex formation. Blood 84:498, 1994.PubMedGoogle Scholar
  120. 120.
    Eckhardt J, LaGama KS, Nossel HL. Measurement of des arginine fibrinopeptide B (des-arg-FPB) in plasma by radioimmunoassay. Thromb Haemost 42:97, 1979.Google Scholar
  121. 121.
    De Boer AC, Turpie AGG, Butt RW, Duke RJ, Bloch RF, Genton E. Plasma betathromboglobulin and serum fragment E in acute partial stroke. Br J Haematol 50:327, 1982.PubMedGoogle Scholar
  122. 122.
    Lane DA, Wolff S, Ireland H, Gawel M, Foadi M. Activation of coagulation and fibrinolytic systems following stroke. Br J Haemarol 53:655, 1983.Google Scholar
  123. 123.
    Hofmann V, Straub PW. A radioimmunoassay technique for the rapid measurement of human fibrin-opeptide A. Thromb Res 11:171, 1977.PubMedCrossRefGoogle Scholar
  124. 124.
    Peuscher FW, van Aken WG, Flier OTN, Stoepman-van Dalen EA, Cremer-Goote TM, van Mourik JA. Effect of anticoagulant treatment measured by fibrin-opeptide A (fpA) in patients with venous throm-boembolism. Thromb Res 18:33, 1980.PubMedCrossRefGoogle Scholar
  125. 125.
    Rickles FR, Edwards RL, Barb C, Cronlund M. Abnormalities of blood coagulation in patients with cancer. Fibrinopeptide A and tumor growth. Cancer 51:301, 1983.PubMedCrossRefGoogle Scholar
  126. 126.
    Ireland H, Lane DA, Wolff S, Foadi M. In vivo platelet release in myeloproliferative disorders. Thromb Haemost 48:41, 1982.PubMedGoogle Scholar
  127. 127.
    Douglas JT, Lowe GDO, Forbes CD, Prentice CRM. Plasma fibrinopeptide A and β-thromboglobulin in patients with chest pain. Thromb Haemost 50:541, 1983.PubMedGoogle Scholar
  128. 128.
    Eisenberg PR, Sherman LA, Dickens J, Perez J, Jaffe AS. Detection of mural thrombus by assay of fibrinopeptide A (FPA) in plasma. Circulation 72:249, 1985.Google Scholar
  129. 129.
    Meade TW, Howarth DJ, Stirling Y, Welch TP, Crompron MR. Fibrinopeptide A and sudden coronary death. Lancet 2:607, 1984.PubMedCrossRefGoogle Scholar
  130. 130.
    Nichols AB, Owen J, Kaplan KL, Sciacca AR, Cannon PJ, Nossel HL. Fibrinopeptide A, platelet factor 4, and betathromboglobulin levels in coronary heart disease. Blood 60:650, 1982.PubMedGoogle Scholar
  131. 131.
    Wilner GD, Chatpar P, Amanda T, Horowitz J. Effects of extravascular clotting on fibrinopeptide A levels in blood. J Lab Clin Med 91:205. 1978.PubMedGoogle Scholar
  132. 132.
    Serneri GGN, Gensini GF, Carnovali M, Prisco D, Rogasi PG, Casolo GC, Fazi A, Abbate R. Association between time of increased fibrinopeptide A levels in plasma and episodes of spontaneous angina: A controlled prospective study. Am Heart J 113:672, 1987.CrossRefGoogle Scholar
  133. 133.
    Ardissino D, Gamba MG, Merlini PA, Rolla A, Barberis P, Demicheli G, Testa S, Bruno N, Specchia G. Fibrinopeptide A excretion in urine: A marker of the cumulative thrombin activity in stable versus unstable angina patients. Am J Cardiol 68:58B, 1991.PubMedCrossRefGoogle Scholar
  134. 134.
    Eisenberg PR, Sherman LA, Schectman K, Perez J, Sobel BE, Jaffe AS. Fibrinopeptide A: A marker of acute coronary thrombosis. Circulation 71:912, 1985.PubMedGoogle Scholar
  135. 135.
    Eisenberg PR, Kenzora JL, Sobel BE, Ludbrook PA, Jaffe AS. Relation between ST segment shifts during ischemia and thrombin activity in patients with unstable angina. J Am Coll Cardiol 18:898, 1991.PubMedGoogle Scholar
  136. 136.
    Wilensky RL, Bourdillon PDV, Vix VA, Zeller JA. Intracoronary artery thrombus formation in unstable angina: A clinical, biochemical, and angiographic correlation. J Am Coll Cardiol 21:692, 1993.PubMedGoogle Scholar
  137. 137.
    van Hultsteijn H, Kolff J, Briet E, van der Laarse A, Bertina R. Fibrinopeptide A and beta thromboglobulin in patients with angina pectoris and acute myocardial infarction. Am Heart J 107:39, 1984.CrossRefGoogle Scholar
  138. 138.
    Mombelli G, Im Hof V, Haeberli A, Straub PW. Effect of heparin on plasma fibrinopeptide A in patients with acute myocardial infarction. Circulation 69:684, 1984.PubMedGoogle Scholar
  139. 139.
    Oltrona L, Eisenberg PR, Lasala JM, Sewall DJ. Shelton ME, Winters KJ. Association of heparinresistant thrombin activity with acute ischemic complications of coronary interventions. Circulation 94:2064, 1996.PubMedGoogle Scholar
  140. 140.
    Gallino A, Haeberli A, Hess T, Mombelli G, Straub PW. Fibrin formation and platelet aggregation in patients with acute myocardial infarction: Effects of intravenous and subcutaneous low-dose heparin. Am Heart J 112:285, 1986.PubMedCrossRefGoogle Scholar
  141. 141.
    Eisenberg PR, Sherman LA, Rich M, Schwartz D, Schectman K, Geltman EM, Sobel BE, Jaffe AS. Importance of continued activation of thrombin reflected by fibrinopeptide A to the efficacy of thrombolysis. J Am Coll Cardiol 7:1255, 1986.PubMedGoogle Scholar
  142. 142.
    Owen J, Friedman KD, Grossman BA, Wilkins C, Berke AD, Powers ER. Thrombolytic therapy with tissue plasminogen activator or streptokinase induces transient thrombin activity. Blood 72:616, 1988.PubMedGoogle Scholar
  143. 143.
    Eisenberg PR, Sherman LA, Jaffe AS. Paradoxic elevation of fibrinopeptide A: Evidence for continued thrombosis despite intensive fibrinolysis. J Am Coll Cardiol 10:527, 1987.PubMedGoogle Scholar
  144. 144.
    Galvani M, Abendschein DR, Ferrini D, Ottani F, Rusticali F, Eisenberg PR. Failure of fixed dose intravenous heparin to suppress increases in thrombin activity after coronary thrombolysis with streptokinase. J Am Coll Cardiol 24:1445, 1994.PubMedGoogle Scholar
  145. 145.
    Rapold HJ, Kuemmerli H, Weiss M, Baur H, Haeberli A. Monitoring of fibrin generation during thrombolytic therapy of acute myocardial infarction with recombinant tissue-type plasminogen activator. Circulation 79:980, 1989.PubMedGoogle Scholar
  146. 146.
    Rapold HJ. Promotion of thrombin activity by thrombolytic therapy without simultaneous anticoagulation. Lancet 1:481, 1990.CrossRefGoogle Scholar
  147. 147.
    Reganon E, Vila V, Aznar J, Lacueva V, Martinez V, Ruano M. Studies on the functionality of newly synthesized fibrinogen after treatment of acute myocardial infarction with streptokinase, increase in the rate of fibrinopeptide release. Thromb Haemost 70:978, 1993.PubMedGoogle Scholar
  148. 148.
    Weitz JI, Cruickshank MK, Thong B, Leslie B, Levine MN, Ginsberg J, Eckhardt T. Human tissuetype plasminogen activator releases fibrinopeptides A and B from fibrinogen. J Clin Invest 82:1700, 1988.PubMedGoogle Scholar
  149. 149.
    Carlson TH, Simon TL, Atencio AC. In vivo behavior of human radioiodinated antithrombin III: Distribution among three physiologic pools. Blood 66:13, 1985.PubMedGoogle Scholar
  150. 150.
    Teitel JM, Rosenberg RD. Protection of factor Xa from neutralization by heparin-antithrombin complex. J Clin Invest 71:1383, 1983.PubMedGoogle Scholar
  151. 151.
    Gulba DC, Bartheis M, Westhoff-Bleck M, Jost S, Wolff R, Daniel WG, Hecker H, Lichtlen PR. Increased thrombin levels during thrombolytic therapy in acute myocardial infarction. Relevance for the success of therapy. Circulation 83:937, 1991.PubMedGoogle Scholar
  152. 152.
    Blanke H, Praetorius G, Leschke M, Seitz R, Egbring R, Strauer BE. Die bedeutung des thrombin-antithrombin HI-komplexes in der diagnostik der lungenembolie und der tiefen venenthrombose-vergleich mit fibrinopeptide A, plattchenfaktor 4 und β-thrombulin. Klin Wochenschr 65:757, 1987.PubMedCrossRefGoogle Scholar
  153. 153.
    Seitz R, Blanke H, Pratorius G, Strauer BE, Egbring R. Increased thrombin activity during thrombolysis. Thromb Haemost 59:541, 1988.PubMedGoogle Scholar
  154. 154.
    Lau HK, Rosenberg RD. The isolation and characterization of a specific antibody directed against the thrombin-antithrombin complex. J Biol Chem 255:5885, 1980.PubMedGoogle Scholar
  155. 155.
    Pelzer H, Schwarz A, Heimburger N. Determination of human thrombin-antithrombin III complex in plasma with an enzyme-linked immunosorbent assay. Thromb Haemost 59:101, 1988.PubMedGoogle Scholar
  156. 156.
    Bounameaux H, Schneider PA, Reber G, Moerloose PD, Krahenbuhl B. Measurement of plasma D-dimer for diagnosis of deep venous thrombosis. Am J Clin Pathol 91:82, 1989.PubMedGoogle Scholar
  157. 157.
    Demers C, Ginsberg JS, Johnston M, Brill-Edwards P, Panju A. D-dimer and thrombin-antithrombin III complexes in patients with clinically suspected pulmonary embolism. Thromb Haemost 67:408, 1992.PubMedGoogle Scholar
  158. 158.
    Giansante C, Fiotti N, Cattin L, Col PGD, Calabrese S. Fibrinogen, D-dimer and thrombin-antithrombin complexes in a random population sample: Relationships with other cardiovascular risk factors. Thromb Haemost 71:581, 1994.PubMedGoogle Scholar
  159. 159.
    Lassila R, Peltonen S, Lepantolo M, Saarinen O, Kauhanen P, Manninen V. Severity of peripheral arteriosclerosis is associated with fibrinogen and degradation products of cross-linked fibrin. Arterioscler Thromb 13:1738, 1993.PubMedGoogle Scholar
  160. 160.
    Garcia-Avello A, Garcia-Frade LJ, Gandarias C, Ocana J, Cancelas JA, Lasso M. High F1.2 fragment of prothrombin. Thrombin-antithrombin III complex (TAT) and soluble fibrin plasma levels demonstrate hypercoagulability induced during loco-regional thrombolytic therapy with rt-PA. Thromb Res 73:109, 1994.PubMedCrossRefGoogle Scholar
  161. 161.
    Eritsland J, Selfjeflot I, Arnesen H, Smith P, Westvik AB. Effects of long-term treatment with warfarin on fibrinogen, FPA, TAT, and D-dimer in patients with coronary artery disease. Thromb Res 66:55, 1992.PubMedCrossRefGoogle Scholar
  162. 162.
    Wilf J, Minton AP. Soluble fibrin-fibrinogen complexes as intermediates in fibrin gel formation. Biochemistry 25:3124, 1986.PubMedCrossRefGoogle Scholar
  163. 163.
    Mehs DA, Siebenlist KR, Bergstrom G, Mosesson MW. Sequences of release of fibrinopeptide A from fibrinogen molecules by thrombin or Atraxin. J Lab Clin Med 125:384, 1995.Google Scholar
  164. 164.
    Smith GF. The mechanisms of fibrin-polymer formation in solution. Biochem J 185:1, 1980.PubMedGoogle Scholar
  165. 165.
    Alkjaersig N, Fletcher AP. Formation of soluble fibrin oligomers in purified systems and in plasma. Biochem J 213:75, 1983.PubMedGoogle Scholar
  166. 166.
    Dietler G, Kanzig W, Haeberli A, Straub PW. Experimental tests of a geometrical abstraction of fibrin polymerization. Biopolymers 25:905, 1986.PubMedCrossRefGoogle Scholar
  167. 167.
    Hunziker EB, Srraub PW, Haeberli A. A new concept of fibrin formation based upon linear growth of interlacing and branching polymers and molecular alignment into interlocked single-stranded segments. J Biol Chem 265:7455, 1990.PubMedGoogle Scholar
  168. 168.
    Janmey PA, Erdile L, Bale MD, Ferry JD. Kinetics of fibrin oligomer formation observed by electron microscopy. Biochemistry 22:4336, 1983.PubMedCrossRefGoogle Scholar
  169. 169.
    Fletcher AP, Alkjaersig NK, Ghani FM, Tulevski V, Owens O. Blood coagulation system pathophysiology in acute myocardial infarction: The influence of anticoagulant treatment on laboratory findings. J Lab Clin Med 93:1054, 1979.PubMedGoogle Scholar
  170. 170.
    Kruskal JB, Commeford PJ, Franks JJ, Kirsch RE. Fibrin and fibrinogen-related antigens in patients with stable and unstable coronary artery disease. N Engl J Med 317:1361, 1987.PubMedCrossRefGoogle Scholar
  171. 171.
    Magari Y, Mizunga S, Ito M, Shibaca T, Ito H. Molecular marker for detecting hypercoagulable state. Jpn J Clin Pathol 42:22, 1994.Google Scholar
  172. 172.
    Lane DA. Fibrinogen derivatives in plasma. Br J Haematol 47:329, 1981.PubMedGoogle Scholar
  173. 173.
    Eisenberg PR, Jaffe AS, Stump DC, Collen D, Bovill EG. Validity of enzyme-linked immunosorbent assays of cross-linked fibrin degradation products as a measure of clot lysis. Circulation 82:1159, 1990.PubMedGoogle Scholar
  174. 174.
    Shainoff R, Urbanie DA, DiBello PM, Valenzuela V. GPR-phoresis, a novel approach to determining fibrin monomer and other macromolecular derivatives of fibrinogen and fibrin in blood. Blood Coagul Fibrinolysis 4:87, 1993.PubMedGoogle Scholar
  175. 175.
    Nieuwenhuizen W, Nobel EH, Laterveer R. A rapid immunoassay (EIA) for rhe quantitative determination of soluble fibrin in plasma. Thromb Haemost 68:273, 1992.PubMedGoogle Scholar
  176. 176.
    Rylatt DB, Blake AS, Cottis DA, Massingham DA, Fletcher WA, Masci PP, Whitaker AN, Elms M, Bunce I, Webber AJ, Wyatt D, Bundesen PG. An immunoassay for human D-dimer using monoclonal antibodies. Thromb Res 31:767, 1983.PubMedCrossRefGoogle Scholar
  177. 177.
    Dinh D, Bolitho J, Bundensen P, Hillyard C, Marsh N, Moore B, Bottenus R, Rylatt D. Detection of soluble fibrin by enzyme immunoassay. Fibrinolysis 8(Suppl. 1):125, 1994.CrossRefGoogle Scholar
  178. 178.
    Lee LV, Ewald G, McKenzie C, Eisenberg PR. The relationship of soluble fibrin and cross-linked fibrin degradation products to the clinical course of myocardial infarction. Arterioscler Thromb Vasc Biol 17:628, 1996.Google Scholar
  179. 179.
    Kisiel W. Human protein C: Isolation, characterisation, and mechanism of activation by alphathrombin. J Clin Invest 64:761, 1979.PubMedCrossRefGoogle Scholar
  180. 180.
    Kisiel W, Canfield WM, Ericsson LH, Davie EW. Anticoagulant properties of bovine plasma protein C following activation by thrombin. Biochemistry 16:5824, 1977.PubMedCrossRefGoogle Scholar
  181. 181.
    Vehar GA, Davie EW. Preparation and properties of bovine factor VIII (antihemophilic factor). Biochemistry 19:401, 1980.PubMedCrossRefGoogle Scholar
  182. 182.
    Comp PC, Esmon CT. Activated protein C inhibits platelet prothrombin-converting activity. Blood 54:1272, 1979.PubMedGoogle Scholar
  183. 183.
    Bauer KA, Kass BL, Beeler DL, Rosenberg RD. Detection of protein C activation in humans. J Clin Invest 74:2033, 1984.PubMedGoogle Scholar
  184. 184.
    Bauer KA, Weiss LM, Sparrow D, Vokonas PS, Rosenberg RD. Aging-associated changes in indices of thrombin generation and protein C activation in humans: Normative aging study. J Clin Invest 80:1527, 1987.PubMedGoogle Scholar
  185. 185.
    Collen D. On the regulation and control of fibrinolysis. Thromb Haemost 43:77, 1980.PubMedGoogle Scholar
  186. 186.
    Kruithof EKO, Tran-Thang C, Ransijn A, Bachmann F. Demonstration of a fast-acting inhibitor of plasminogen activators in human plasma. Blood 64:907, 1984.PubMedGoogle Scholar
  187. 187.
    Thorsen S, Philips M, Selmer J, Lecander I, Astedt B. Kinetics of inhibition of tissue-type and urokinasetype plasminogen activator by plasmingogen-activator inhibitor type 1 and type 2. Eur J Biochem 175:33, 1988.PubMedCrossRefGoogle Scholar
  188. 188.
    Lindahl TL, Ohlsson PI, Wiman B. The mechanism of the reaction between human plasminogen-activator inhibitor 1 and tissue plasminogen activator. Biochem J 265:109, 1990.PubMedGoogle Scholar
  189. 189.
    Chmielewska J, Ranby M, Wiman B. Kinetics of the inhibition of plasminogen activator by the plasminogen-activator inhibitor. Evidence for “second-site” interactions. Biochem J 251:327, 1988.PubMedGoogle Scholar
  190. 190.
    Moroi M, Aoki N. Isolation and characterization of β2-plasmin inhibitor from human plasma. A novel proteinase inhibitor which inhibits activator-induced clot lysis. J Biol Chem 251:5956, 1976.PubMedGoogle Scholar
  191. 191.
    Collen D. Identification and some properties of a new fast-reacting plasmin inhibitor in human plasma. Eur J Biochem 69:209, 1976.PubMedCrossRefGoogle Scholar
  192. 192.
    Mullertz S, Clemmensen I. The primary inhibitor of plasmin in human plasma. Biochem J 159:545, 1976.PubMedGoogle Scholar
  193. 193.
    Suenson E, Thorsen S. The course and prerequisites of Lys-plasminogen formation during fibrinolysis. Biochemistry 27:2435, 1988.PubMedCrossRefGoogle Scholar
  194. 194.
    Pennica D, Holmes WE, Kohr WJ, Harkins RN, Vehar GA, Ward CA, Bennett WF, Yelverton E, Seeburg PH, Heyneker HL, Goeddel DV. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 301:214, 1983.PubMedCrossRefGoogle Scholar
  195. 195.
    Ranby M, Bergsdorf N, Nilsson T. Enzymatic properties of the one-and two-chain form of tissue plasminogen activator. Thromb Res 27:175, 1982.PubMedCrossRefGoogle Scholar
  196. 196.
    Rijken DC, Hoylaerts M, Collen D. Fibrinolytic properties of one-chain and two-chain human extrinsic (tissue-type) plasminogen activator. J Biol Chem 257:2920, 1982.PubMedGoogle Scholar
  197. 197.
    Tate KM, Higgens DL, Holmes WE, Winkler ME, Heyneker HL, Vehar GA. Functional role of proteolytic cleavage at arginine-275 of human tissue plasminogen activator as assessed by site-directed mutagenesis. Biochemistry 26:338, 1987.PubMedCrossRefGoogle Scholar
  198. 198.
    Higgins DL, Vehar GA. Interaction of one-chain and two-chain tissue plasminogen activator with intact and plasmin-degraded fibrin. Biochemistry 26:7786, 1987.PubMedCrossRefGoogle Scholar
  199. 199.
    Higgins DL, Lamb MC. Incorporation of a fluorescent probe into the active sites of one-and two-chain tissue-type plasminogen activator. Arch Biochem Biophys 249:418, 1986.PubMedCrossRefGoogle Scholar
  200. 200.
    Wiman B, Collen D. Molecular mechanism of physiological fibrinolysis. Nature 272:549, 1978.PubMedCrossRefGoogle Scholar
  201. 201.
    Chmielewska J, Ranby M, Wiman B. Evidence for a rapid inhibitor to tissue plasminogen activator in plasma. Thromb Res 31:427, 1983.CrossRefPubMedGoogle Scholar
  202. 202.
    Bu G, Williams S, Strickland DK, Schwartz AL. Low density lipoprotein receptor-related protein/α2-macroglobulin receptor is an hepatic receptor for tissue-type plasminogen activator. Proc Natl Acad Sci USA 89:7427, 1992.PubMedCrossRefGoogle Scholar
  203. 203.
    Nilsson T, Wallen P, Mellbring G. In vivo metabolism of human tissue-type plasminogen activator. Stand J Haematol 33:49, 1984.Google Scholar
  204. 204.
    Nilsson S, Einarsson M, Ekvarn S, Haggroth L, Mattsson C. Turnover of tissue plasminogen activator in normal and hepatectomized rabbits. Thromb Res 39:511, 1985.PubMedCrossRefGoogle Scholar
  205. 205.
    Fuchs HE, Berger H, Pizzo SV. Catabolism of human tissue plasminogen activator in mice. Blood 65:539, 1985.PubMedGoogle Scholar
  206. 206.
    Morton PA, Owensby DA, Underhill DM, Schwartz AL. Cellular itinerary of t-PA in human hepatocytes (abstr). Thromb Haemost 65:614, 1991.Google Scholar
  207. 207.
    Labarrere CA, Pitts D, Halbrook H, Faulk WP. Tissue plasminogen activator in cardiac allografts. Transplantation 55:1056, 1993.PubMedCrossRefGoogle Scholar
  208. 208.
    Labarrere CA, Pitts D, Halbrook H, Faulk WP. Tissue plasminogen activator, plasminogen activator inhibitor-1, and fibrin as indexes of clinical course in cardiac allograft recipients: An immunocytochemical study. Circulation 89:1599, 1994.PubMedGoogle Scholar
  209. 209.
    Faulk WP, Labarrere CA, Pitts D, Halbrook H. Vascular lesions in biopsy specimens devoid of cellular infiltrates: Qualitative and quantitative immunocytochemical studies of human cardiac allografts. J Heart Lung Transplant 12:219, 1993.PubMedGoogle Scholar
  210. 210.
    Cash JD, Woodneld DG, Allan AGE. Adrenergic mechanisms in the systemic plasminogen activator response to adrenaline in man. Br J Haematol 18:487, 1970.PubMedGoogle Scholar
  211. 211.
    Ranby M, Bergsdorf N, Nilsson T, Mellbring G, Winblad B, Bucht G. Age dependence of tissue plasminogen activator concentrations in plasma, as studied by an improved enzyme-linked immunosorbent assay. Clin Chem 32:2160, 1986.PubMedGoogle Scholar
  212. 212.
    De Boer A, Kluft C, Kroon JM, Kasper FJ, Schoemaker HC, Pruis J, Breimer DD, Soons PA, Emeis JJ, Cohen AF. Liver blood How as a major determinant of the clearance of recombinant human tissue-type plasminogen activator. Thromb Haemost 67:83, 1992.PubMedGoogle Scholar
  213. 213.
    Andreotti F, Davies GJ, Hackett DR, Khan MI, De Bart ACW, Aber VR, Maseri A, Kluft C. Major circadian fluctuations in fibrinolytic factors and possible relevance to time of onset of myocardial infarction, sudden cardiac death and stroke. Am J Cardiol 62:635, 1988.PubMedCrossRefGoogle Scholar
  214. 214.
    Sprengers ED, Kluft C. Plasminogen activator inhibitors. Blood 69:381, 1987.PubMedGoogle Scholar
  215. 215.
    Loskutoff DJ. Regulation of PAI-1 gene expression. Fibrinolysis 5:197, 1991.CrossRefGoogle Scholar
  216. 216.
    Emeis JJ, van Hinsbergh VWM, Verheijen JH, Wijngaards G. Inhibition of tissue-type plasminogen activator by conditioned medium from cultures of human and porcine vascular endothelial cells. Biochem Biophys Res Commun 110:392, 1983.PubMedCrossRefGoogle Scholar
  217. 217.
    Levin EG. Latent tissue plasminogen activator produced by human endothelial cells in culture: Evidence for an enzyme-inhibitor complex. Proc Natl Acad Sci USA 80:6804, 1983.PubMedCrossRefGoogle Scholar
  218. 218.
    Lundgren CH, Brown SL, Nordt TK, Sobel BE, Fuji S. Elaboration of type-1 plasminogen activator inhibitor from adipocytes. A potential pathogenic link between obesity and cardiovascular disease. Circulation 93:106, 1996.PubMedGoogle Scholar
  219. 219.
    Laug WE. Vascular smooth muscle cells inhibit the plasminogen activators secreted by endothelial cells. Thromb Haemost 20:165, 1985.Google Scholar
  220. 220.
    Sprengers ED, Verheijen JH, Van Hinsbergh VWM, Emeis JJ. Evidence for the presence of two different fibrinolytic inhibitors in human endothelial cell conditioned medium. Biochim Biophys Acta 801:163, 1984.PubMedGoogle Scholar
  221. 221.
    Erickson LA, Hekman CM, Loskutoff DJ. The primary plasminogen-activator inhibitors in endothelial cells, platelets, serum, and plasma are immunologically related. Proc Natl Acad Sci USA 82:8710, 1985.PubMedCrossRefGoogle Scholar
  222. 222.
    Hekman CM. Loskutoff DJ. Endothelial cells produce a latent inhibitor of plasminogen activators that can be activated by denaturants. J Biol Chem 260:11581, 1985.PubMedGoogle Scholar
  223. 223.
    Sprengers ED, Akkerman JWN, Sansen BG. Blood platelet plasminogen activator inhibitor: Two different pools of endothelial cell type plasminogen activator inhibitor in human blood. Thromb Haemost 55:325, 1986.PubMedGoogle Scholar
  224. 224.
    Lindahl TL, Sigurdardottir O, Wiman B. Stability ot plasminogen activator inhibitor 1 (PAI-1). Thromb Haemost 62:748, 1989.PubMedGoogle Scholar
  225. 225.
    Sprengers ED, Van Hinsbergh VWM, Jansen BG. The active and the inactive plasminogen activator inhibitor from human endothelial cell conditioned medium are immunologically and functionally related to each other. Biochim Biophys Acta 883:233, 1986.PubMedGoogle Scholar
  226. 226.
    Fay WP, Eitzman DT, Shapiro AD, Madison EL, Ginsburg D. Platelets inhibit fibrinolysis in vitro by both plasminogen activator inhibitor-1-dependent and-independent mechanisms. Blood 83:351, 1994.PubMedGoogle Scholar
  227. 227.
    Erickson LA, Ginsberg MH, Loskutoff DJ. Detection and partial characterization of an inhibitor ot plasminogen activator in human platelets. J Clin Invest 74:1465, 1981Google Scholar
  228. 228.
    Mimuro J, Schleef RR, Loskutoff DJ. Extracellular matrix of cultured bovine aortic endothelial cells contains functionally active type 1 plasminogen activator inhibitor. Blood 70:721, 1987.PubMedGoogle Scholar
  229. 229.
    Salonen EM, Vaheri A, Pollanen J, Scephens R, Andreasen P, Mayer M, Dano K, Gailit J, Rouslahti E. Interaction of plasminogen activator inhibitor (PAI-1) with vitronectin. J Biol Chem 264:6339, 1989.PubMedGoogle Scholar
  230. 230.
    Sigurdardottir O, Wiman B. Complex formation between plasminogen activator inhibitor I and vitronectin in purified systems and in plasma. Biochim Biophys Acta 1035:56, 1990.PubMedGoogle Scholar
  231. 231.
    Preissner KT. Structure and biological role of vicronectin. Annu Rev Cell Biol 7:275, 1991.PubMedCrossRefGoogle Scholar
  232. 232.
    Ehrlich HJ, Gebbink RK, Keijer J, Linders M, Preissner TK, Pannekoek H. Alteration of serpin specificity by a protein cofactor. Vitronectin endows plasminogen activator inhibitor 1 with thrombin inhibitory properties. J Biol Chem 265:13029, 1990.PubMedGoogle Scholar
  233. 233.
    Naski MC, Lawrence DA, Mosher DF, Podor T, Ginsburg D. Kinetics of inactivation of α-thrombin by plasminogen activator inhibitor-1. Comparison of the effects of native and urea-treated forms of vitronectin. J Biol Chem 268:12367, 1993.PubMedGoogle Scholar
  234. 234.
    Edelberg JM, Reilly CF, Pizzo SV. The inhibition of tissue type plasminogen activator by plasminogen activator inhibitor-1. The effects of fibrinogen, heparin, vitronectin, and lipoprotein (a). J Biol Chem 266:7488, 1991.PubMedGoogle Scholar
  235. 235.
    Rosenberg RD. The heparin-antithrombin system: A natural anticoagulation mechanism. In Coleman RW, Hirsh J, Marder VJ, Salzman EW (eds). Haemostasis and Thrombosis. Philadelphia: JB Lippincott, 1987:1372.Google Scholar
  236. 236.
    Edelberg JM, Sane DC, Pizzo SV. Vascular regulation of plasminogen activator inhibitor-1 activity. Semin Thromb Hemost 20:319, 1994.PubMedGoogle Scholar
  237. 237.
    Colucci M, Paramo JA, Collen D. Generation in plasma of a fast-acting inhibitor of plasminogen activator in response to endotoxin stimulation. J Clin Invest 75:818, 1985.PubMedGoogle Scholar
  238. 238.
    Wiman B, Hamsten A. Impaired fibrinolysis and risk of thromboembolism. Prog Cardiovasc Dis 34:179, 1991.PubMedCrossRefGoogle Scholar
  239. 239.
    Kruithof EKO, Gudinchet A, Bachmann F. Plasminogen activator inhibitor 1 and plasminogen activator inhibitor 2 in various disease states. Thromb Haemost 59:7, 1988.PubMedGoogle Scholar
  240. 240.
    Takada Y, Takada A. Measurements of the concentration of free plasminogen activator inhibitor (PAI-1) and its complex with tissue plasminogen activator in human plasma. Thromb Res-Suppl 8:15, 1988.Google Scholar
  241. 241.
    Nilsson IM, Ljungner H, Tengborn L. Two different mechanisms in patients with venous thrombosis and defective fibrinolysis: Low concentration of plasminogen activator or increased concentration of plasminogen activator inhibitor. Br Med J 290:1453, 1985.Google Scholar
  242. 242.
    Eriksson E, Ranby M, Gyzander E, Risberg B. Determination of plasminogen activator inhibitor in plasma using t-PA and chromogenic single-point poly-D-lysine stimulated assay. Thromb Res 50:91, 1988.PubMedCrossRefGoogle Scholar
  243. 243.
    Jansson JH, Boman K, Nilsson TK. Enalapril related changes in the fibrinolytic system in survivors of myocardial infarction. Eur J Clin Pharmacol 44:485, 1993.PubMedCrossRefGoogle Scholar
  244. 244.
    Rijken DC, Juhan-Vague I, Collen D. Complexes between tissue-type plasminogen activator and proteinase inhibitors in human plasma, identified with an immunoradiometric assay. J Lab Clin Med 101:285, 1983.PubMedGoogle Scholar
  245. 245.
    Bergsdorf N, Nilsson T, Wallen P. An enzyme linked immunoabsorbenc assay for determination of tissue plasminogen activator applied to patients with thromboembolic disease. Thromb Haemost 50:740, 1983.PubMedGoogle Scholar
  246. 246.
    Urden G, Blomback M. Determination of tissue plasminogen activator in plasma samples by means of a radioimmunoassay. Scan J Clin Lab Invest 44:495. 1984.CrossRefGoogle Scholar
  247. 247.
    Takada A, Shizume K, Ozawa T, Takahashi S, Takada Y. Characterization of various antibodies against tissue plasminogen activator using highly sensitive enzyme immunoassay. Thromb Res 42:63, 1986.PubMedCrossRefGoogle Scholar
  248. 248.
    Ranby M, Nguyen G, Scarabin PY, Samama M. Immunoreactivity of tissue plasminogen activator and of its inhibitor complexes: Biochemical and multicenter validation of a two site immunosorbent assay. Thromb Haemost 61:409, 1989.PubMedGoogle Scholar
  249. 249.
    Wiman B. Plasminogen activator inhibitor 1 (PAI-1) in plasma: Its role in thrombotic disease. Thromb Haemost 74:71, 1995.PubMedGoogle Scholar
  250. 250.
    Kluft C, Verheijen JH. Leiden Fibrinolysis Working Party: Blood collection and handling procedures for assessment of tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1). Fibrinolysis 4:155, 1990.CrossRefGoogle Scholar
  251. 251.
    Angleton P, Chandler WL, Schmer G. Diurnal variation of tissue-type plasminogen activator and its rapid inhibitor (PAI-1). Circulation 79:101, 1989.PubMedGoogle Scholar
  252. 252.
    Grimaudo V, Hauert J, Bachemann F, Kruithof EKO. Diurnal variation of the fibrinolytic system. Thromb Haemost 59:495, 1988.PubMedGoogle Scholar
  253. 253.
    Huber K, Rose D, Resch I, Schuster F., Glogar DH, Kaindl F, Binder BR. Circadian fluctuation of plasminogen activator inhibitor and tissue plasminogen activator levels in plasma of patients with unstable coronary artery disease and acute myocardial infarction. Thromb Haemost 60:372, 1988.PubMedGoogle Scholar
  254. 254.
    Emeis JJ, Kooistra T. Interleukin-I and lipopolysaccharide induce an inhibitor of tissue-type plasminogen activator in vivo and in cultured endothelial cells. J Exp Med 163:1260, 1986.PubMedCrossRefGoogle Scholar
  255. 255.
    Alessi M, Juhan-Vague I, Kooistra T, Declerck P, Collen D. Insulin stimulates the synthesis of plasminogen activator inhibitor 1 by the human hepato-cellular cell line Hep G2. Thromb Haemost 60:491. 1988.PubMedGoogle Scholar
  256. 256.
    Schneider DJ, Sobel BE. Augmentation of synthesis of plasminogen activator inhibitor type 1 by insulin and insulin-like growth factor type-1: Implications for vascular disease by hyperinsulinemic states. Proc Natl Acad Sci USA 88:9959, 1991.PubMedCrossRefGoogle Scholar
  257. 257.
    Stiko-Rahm A, Wiman B, Hamsten A, Nilsson J. Secretion of plasminogen activator inhibitor-1 from cultured human umbilical vein endothelial cells is induced by very low density lipoprotein. Arteriosclerosis 10:1067, 1990.PubMedGoogle Scholar
  258. 258.
    Larron Y, Chautan M, Anfosso F, Alessi MC, Nalbone G, Lafont H, Juhan-Vague I. Stimulating effect of oxidized low density lipoproteins on plasminogen activator inhibitor-1 synthesis by endothelial cells. Arterioscler Thromb 11:1821, 1991.Google Scholar
  259. 259.
    Tremoli F., Camera M, Maderna P, Sironi L, Prati L, Colli S, Piovella F, Bernini F, Corsini A, Mussoni L. Increased synthesis of plasminogen activator inhibitor-1 by cultured human endothelial cells exposed to native and modified LDLs. An LDL receptor-independent phenomenon. Arterioscler Thromb 13:338, 1993.PubMedGoogle Scholar
  260. 260.
    Juhan-Vague I, Moerman B, De Cock F, Aillaud MF, Collen D. Plasma levels of a specific inhibitor of tissue-type plasminogen activator (and urokinase) in normal and pathological conditions. Thromb Res 33:523, 1984.PubMedCrossRefGoogle Scholar
  261. 261.
    Juhan-Vague I, Valadier J, Alessi MC, Aillaud MF, Ansaldi J, Philip-Joet C, Holvoet P, Serradimigni A, Collen D. Deficient t-PA release and elevated PA inhibitor levels in patients with spontaneous or recurrent deep venous thrombosis. Thromb Haemost 57:67, 1987.PubMedGoogle Scholar
  262. 262.
    Mellbring G, Dahlgren D, Wiman B, Sunnegardh O. Relationship between preoperative status of the fibrinolytic system and occurrence of deep vein thrombosis after major abdominal surgery. Thromb Res 39:157, 1985.PubMedCrossRefGoogle Scholar
  263. 263.
    Wiman B, Chmielewska J. A novel fast inhibitor to tissue plasminogen activator in plasma, which may be of great pathophysiological significance. Scand J Clin Lab Invest 45:43, 1985.Google Scholar
  264. 264.
    Juhan-Vague 1, Aillard MF, DeCock F. The rapid inhibitor of tissue-type plasminogen activator is an acute phase reactant protein. In Darden JF, Donati MB, Coccheri S (eds). Progress in Fibrinolysis, Vol. VII. Edinburgh: Churchill Livingstone, 146, 1985.Google Scholar
  265. 265.
    Kluft C, Verheijen JH, Jie AFH, Rijken DC, Preston FE, Sue-Ling HM, Jespersen J, Aasen AO. The postoperative fibrinolytic shutdown: A rapidly-reverting acute phase pattern for the fast-acting inhibitor of tissue-type plasminogen activator after trauma. Scan J Clin Lab Invest 45:605, 1985.CrossRefGoogle Scholar
  266. 266.
    Kruithof EKO, Tran-Thang C, Gudinchet A, Hauert J, Nicoloso G, Genton C, Welti H, Bachmann F. Fibrinolysis in pregnancy: A study of plasminogen activator inhibitors. Blood 69:460, 1987.PubMedGoogle Scholar
  267. 267.
    Juhan-Vague I, Thompson SG, Jespersen J. Involvement of the hemostatic system in the insulin resistance syndrome: A study of 1500 patients with angina pectoris. Arterioscler Thromb 13:1865, 1993.PubMedGoogle Scholar
  268. 268.
    Asplund-Carlson A, Hamsten A, Wiman B, Carlson LA. Relationship between plasma plasminogen activator inhibitor-1 activity and VLDL, triglyceride concentration, insulin levels and insulin sensitivity: Studies in randomly selected normo-and hypertriglyceridemic men. Diabetologia 36:817, 1993.PubMedCrossRefGoogle Scholar
  269. 269.
    Mansfield MW, Stockland MH, Grant PJ. Plasminogen activator inhibitor-1 (PAI-1) promotes polymorphism and coronary artery disease in non-insulin-dependent diabetes. Thromb Haemost 74:1032, 1995.PubMedGoogle Scholar
  270. 270.
    Juhan-Vague I, Alessi MC, Vague P. Increased plasma plasminogen activator inhibitor-I levels. A possible link between insulin resistance and atherothrombosis. Diabetologia 34:457, 1991.PubMedCrossRefGoogle Scholar
  271. 271.
    Folsom AR, Qamheih HT, Wing RR, Jeffery RW, Stinson VL, Kuller LH, Wu KK. Impact of weight loss on plasminogen activator inhibitor (PAI-1), factor VII and other hemostatic factors in moderately overweight adults. Arterioscler Thromb 13:162, 1993.PubMedGoogle Scholar
  272. 272.
    Sundell IB, Dahlgren S, Ranby M, Lundin E, Stenling R, Nilsson TK. Reduction of elevated plasminogen activator inhibitor levels during modest weight loss. Fibrinolysis 3:51, 1989.CrossRefGoogle Scholar
  273. 273.
    Andersen P, Smith P, Seljeflot I, Brataker S, Arnesen H. Effects of gemfibrozil on lipids and haemostasis after myocardial infarction. Thromb Haemost 63:174, 1990.PubMedGoogle Scholar
  274. 274.
    Mehrabian M, Peter JB, Barnard RJ, Lusis AJ. Dietary regulation of fibrinolytic factors. Atherosclerosis 84:25, 1990.PubMedCrossRefGoogle Scholar
  275. 275.
    Vague P, Juhan-Vague I, Aillaud MF, Badier C, Viard R, Alessi MC, Collen D. Correlation between blood fibrinolytic activity, plasminogen activator inhibitor level, plasmin insulin level, and relative body weight in normal and obsese subjects. Metabolism 35:250, 1986.PubMedCrossRefGoogle Scholar
  276. 276.
    Landin K, Stigendal L, Eriksson E, Krotkiewski M, Risberg B, Tengborn L, Smith U. Abdominal obesity is associated with an impaired fibrinolytic activity and elevated plasminogen activator inhibitor-1. Metabolism 39:1044, 1990.PubMedCrossRefGoogle Scholar
  277. 277.
    Wall U, Jern C, Bergbrant A, Jem S. Enhanced levels of tissue-type plasminogen activator in borderline hypertension. Hypertension 26:796, 1995.PubMedGoogle Scholar
  278. 278.
    Licata G, Scaglione R, Avellone G, Ganguzza A, Corrao S, Arnone S, Chiara TD. Hemostatic function in young subjects with central obesity: Relationship with left ventricular function. Metabolism 44:1417, 1995.PubMedCrossRefGoogle Scholar
  279. 279.
    Gebara OCE, Mittleman MA, Sutherland P, Lipinska I, Matheney T, Xu P, Weltry FK, Wilson PWF, Levy D, Muller JE, Tofler GH. Association between increased estrogen status and increased fibrinolytic potential in the Framingham offspring study. Circulation 91:1952, 1995.PubMedGoogle Scholar
  280. 280.
    Smokovitis A, Kokolis N, Taitzoglou I. Sex-related differences in plasminogen activator activity and plasminogen activator inhibition of human and animal kidneys: Effect of orchiectomy or ovariectomy. Haemostasis 21:305, 1991.PubMedGoogle Scholar
  281. 281.
    Meilahn E, Cauley JA, Tracy RP, Macy EO, Gutai JH, Kuller LH. Association of sex hormones and adiposity with plasma levels of fibrinogen and PAI-1 in postmenopausal women. Am J Epidemiol 143:159, 1996.PubMedGoogle Scholar
  282. 282.
    Jansson JH, Johansson B, Boman K, Nilsson TK. Hypofibrinolysis in patients with hypertension and elevated cholesterol. J Intern Med 229:309, 1991.PubMedGoogle Scholar
  283. 283.
    Gleerup G, Winther K. Decreased fibrinolytic activity and increased platelet function in hypertension: Possible influence of calcium antagonism. Am J Hypertens 4:168S, 1991.Google Scholar
  284. 284.
    van Wersch JWJ, Rompleberg-Lahaye J, Lustermans FAT. Plasma concentration of coagulation and fibrinolysis facrors and platelet function in hypertension. Eur J Clin Chem Clin Biochem 29:375, 1991.PubMedGoogle Scholar
  285. 285.
    Ridker PM, Gaboury CL, Conlin PR, Seely EW, Williams GH, Vaughan DE. Stimulation of plasminogen activator inhibitor in vivo by infusion of angiotensin II: Evidence of a potential interaction between the renin-angiotensin system and fibrinolytic function. Circulation 87:1969, 1993.PubMedGoogle Scholar
  286. 286.
    Alderman MH, Madhavan S, Ooi WL, Cohen H, Sealey JE, Laragh JH. Association of the reninsodium profile with the risk of myocardial infarction in patients with hypertension. N Engl J Med 324:1098, 1991.PubMedCrossRefGoogle Scholar
  287. 287.
    Rouleau JL, de Champlain J, Klein M, Bichet D, Moye L, Packer M, Dagenais G, Sussex B, Arnold JM, Sestier F, Parker JO, McEwan P, Bernstein V, Cuddy E, Lamas G, Gottlieb S, McCans J, Nadeau C, Delage F, Hamm P. Activation of neurohumoral systems in postinfarction left ventricular dysfunction. J Am Coll Cardiol 22:390, 1993.PubMedGoogle Scholar
  288. 288.
    Wright RA, Flapan AD, Albert KGMM, Ludlam CA, Fox KAA. Effects of captopril therapy on endogenous fibrinolysis in men with recent, uncomplicated myocardial infarction. J Am Coll Cardiol 24:67, 1994.PubMedGoogle Scholar
  289. 289.
    Vaughn DE, Rouleau JL, Pfeffer MA. Role of the fibrinolytic system in preventing myocardial infarction. Eur Heart J 16:31, 1995.Google Scholar
  290. 290.
    Schneiderman J, Sawdey MS, Keeton MR, Bordin GM, Bernstein EF, Dilley RB, Loskutoff DJ. Increased type 1 plasminogen activator inhibitor gene expression in atherosclerotic human arteries. Proc Nat Acad Sci USA 89:6998, 1992.PubMedCrossRefGoogle Scholar
  291. 291.
    Lupu F, Bergonzelli GE, Heim DA, Cousin E, Genton CY, Bachmann F, Kruithof EKO. Localization and production of plasminogen activator inhibitor-1 in human healthy and atherosclerotic arteries. Arterioscl Thromb 13:1090, 1993.PubMedGoogle Scholar
  292. 292.
    Chomiki N, Henry M, Alessi MC, Anfosso F, Juhan-Vague I. Plasminogen activator inhibitor-1 expression in human liver and healthy or atherosclerotic vessel walls. Thromb Haemosr 72:44, 1994.Google Scholar
  293. 293.
    Mehta J, Mehta P, Lawson D, Saldeen T. Plasma tissue plasminogen activator inhibitor levels in coronary artery disease: Correlation with age and serum triglyceride concentration. J Am Coll Cardiol 9:263, 1987.PubMedCrossRefGoogle Scholar
  294. 294.
    Cortellaro M, Confrancesco E, Boschetti C, Mussoni L, Donati MB, Cardillo M, Catalano M, Gabrielli L, Lombardi B, Specchia G, Tavazzi L, Tremoli E, Pozzoli E, Turri M. Increased fibrin turnover and high PAI-1 activity as predictors of ischemic events in atherosclerotic patients: A case-control study. Arterioscler Thromb 13:1412, 1993.PubMedGoogle Scholar
  295. 295.
    Oseroff A, Krishnamurti C, Hassett A, Tang D, Alving B. Plasminogen activator and plasminogen activator inhibitor activities in men with coronary artery disease. J Lab Clin Med 113:88, 1989.PubMedGoogle Scholar
  296. 296.
    Vandekerckhove Y, Baele G, de Puydt H, Weyne A, Clement D. Plasma tissue plasminogen activator levels in patients with coronary heart disease. Thromb Res 50:449, 1988.PubMedCrossRefGoogle Scholar
  297. 297.
    Paramo JA, Colucci M, Collen D, van de Werf F. Plasminogen activator inhibitor in the blood of patients with coronary artery disease. Br Med J 291:573, 1985.Google Scholar
  298. 298.
    Sakata K, Kurata C, Taguchi T, Suzuki S, Kobayashi A, Yamazaki N, Rydzewski A, Takada Y, Takada A. Clinical significance of plasminogen activator inhibitor activity in patients with exercise-induced ischemia. Am Heart J 120:381, 1990.CrossRefGoogle Scholar
  299. 299.
    Aimer LO, Ohlin H.Elevated levels of the rapid inhibitor of plasminogen activator (t-PAI) in acute myocardial infarction. Thromb Res 47:335, 1987.CrossRefGoogle Scholar
  300. 300.
    Aznar J, Estelles A, Tormo G, Sapena P, Tormo V, Blanch S, Espana F. Plasminogen acrivator inhibitor activity and other fibrinolytic variables in patients with coronary artery disease. Br Heart J 59:535, 1988.PubMedCrossRefGoogle Scholar
  301. 301.
    ECAT, Angina Pectoris Study Group. ECAT angina pectoris study: Baseline associations of haemostatic factors with extent of coronary arteriosclerosis and other risk factors in 3000 patients with angina pectoris undergoing coronary angiography. Eur Heart J 14:8, 1993.Google Scholar
  302. 302.
    Huber K, Resch I, Stefenelli T, Lang I, Probst P, Kaindl F, Binder BR. Plasminogen activator inhibitor-1 levels in patients with chronic angina pectoris with or without angiographic evidence of coronary sclerosis. Thromb Haemost 63:336, 1990.PubMedGoogle Scholar
  303. 303.
    Olofsson BO, Dahlen G, Nilsson TK. Evidence for increased levels of plasminogen activator inhibitor and tissue plasminogen activator in plasma of patients with angiographically verified coronary artery disease. Eur Heart J 10:77, 1989.PubMedGoogle Scholar
  304. 304.
    Zalewski A, Shi Y, Nardone D, Bravette B, Weinsrock P, Fischman D, Wilson P, Goldberg S, Levin DC, Bjornsson TD. Evidence for reduced fibrinolytic activity in unstable angina at rest: Clinical, biochemical and angiographic correlates. Circulation 83:1685, 1991.PubMedGoogle Scholar
  305. 305.
    Verheugt FW, ten Cate JW, Sturk A, Imandt L, Verhorst PM, van Eenige MJ, Verwey W, Roos JP. Tissue plasminogen activator activity and inhibition in acute myocardial infarction and angiographically normal coronary arteries. Am J Cardiol 59:1075, 1987.PubMedCrossRefGoogle Scholar
  306. 306.
    Johnson O, Mellbring G, Nilsson T. Defective fibrinolysis in survivors of myocardial infarction. Int J Cardiol 6:380, 1984.PubMedCrossRefGoogle Scholar
  307. 307.
    Hamsten A, Wiman B, de Faire U, Blomback M. Increased plasma levels of a rapid inhibitor of tissue plasminogen activator in young survivors of myocardial infarction. N Engl J Med 313:1557, 1985.PubMedCrossRefGoogle Scholar
  308. 308.
    Hamsten A, Walldius G, Szamosi A, Blomback M, de Faire U, Dahlen G, Landou C, Wiman B. Plasminogen activator inhibiror in plasma: Risk factor for recurrent myocardial infarction. Lancet 2:3, 1987.PubMedCrossRefGoogle Scholar
  309. 309.
    Nilsson TK, Johnson O. The extrinsic fibrinolytic system in survivors of myocardial infarction. Thromb Res 48:621, 1987.PubMedCrossRefGoogle Scholar
  310. 310.
    Meade TW, Ruddock V, Stirling Y, Charkrabarti R, Miller GJ. Fibrinolytic activity, clotting factors and long-term incidence of ischaemic heart disease in the Northwick Park Heart Study. Lancet 342:1076, 1993.PubMedCrossRefGoogle Scholar
  311. 311.
    Ridker PM, Vaughan DE, Stampfer MJ, Manson JE, Hennekens CH. Endogenous tissue-type plasminogen activator and risk of myocardial infarction. Lancet 341:1165, 1993.PubMedCrossRefGoogle Scholar
  312. 312.
    Gram J, Jespersen J, Kluft C, Rijken DC. On the usefulness of fibrinolysis variables in the characterization of a risk group for myocardial reinfarction. Acta Med Scand 221:149, 1987.PubMedCrossRefGoogle Scholar
  313. 313.
    Munkvad S, Gram J, Jespersen J. A depression of active tissue plasminogen activator in plasma characterizes patients with unstable angina pectoris who develop myocardial infarction. Eur Heart J 11:525, 1990.PubMedGoogle Scholar
  314. 314.
    Jansson JH, Nilsson TK, Olofsson BO. Tissue plasminogen activator and other risk factors as predictors of cardiovascular events in patients with severe angina pectoris. Eur Heart J 12:157, 1991.PubMedGoogle Scholar
  315. 315.
    Jansson JH, Olofsson NO, Nilsson TK. Predictive value of tissue plasminogen activator mass concentration on long-term mortality in patients with coronary artery disease. A 7-year follow-up. Circulation 88:2030, 1993.PubMedGoogle Scholar
  316. 316.
    Sakata K, Miura F, Sugino H, Shinobe M, Shirotani M, Yoshida H, Mori N, Hoshino T, Takada A. Impaired fibrinolysis early after percutaneous transluminal coronary angioplasty is associated with restenosis. Am Heart J 131:1, 1996.PubMedCrossRefGoogle Scholar
  317. 317.
    Kirschstein W, Simianer S, Dempfle CE, Keller H, Stegaru B, Rentrop P, Heene DL. Impaired fibrinolytic capacity and tissue plasminogen activator release in patients with restenosis after percutaneous transluminal coronary angioplasty. Thromb Flaemost 62:772, 1989.Google Scholar
  318. 318.
    Saito M, Nakabayashi T, Iuchi K, Ishikawa T, Kaseno K, Yoshida T, Asakura H, Matsuda T. Effects of direcr percutaneous transluminal coronary angioplasty treatment of acute myocardial infarction on plasma levels of haemostatic and fibrinolytic factors. Blood Coagul Fibrinolysis 4:801, 1993.PubMedGoogle Scholar
  319. 319.
    Hara M, Ito K, Nawata T, Tsunematsu Y, Shimoyama N, Maeda T, Sato Y, Saikawa T, Sakata T. Plasminogen activator inhibiror-1, tissue plasminogen activator and serum lipoprotein (a) after reperfusion therapy in acure myocardial infarction: Comparison between sequential and direct percutaneous transluminal coronary angioplasty. Cardiology 86:407, 1995.PubMedCrossRefGoogle Scholar
  320. 320.
    Sakamoto T, Yasue H, Ogawa H, Misumi I, Masuda T. Association of patency of the infaret-related coronary artery with plasma levels of plasminogen activator inhibitor activity in acute myocardial infarction. Am J Cardiol 70:271, 1992.PubMedCrossRefGoogle Scholar
  321. 321.
    Hirashima O, Ogawa H, Oshima S, Sakamoto T, Honda Y, Sakata S, Masuda T, Miyao Y, Yasue H. Serial changes of plasma plasminogen activator inhibitor activity in acute myocardial infarction: Difference between thrombolytic therapy and direct coronary angioplasty. Am Heart J 130:933, 1995.PubMedCrossRefGoogle Scholar
  322. 322.
    Haider AW, Andreotti F, Hackett DR, Tousoulis D, Kluft C, Maseri A, Davies GJ. Early spontaneous intermittent myocardial reperfusion during acute myocardial infarction is associated with augmented thrombogenic activity and less myocardial damage. J Am Coll Cardiol 26:662, 1995.PubMedCrossRefGoogle Scholar
  323. 323.
    van Meijer M, Pannekoek H. Structure of plasminogen activator inhibitor 1 (PAI-1) and its function in fibrinolysis: An update. Fibrinolysis 9:263, 1995.CrossRefGoogle Scholar
  324. 324.
    Fay WP, Shapiro AD, Shih JL, Schleef RR, Ginsburg D. Brief report: Complete deficiency of plasminogen-activator inhibitor type 1 due to a frame-shift mutation. N Engl J Med 427:1729, 1992.CrossRefGoogle Scholar
  325. 325.
    Torr-Brown SR, Sobel BE. Attenuation of thrombolysis by plasminogen activator inhibitor type-1 from platelets. Thromb Res 72:413, 1993.PubMedCrossRefGoogle Scholar
  326. 326.
    Robbie LA, Both NA, Croll AM, Bennett B. The roles of α2-anciplasmin and plasminogen activator inhibitor 1 (PAI-1) in rhe inhibition of clot lysis. Thromb Haemost 70:301, 1993.PubMedGoogle Scholar
  327. 327.
    Reed GL, Matsueda GR, Haber E. Platelet factor XIII increases the fibrinolytic resistance of plateletrich clots by accelerating the crosslinking of α2-antiplasmin to fibrin. Thromb Haemost 68:315, 1992.PubMedGoogle Scholar
  328. 328.
    Sabovic M, Lijnen H, Keber D, Collen D. Effect of retraction on the lysis of human clots with fibrin specific and non-fibrin specific plasminogen activators. Thromb Haemost 62:1083, 1989.PubMedGoogle Scholar
  329. 329.
    Wiman B, Haegerstrand-Bjorkman M. Plasmin/ α2-antiplasmin complex in plasma — a global fibrinolytic assay (abstr). Thromb Haemost 69:1091, 1993.Google Scholar
  330. 330.
    Collen D, de Cock F, Cambiaso CL, Masson P. A latex agglutination test for rapid quantitative estimation of the plasmin-antiplasmin complex in human plasma. Eur J Clin Invest 7:21, 1977.PubMedGoogle Scholar
  331. 331.
    Plow EF, de Cock F, Collen D. Immunochemical characterization of the plasmin-antiplasmin system. Basis for the specific detection of the plasmin-antiplasmin complex by latex agglutination assays. J Lab Clin Med 93:199, 1979.PubMedGoogle Scholar
  332. 332.
    Collen D, Wiman B. Turnover of antiplasmin, the fast-acting plasmin inhibitor of plasma. Blood 53:313, 1979.PubMedGoogle Scholar
  333. 333.
    Holvoet P, Lijnen H, Collen D. Monoclonal antibody preventing binding of tissue-type plasminogen activator to fibrin: Useful to monitor fibrinogen breakdown during t-PA infusion. Blood 67:1482, 1986.PubMedGoogle Scholar
  334. 334.
    Mimuro J, Koike Y, Sumi Y, Aoki N. Monoclonal antibodies to discrete regions in α2-plasmin inhibitor. Blood 69:446, 1987.PubMedGoogle Scholar
  335. 335.
    Montes R, Paramo JA, Angles-Cano E, Rocha E. Development and clinical application of a new ELISA assay to determine plasmin-alpha 2-antiplasmin complexes in plasma. Br J Haematol 92:979, 1996.PubMedCrossRefGoogle Scholar
  336. 336.
    Nossel HL, Wasser J, Kaplan KL, LaGamma KS, Yudelman I, Canfield RE. Sequence of fibrinogen proteolysis and platelet release after intra-uterine infusion of hypertonic saline. J Clin Invest 64:1371, 1979.PubMedGoogle Scholar
  337. 337.
    Marder VJ, Francis CW, Doolittle RF. Fibrinogen Structure and Physiology. In Haemostasis and Thrombosis. Philadelphia: JB Lippincott, 1982.Google Scholar
  338. 338.
    Jaffe AS, Eisenberg PR, Wilner GD. In vivo assessment of thrombosis and fibrinolysis during acute myocardial infarction. Prog Hematol 15:71, 1987.PubMedGoogle Scholar
  339. 339.
    McDonagh RP, McDonagh J, Ducken F. The influence of fibrin crosslinking on the kinetics of urokinase-induced clot lysis. Br J Haematol 21:323, 1971.PubMedGoogle Scholar
  340. 340.
    Gaffney PJ, Creighton LJ, Callus M, Thorpe R. Monoclonal antibodies to crosslinked fibrin degradation products (XL-FDP). II. Evaluation in a variety of clinical conditions. Br J Haematol 68:91, 1988.PubMedGoogle Scholar
  341. 341.
    Kroneman H, Nieuwenhuizen W, Knute A. Monoclonal amibody-based plasma assays for fibrin(ogen) and derivatives and their clinical relevance. Blood Coagul Fibrinolysis 1:91, 1990.PubMedCrossRefGoogle Scholar
  342. 342.
    Gaffney PJ, Perry MJ. Unreliability of current serum fibrin degradation product assays. Thromb Haemost 53:301, 1985.PubMedGoogle Scholar
  343. 343.
    Merskey C, Kleiner GJ, Johnson AJ. Quantitative estimation of split products of fibrinogen in human serum, relation to diagnosis and treatment. Blood 28:1, 1966.PubMedGoogle Scholar
  344. 344.
    Budzynski AZ, Marder VJ, Parker ME, Shames P, Brizuela BS, Olexa SA. Antigenic markers on fragment DD, a unique plasmic derivative of human crosslinked fibrin. Blood 54:794, 1979.PubMedGoogle Scholar
  345. 345.
    Lee-Owen V, Gordon YB, Chard T. The detection of neoantigenic sites on the D-dimer peptide isolated from plasmin digested cross linked fibrin. Thromb Res 14:77, 1979.CrossRefGoogle Scholar
  346. 346.
    Siefried E, Tanswel P, Rijken DC, Kluft C, Hoegee E, Nieuwenhuizen W. Fibrin degradation products are not specific markers for thrombolysis in myocardial infarction. Lancet 2:333, 1987.CrossRefGoogle Scholar
  347. 347.
    Whitaker AN, Elms MJ, Masci PP, Bundesen PG, Rylatt DB, Weber AJ, Bunce IH. Measurement of crosslinked fibrin derivatives in plasma: An immunoassay using monoclonal antibodies. J Clin Pathol 37:882, 1984.PubMedCrossRefGoogle Scholar
  348. 348.
    Eisenberg PR, Sherman LA, Perez J, Jaffe AS. Relationship between elevated plasma levels of cross-linked fibrin degradation products (XL-FDP) and the clinical presentation of patients with myocardial infarction. Thromb Res 46:109, 1987.PubMedCrossRefGoogle Scholar
  349. 349.
    Koppert PW, Kuipers W, Hoegee-de Nobel B, Brommer EJP, Koopman J, Nieuwenhuizen W. A quantitative enzyme immunoassay for primary fibrinogenolysis products in plasma. Thromb Haemost 57:25, 1987.PubMedGoogle Scholar
  350. 350.
    Koopman J, Haverkate F, Koppert P, Niewenhuizen W, Brommere JP, van der Werf VGC. New enzyme immunoassay of fibrin-fibrinogen degradation products in plasma using a monoclonal antibody. J Lab Clin Med 109:75, 1987.PubMedGoogle Scholar
  351. 351.
    Declerck PJ, Mombaerts P, Holvoet P, de Mol M. Collen D. Fibrinolytic response and fibrin fragment D-dimer levels in patients with deep vein thrombosis. Thromb Haemost 58:1024, 1987.PubMedGoogle Scholar
  352. 352.
    Lawler CW, Bovill EG, Stump DC, Collen DJ, Mann KG, Tracy RP. Fibrin fragment D-dimer and fibrinogen Bβ peptides in plasma as markers of clot lysis during thrombolytic therapy in acute myocardial infarction. Blood 76:1341, 1990.PubMedGoogle Scholar
  353. 353.
    Hart R, Bate I, Dinh D, Elms M, Bundesen P, Hillyard C, Rylatt DB. The detection of D-dimer in plasma by enzyme immunoassay: Improved discrimination is obtained with a more specific signal antibody. Blood Coagul Fibrinolysis 5:227, 1994.PubMedCrossRefGoogle Scholar
  354. 354.
    Ballegeer V, Mombaerts P, Declerck PJ, Spitz B, Van Asche FA, Collen D. Fibrinolytic response to venous occlusion and fibrin fragment D-dimer levels in normal and complicated pregnancy. Thromb Haemost 58:1030, 1987.PubMedGoogle Scholar
  355. 355.
    Soria C, Soria J, Mirshashi MC, Mirshashi M, Dunnica S, Bousheix C, Beaufils R, Sluma R, Caen JP. Dynamic coronary fibrinolysis evaluation in patients with myocardial infarction and unstable angina by specific plasma fibrin degradation product determination. Thromb Res 45:383, 1987.PubMedCrossRefGoogle Scholar
  356. 356.
    Hunt FA, Rylatt DB, Hart RA, Bundesen PG. Serum crosslinked fibrin (XDP) and fibrinogen/fibrin degradarion products (FDP) in disorders associated with activation of the coagulation or fibrinolytic systems. Br J Haematol 60:715, 1985.PubMedGoogle Scholar
  357. 357.
    Chapman CS, Akhtar N, Campbell S, Miles K, O’Connor J, Mitchell VE. The use of D-dimer assay by enzyme immunoassay and latex agglutination techniques in the diagnosis of deep vein thrombosis. Clin Lab Haemat 12:37, 1990.CrossRefGoogle Scholar
  358. 358.
    Carter CJ, Doyle DL, Dawson N, Fowler S, Devine DV. Investigations into the clinical utility of latex D-dimer in the diagnosis of deep venous thrombosis. Thromb Haemost 69:8, 1993.PubMedGoogle Scholar
  359. 359.
    Koopman MMW, Brandjes DPM, Beek EJR, Turkstra F, Buller HR. Sensitivity and specificity of a bed-side whole blood latex D-dimer assay (SimpliRED®) in outpatients with deep vein thrombosis. Thromb Haemost 73:1100, 1995.Google Scholar
  360. 360.
    Elias A, Aillaud MF, Roul C, Monteil O, Villain PH, Serradimigni A, Juhan-Vague I. Assessment of D-dimer measurement by ELISA or latex methods in deep vein thrombosis diagnosed by ultrasonic duplex scanning. Fibrinolysis 4:237, 1990.CrossRefGoogle Scholar
  361. 361.
    Chang-Liem GS, Lustermans FA, van Wersch JWJ. Comparison of the appropriateness of the latex and ELISA plasma D-dimer determination for the diagnosis ot deep venous thrombosis. Haemostasis 21:106, 1991.PubMedGoogle Scholar
  362. 362.
    John MA, Elms MJ, O’Reilly EJ, Rylatt DB, Bundesen PG, Hillyard CJ. The SimpliRED D-dimer test: A novel assay for the detection of crosslinked fibrin degradation products in whole blood. Thromb Res 58:273, 1990.PubMedCrossRefGoogle Scholar
  363. 363.
    Deitcher SR, Eisenberg PR. Elevated concentrations of cross-linked fibrin degradation products in plasma. Chest 103:1107, 1993.PubMedCrossRefGoogle Scholar
  364. 364.
    Brenner B, Pery M, Lanir N, Jabareen A, Markel A, Kaftori JK, Gaitini D, Rylatt D. Application of a bedside whole blood D-dimer assay in the diagnosis of deep vein thrombosis. Blood Coagul Fibrinolysis 6:219, 1995.PubMedCrossRefGoogle Scholar
  365. 365.
    Wells PS, Brill-Edwards P, Stevens P, Panju A, Patel A, Douketis J, Massicotte P, Hirsh J, Weitz JI, Kearon C, Ginsberg JS. A novel and rapid whole-blood assay for D-dimer in patients with clinically suspected deep vein thrombosis. Circulation 91:2184, 1995.PubMedGoogle Scholar
  366. 366.
    Ginsberg JS, Wells PS, Brill-Edwards P, Donovan D, Panju A, Beek EJR, Patel A. Application of a novel and rapid whole blood assay for D-dimer in patients with clinically suspected pulmonary embolism. Thromb Haemost 73:35, 1995.PubMedGoogle Scholar
  367. 367.
    Bounameaux H, Cirafici P, Moerloose PD, Slosman D, Reber G, Linger PF. Measurement of D-dimer in plasma as a diagnostic aid in suspected pulmonary embolism. Lancet 337:196, 1991.PubMedCrossRefGoogle Scholar
  368. 368.
    Goldhaber SZ, Vaughan DE, Tumeh SS, Loscalzo J. Utility of cross-linked fibrin degradation products in the diagnosis of pulmonary embolism. Am Heart J 116:505, 1989.CrossRefGoogle Scholar
  369. 369.
    Rowbotham BJ, Egerton-Vernon J, Whitaker AN, Elms MJ, Bunce IH. Plasma cross linked fibrin degradation products in pulmonary embolism. Thorax 45:684, 1990.PubMedGoogle Scholar
  370. 370.
    Lichey J, Reschofski I, Dissmann T, Priesnitz M, Hoffmann M, Lode H. Fibrin degradation product D-dimer in the diagnosis of pulmonary embolism. Klin Wochenschr 69:522, 1991.PubMedCrossRefGoogle Scholar
  371. 371.
    Rowbotham BJ, Carroll P, Whitaker AN, Bunce IH, Cobcroft RG, Elms MJ, Masci PP, Bundesen PG, Rylatt DB, Webber AJ. Measurement of crosslinked fibrin derivatives — use in the diagnosis of venous thrombosis. Thromb Haemost 57:59, 1987.PubMedGoogle Scholar
  372. 372.
    Ott P, Astrup L, Hartving JR, Nyeland B, Pedersen B. Assessment of D-dimer in plasma: Diagnostic value in suspected deep venous thrombosis of the leg. Acta Med Scand 224:263, 1988.PubMedCrossRefGoogle Scholar
  373. 373.
    Lee AJ, Fowkes FGR, Lowe GDO, Rumley A. Fibrin D-dimer, haemostatic factors and peripheral arterial disease. Thromb Haemost 3:828, 1995.Google Scholar
  374. 374.
    Bredbacka S, Edner G. Soluble fibrin and D-dimer as detectors ot hypercoagulability in patients with isolated brain trauma. J Neurosurg Anesthesiol 6:75, 1994.PubMedGoogle Scholar
  375. 375.
    Eisenberg PR, Sobel BE, Jaffe AS. Characterization in vivo of the fibrin specificity of activators of the fibrinolytic system. Circulation 78:592, 1988.PubMedGoogle Scholar
  376. 376.
    Eisenberg PR, Sherman LA, Tiefenbrunn AJ, Ludbrook PA, Sobel BE, Jaffe AS. Sustained fibrinolysis after administration of t-PA despite its short half-life in the circulation. Thromb Haemost 57:35, 1987.PubMedGoogle Scholar
  377. 377.
    Vaughan DE, Goldhaber SZ, Kim J, Loscalzo J. Recombinant tissue plasminogen activator in patients with pulmonary embolism: Correlation of fibrinolytic specificity and efficacy. Circulation 75:1200, 1987.PubMedGoogle Scholar
  378. 378.
    Ridker PM, Hennekens CH, Cerskers A, Stampfer MJ. Plasma concentration of cross-linked fibrin deg-radation products (D-dimer) and the risk of future myocardial infarction among apparently healthy men. Circulation 90:2236, 1994.PubMedGoogle Scholar
  379. 379.
    Abe S, Maruyama I, Arima S, Yamaguchi H, Okino H, Hamasaki S, Yamashita T, Nomoto K, Tahara M, Atsuchi Y, Nakao S, Tanaka H. Increased heparin-releasable platelet factor 4 and D-dimer in patients 1 month after the onset of acute myocardial infarction: Persistent activation of platelets and the coagulation/fibrinolytic system. Int J Cardiol 47:S7, 1994.PubMedCrossRefGoogle Scholar
  380. 380.
    Fowkes FGR, Lowe GDO, Housley E, Rattray A, Rumley A, Elton RA, MacGregor IR, Dawes J. Crosslinked fibrin degradation products, progression of peripheral artery disease, and risk ot coronary heart disease. Lancet 342:84, 1993.PubMedCrossRefGoogle Scholar
  381. 381.
    Ring ME, Vecchione JJ, Fiore LD, Ruocco NA, Jacobs AK, Deykin D, Ryan TJ, Faxon DP. Detection of intracoronary fibrin degradation aftercoronary balloon angioplasty. Am J Cardiol 67:1330, 1991.PubMedCrossRefGoogle Scholar
  382. 382.
    Jorgensen B, Nielsen JD, Norgard J, Helligso P, Baekgaard N, Egeblad M. Cross-linked fibrin degradation products (XL-FDP) as markers of early rethrombosis in percutaneous transluminal angioplasty. Eur J Vasc Surg 7:720, 1993.PubMedCrossRefGoogle Scholar
  383. 383.
    Weitz JI, Koehn JA, Canfield RE, Landman SL, Friedman R. Development of a radioimmunoassay for the fibrinogen-derived peptide Bβ1-42. Blood 67:1014, 1986.PubMedGoogle Scholar
  384. 384.
    Koehn JA, Hurlet-Jensen A, Nossel HL, Canfield RE. Sequence of plasma proteolysis at the NH2-terminus of the Bβ chain of human fibrinogen. Anal Biochem 133:502, 1983.PubMedCrossRefGoogle Scholar
  385. 385.
    Hurlet-Jensen A, Koehn JA, Nossel HL. The release of Bβ1-42 from fibrinogen and fibrin by plasmin. Thromb Res 29:609, 1983.PubMedCrossRefGoogle Scholar
  386. 386.
    Kudryk B, Rohoza A, Ahadi M, Chin J, Wiebe ME. Specificity of a monoclonal antibody for the NH2-terminal region of fibrin. Mol Immunol 21:89, 1984.PubMedCrossRefGoogle Scholar
  387. 387.
    Eisenberg PR, Miletich JP. Induction of marked thrombin activity by pharmacologic concentrations of plasminogen activacors in nonanticoagulated whole blood. Thromb Res 55:635, 1989.PubMedCrossRefGoogle Scholar
  388. 388.
    Nieuwenhuizen W, Emers JJ, Vermond A. Catabolism of purified rat fibrin(ogen) plasma degradation products in rats. Thromb Haemost 48:59, 1982.PubMedGoogle Scholar
  389. 389.
    Lane DA, Ireland H, Knight I, Wolf S, Kyle P, Curtis JR. The significance of fibrinogen derivatives in plasma in human renal failure. Br J Haematol 56:251, 1984.PubMedGoogle Scholar
  390. 390.
    Walenga JM, Fareed J, Mariani G, Messmore HL, Bick RL, Emanuele RM. Diagnostic efficacy of a simple radioimmunoassay test for fibrinogen/fibrin fragments containing the Bβ15-42 sequence. Semin Thromb Haemost 10:252, 1984.Google Scholar
  391. 391.
    Eisenberg PR, Sherman LA, Jaffe AS. Differentiation of fibrinolysis from fibrinogenolysis with Bβ1-42 and Bβ15-42. Circulation 74:11–245, 1986.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • L. Veronica Lee
  • Dana R. Abendschein
  • Paul R. Eisenberg

There are no affiliations available

Personalised recommendations