New Antiplatelet Strategies in the Adjunctive Treatment of Acute Myocardial Infarction

  • Christopher J. Ellis
  • Harvey D. White
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 193)


Platelets play a pivotal role in the pathogenesis of acute coronary syndromes [1]. Platelet activation at the site of arterial injury leads to a cascade of events generating a platelet-rich thrombus, which may occlude vessels with subsequent ischemia or infarction [2],[3]. A range of drugs aimed at modifying the actions of platelets are currently being developed for the adjuvant treatment of acute myocardial infarction and unstable angina, and following percutaneous coronary interventions. This chapter reviews the structure and function of platelets during thrombosis, and outlines the previous and current clinical studies of antiplatelet agents in the adjunctive treatment of acute myocardial infarction.


Acute Myocardial Infarction Platelet Aggregation Platelet Adhesion Platelet Glycoprotein Platelet Membrane Glycoprotein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med 326:242, 1992.PubMedCrossRefGoogle Scholar
  2. 2.
    Davies MJ, Thomas AC. Plaque fissuring: The cause of acute myocardial infarction, sudden ischemic death, and crescendo angina. Br Heart J 53:363, 1985.PubMedGoogle Scholar
  3. 3.
    Kroll MH, Schafer AI. Biochemical mechanisms of platelet activation. Blood 74:11815, 1989.Google Scholar
  4. 4.
    Davies MJ, Thomas A. Thrombosis and acute coronary lesions in sudden ischemic death. N Engl J Med 310:1137, 1984.PubMedCrossRefGoogle Scholar
  5. 5.
    DeWood MA, Spores J, Notske R, Mouser LT, Burroughs R, Golden MS, Lang HT. Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N Engl J Med 303:897, 1980.PubMedCrossRefGoogle Scholar
  6. 6.
    Simoons ML, Serruys PW, van den Brand M, Res J, Verheugt FWA, Krauss XH, Remme WJ, Bar F, de Zwaan C, van der Laarse A, Vermeer F, Lubsen J, for the Working Group on Thrombolytic Therapy in Acute Myocardial Infarction of the Netherlands Interuniversity Cardiology Institute. Early thrombolysis in acute myocardial infarction: Limitation of infarct size and improved survival. J Am Coll Cardiol 7:717, 1986.PubMedGoogle Scholar
  7. 7.
    White HD, Norris RM, Brown MA, Takayama M, Maslowski A, Bass NM, Ormiston JA, Whitlock T. Effect of intravenous streptokinase on left ventricular function and early survival after acute myocardial infarction. N Engl J Med 317:850, 1987.PubMedCrossRefGoogle Scholar
  8. 8.
    Gruppo Italiano per lo Studio della Streptochinasi nell’Infarto Miocardico (GISSI). Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Lancet 1:397, 1986.PubMedGoogle Scholar
  9. 9.
    ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17, 187 cases of suspected acute myocardial infarction: ISIS-2. Lancet 2:349, 1988.Google Scholar
  10. 10.
    The GUSTO Investigators. An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. N Engl J Med 329:673, 1993.Google Scholar
  11. 11.
    Stone GW, Grines CL, Browne KF, Marco J, Rothbaum D, O’Keefe J, Hartzler GO, Overlie P, Donohue B, Chelliah N, Timmis GC, Vlietstra R, Strzelecki M, Puchrowicz-Ochocki S, O’Neill WW. Predictors of in-hospital and 6-month outcome after acute myocardial infarction in the reperfusion era: The Primary Angioplasty in Myocardial Infarction (PAMI) trial. J Am Coll Cardiol 25:370, 1995.PubMedGoogle Scholar
  12. 12.
    Michels KB, Yusuf S. Does PTCA in acute myocardial infarction affect mortality and reinfarction rates? A quantitative overview (meta-analysis) of the randomized clinical trials. Circulation 91:476, 1995.PubMedGoogle Scholar
  13. 13.
    Ellis SG, da Silva ER, Heyndrickx G, Talley JD, Cernigliaro C, Steg G, Spaulding C, Nobuyoshi M, Erbel R, Vassanelli C, Topol EJ, for the RESCUE Investigators. Randomized comparison of rescue angioplasty with conservative management of patients with early failure of thrombolysis for acute anterior myocardial infarction. Circulation 90:2280, 1994.PubMedGoogle Scholar
  14. 14.
    Onodera T, Fujiwara H, Tanaka M, Wu J, Matsuda M, Takemura G, Ishida M, Kawamura A, Kawai C. Cineangiographic and pathological features of the infarct related vessel in successful and unsuccessful thrombolysis. Br Heart J 61:385, 1989.PubMedGoogle Scholar
  15. 15.
    Friedman M, Van den Bovenkamp GJ. The pathogenesis of a coronary thrombus. Am J Pathol 48:19, 1966.PubMedGoogle Scholar
  16. 16.
    Lind SE. Platelet morphology. In Loscalzo J, Schafer AI (eds). Thrombosis and Hemorrhage. Boston: Blackwell Scientific, 1994:201.Google Scholar
  17. 17.
    Lefkovits J, Plow EF, Topol EJ. Platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine. N Engl J Med 332:1553, 1995.PubMedGoogle Scholar
  18. 18.
    Hynes RO. Integrins: A family of cell surface receptors. Cell 48:549, 1987.PubMedGoogle Scholar
  19. 19.
    Smyth SS, Joneckis CC, Parise LV. Regulation of vascular integrins Blood 81:2827, 1993. [Published erratum appears in Blood 83:2013, 1994.]PubMedGoogle Scholar
  20. 20.
    Kroll MH, Harris TS, Moake JL, Handin RI, Shafer AI. von Willebrand factor binding to platelet GpIb initiates signals for platelet activation. J Clin Invest 88:1568, 1991.PubMedGoogle Scholar
  21. 21.
    Saelman EU, Nieuwenhuis HK, Hese KM, de Groot PG, Heijnen HFG, Sage EH, Williams S, McKeown L, Gralnick HR, Sixma JJ. Platelet adhesion to collagen types I through VIII under conditions of stasis and flow is mediated by GPIa/IIa (α2β1-integrin). Blood 83:1244, 1994.PubMedGoogle Scholar
  22. 22.
    Kunicki TJ, Nugent DJ, Staats SJ, Orchekowski RP, Waynder EA, Carter WG. The human fibroblast class II extracellular matrix receptor mediates platelet adhesion to collagen and is identical to the platelet glycoprotein Ia-IIa complex. J Biol Chem 263:4516, 1988.PubMedGoogle Scholar
  23. 23.
    Ginsberg MH, Xiaoping D, O’Toole TE, Loftus JC, Plow EF. Platelet integrins. Thromb Haemost 70:87, 1993.PubMedGoogle Scholar
  24. 24.
    Hantgan RR, Hindriks G, Taylor RG, Sixma JJ, de Groot PG. Glycoprotein Ib, von Willebrand factor, and glycoprotein IIb:IIIa are all involved in platelet adhesion to fibrin in flowing whole blood. Blood 76:345, 1990.PubMedGoogle Scholar
  25. 25.
    Lages B, Weiss HJ. Evidence for a role of glycoprotein IIb-IIIa, distinct from its ability to support aggregation, in platelet activation by ionophores in the presence of extracellular divalent cations. Blood 83:2549, 1994.PubMedGoogle Scholar
  26. 26.
    Tandon NN, Kralisz U, Jamieson GA. Identification of glycoprotein IV (CD36) as a primary receptor for platelet-collagen adhesion. J Biol Chem 264:7576, 1989.PubMedGoogle Scholar
  27. 27.
    Asch AS, Barnwell J, Silverstein RL, Nachman RL. Isolation of the thrombospondin membrane receptor. J Clin Invest 79:1054, 1987.PubMedGoogle Scholar
  28. 28.
    Weiss HJ, Hawiger J, Ruggeri ZM, Turitto VT, Thiagarajan P, Hoffman T. Fibrinogen-independent platelet adhesion and thrombus formation on subendothelium mediated by glycoprotein IIb-IIIa complex at high shear rate. J Clin Invest 83:288, 1989.PubMedGoogle Scholar
  29. 29.
    Collen D, Bounameaux H, De Cock F, Lijnen HR, Verstraete M. Analysis of coagulation and fibrinolysis during intravenous infusion of recombinant human tissue-type plasminogen activator (rt-PA) in patients with acute myocardial infarction. Circulation 73:511, 1986.PubMedGoogle Scholar
  30. 30.
    Kamat SG, Kleiman NS. Platelets and platelet inhibitors in acute myocardial infarction. Cardiol Clin 13:435, 1995.PubMedGoogle Scholar
  31. 31.
    Majerus PW, Connolly TM, Deckmyn H, Ross TS, Bross TE, Ishii H, Bansal VS, Wilson DB. The metabolism of phosphoinositide-derived messenger molecules. Science 234:1519, 1986.PubMedGoogle Scholar
  32. 32.
    Kroll MH. Mechanisms of platelet activation. In Loscalzo J, Schafer AI (eds). Thrombosis and Hemorrhage. Boston: Blackwell Scientific, 1994:247.Google Scholar
  33. 33.
    Coller BS. Platelets in cardiovascular thrombosis and thrombolysis. In Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE (eds). The Heart and Cardiovascular System: Scientific Foundations, 2nd ed. New York: Raven Press, 1992:1219.Google Scholar
  34. 34.
    Lefkovits J, Topol EJ. Platelet glycoprotein IIb/IIIa receptor inhibitors in ischemic heart disease. Curr Opin Cardiol 10:420, 1995.PubMedGoogle Scholar
  35. 35.
    Stein B, Fuster V, Israel DH, Cohen M, Badimon L, Badimon JJ, Chesebro JH. Platelet inhibitor agents in cardiovascular disease: An update. J Am Coll Cardiol 14:813, 1989.PubMedGoogle Scholar
  36. 36.
    Larsen I, Celi A, Gilbert GE, Furie BC, Erban JK, Bonfant R, Wagner DD, Furie B. PADGEM protein: A receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell 59:305, 1989.PubMedGoogle Scholar
  37. 37.
    Hung DT, Vu TKH, Wheaton VI, Ishii K, Coughlin SR. Cloned platelet thrombin receptor is necessary for thrombin-induced platelet activation. J Clin Invest 89:1350, 1992.PubMedGoogle Scholar
  38. 38.
    Fuster V, Badimon L, Cohen M, Ambrose JA, Badimon JJ, Chesebro J. Insights into the pathogenesis of acute ischemic syndromes. Circulation 77:1213, 1988.PubMedGoogle Scholar
  39. 39.
    Niewenhuis HK, Akkerman JWN, Houdijk WPM, Sixma JJ. Human blood platelets showing no response to collagen fail to express surface glycoprotein Ia. Nature 318:470, 1985.Google Scholar
  40. 40.
    Colman RW. Aggregin, a platelet ADP receptor that mediates activation. FASEB J 4:1425, 1990.PubMedGoogle Scholar
  41. 41.
    Greco NJ, Tandon NN, Jackson BW, Tandon NN, Moos M, Jamieson GA. Identification of a nucleotide binding site on glycoprotein IIb. J Biol Chem 266:13627, 1991.PubMedGoogle Scholar
  42. 42.
    Kobilka BK, Matsui H, Kobilka TS, Yang-Feng TL, Francke V, Caron MG, Lefkowitz RJ, Regan JW. Cloning, sequencing, and expression of the gene coding for the human platelet alpha2-adrenergic receptor. Science 238:650, 1987.PubMedGoogle Scholar
  43. 43.
    Regan JW, Nakata H, De Marinis RM, Caron MG, Lefkowitz RJ. Purification and characterization of the human platelet alpha2-adrenergic receptor. J Biol Chem 261:3894, 1986.PubMedGoogle Scholar
  44. 44.
    De Chaffoy de Courcelles D, Leysen JE, De Clerck F, Van Belle H, Janssen PA. Evidence that phospholipid turnover in the signal transducing system is coupled to serotonin S2 receptor sites. J Biol Chem 260:7603, 1985.PubMedGoogle Scholar
  45. 45.
    Saltzman AG, Morse B, Whitman MM, Ivanshchenko Y, Jaye M, Felder S. Cloning of the human serotonin 5-HT2 and 5-HT1C receptor subtypes. Biochem Biophys Res Commun 181:1469, 1991.PubMedGoogle Scholar
  46. 46.
    Hirata M, Hayashi Y, Ushikubi F, Yokota Y, Kageyama R, Nakanishi S, Narumiya S. Cloning and expression of cDNA for a human thromboxane A2 receptor. Narure 349:617, 1991.Google Scholar
  47. 47.
    Schafer AI, Cooper B, O’Hara D, Handin RI. Identification of platelet receptors for prostaglandins I2 and D2. J Biol Chem 254:2914, 1979.PubMedGoogle Scholar
  48. 48.
    Siegel AM, Smith JB, Silver MJ, Nicolaou KC, Ahern D. Selective binding site of [H]-prostacyclin on platelets. J Clin Invest 63:215, 1979.Google Scholar
  49. 49.
    van Willigen G, Akkerman J-WN. Regulation of glycoprotein IIb/IIIa exposure on platelets stimulated with α-thrombin. Blood 72:82, 1992.Google Scholar
  50. 50.
    Ignarro LJ. Endothelium-derived nitric oxide: Actions and properties. FASEB J 3:31, 1989.PubMedGoogle Scholar
  51. 51.
    Broekman MJ, Eiroa EM, Marcus AJ. Inhibition of human platelet reactivity by endothelium-derived relaxing factor from human umbilical vein endothelial cells in suspension: Blockade of aggregation and secretion by an aspirin-insensitive mechanism. Blood 78:1033, 1991.PubMedGoogle Scholar
  52. 52.
    Radomski MW, Palmer RM, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 2:1057, 1987.PubMedGoogle Scholar
  53. 53.
    Phillips DR, Charo IF, Parise LV, Fitzgerald LA. The platelet membrane glycoprotein IIb-IIIa complex. Blood 71:831, 1988.PubMedGoogle Scholar
  54. 54.
    Gogstad GO, Brosstad F, Krutnes M, Hagen I, Solum NO. Fibrinogen-binding properties of the human platelet glycoprotein IIb-IIIa complex: A study using crossed radioimmunoelectropheresis. Blood 60:663, 1982.PubMedGoogle Scholar
  55. 55.
    Plow EF, Ginsberg MH. Glycoprotein IIb/IIIa as a prototypic adhesion receptor. In Coller BS (ed). Progress in Hemostasis and Thrombosis. Philadelphia: WB Saunders, 1989:117.Google Scholar
  56. 56.
    Pytela R, Pierschbacher MD, Ginsberg MH, Plow EF, Ruoslahti E. Platelet membrane glycoprotein IIb/IIIa: Member of a family of Arg-Gly-Asp specific adhesion receptors. Science 231:1559, 1986.PubMedGoogle Scholar
  57. 57.
    Ruggeri ZM, De Marco L, Gatti L, Bader R, Montgomery RR. Platelets have more than one binding site for von Willebrand factor. J Clin Invest 72:1, 1983.PubMedGoogle Scholar
  58. 58.
    Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30, 1984.PubMedGoogle Scholar
  59. 59.
    Kloczewiak M, Timmons S, Hawiger J. Recognition site for the platelet receptor is present on the 15-residue carboxy-terminal fragment of the gamma chain of human fibrinogen and is not involved in the fibrin polymerization reaction. Thromb Res 29:249, 1983.PubMedGoogle Scholar
  60. 60.
    Weisel JW, Nagaswami C, Vilaire G, Bennett JS. Examination of the platelet membrane glycoprotein IIb-IIIa complex and its interaction with fibrinogen and other ligands by electron microscopy. J Biol Chem 267:16637, 1992.PubMedGoogle Scholar
  61. 61.
    Farrell DH, Thiagarajan P, Chung DW, Davie EW. Role of fibrinogen alpha and gamma chain sites in platelet aggregation. Proc Natl Acad Sci USA 89:10729, 1992.PubMedGoogle Scholar
  62. 62.
    Fox JEB. The platelet cytoskeleton. Thromb Haemost 70:884, 1993.PubMedGoogle Scholar
  63. 63.
    Alevriadou BR, Moake JL, Turner NA, Ruggeri ZM, Folie BJ, Phillips MD, Schreiber AB, Hrinda ME, McIntire LV. Real-time analysis of shear-dependent thrombus formation and its blockade by inhibitors of von Willebrand factor binding to platelets. Blood 81:1263, 1993.PubMedGoogle Scholar
  64. 64.
    Chow TW, Hellums JD, Moake JL, Kroll MH. Shear stress-induced von Willebrand factor binding to platelet glycoprotein Ib initiates calcium influx associated with aggregation. Blood 80:113, 1992.PubMedGoogle Scholar
  65. 65.
    Peterson DM, Stathopoulous NA, Giorgio TD, Hellums JD, Moake JL. Shear-induced platelet aggregation requires von Willebrand factor and platelet membrane glycoproteins Ib and IIb-IIIa. Blood 69:625, 1987.PubMedGoogle Scholar
  66. 66.
    Ikeda Y, Manda M, Kawano K, Kamata T, Murata M, Araki Y, Anbo H, Kawai Y, Watanabe K, Itagaki I, Sakai K, Rugerri ZM. The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress. J Clin Invest 87:1234, 1991.PubMedCrossRefGoogle Scholar
  67. 67.
    Moake JL, Turner NA, Stathopoulous NA, Nolasco LH, Hellums JD. Involvement of larger von Willebrand factor (vWf) multimers and unusually large vWf forms derived from endothelial cells in shear stress-induced platelet aggregation. J Clin Invest 78:1456, 1986.PubMedGoogle Scholar
  68. 68.
    Roth GJ. Developing relationships: Arterial platelet adhesion, glycoprotein Ib, and leucine-rich glycoproteins. Blood 77:5, 1991.PubMedGoogle Scholar
  69. 69.
    Goto S, Ikeda Y, Murata M, Handa M, Takahashi E, Yoshioka A, Fujimura Y, Fukuyama M, Handa S, Ogawa S. Epinephrine augments von Willebrand factor-dependent shear-induced platelet aggregation. Circulation 86:1859, 1992.PubMedGoogle Scholar
  70. 70.
    Cattaneo M, Lombardi R, Bettega D, Lecchi A, Mannucci PM. Shear-induced platelet aggregation is potentiated by desmopressin and inhibited by ticlopidine. Arterioscler Thromb 13:393, 1993.PubMedGoogle Scholar
  71. 71.
    Monkovic DD, Tracy PB. Functional characterization of human platelet-released factor V and its activation by factor Xa and thrombin. J Biol Chem 265:17132, 1990.PubMedGoogle Scholar
  72. 72.
    Kleiman NS. Antiplatelet therapy in the setting of acute myocardial infarction. In Califf RM, Mark DB, Wagner GS (eds). Acute Coronary Care, 2nd ed. St Louis, MO: Mosby-Year Book, 1995:341.Google Scholar
  73. 73.
    Fujii S, Lucore CL, Hopkins WE, Billadello JJ, Sobel BE. Potential attenuation of fibinolysis by growth factors released from platelets and their pharmacologic implications. Am J Cardiol 63:1505, 1989.PubMedGoogle Scholar
  74. 74.
    Fujii S, Hopkins WE, Sobel BE. Mechnaisms contributing to increased synthesis of plasminogen activator inhibitor type 1 in endothelial cells by constituents of platelets and their implications of thrombolysis. Circulation 83:645, 1991.PubMedGoogle Scholar
  75. 75.
    Fitzgerald DJ, Catella F, Roy L, Fitzgerald GA. Marked platelet activation in vivo after intravenous streptokinase in patients with acute myocardial infarction. Circulation 77:l42, 1988.Google Scholar
  76. 76.
    Niewiarowski S, Senyi AF, Gillies P. Plasmin-induced platelet aggregation and platelet release reaction. J Clin Invest 52:1467, 1973.Google Scholar
  77. 77.
    Ohlstein F.H, Storer B, Fujita T, Shebuski RJ. Tissue-type plasminogen activator and streptokinase induce platelet hyperaggregability in the rabbit. Thromb Res 46:575, 1987.PubMedGoogle Scholar
  78. 78.
    Terres W, Kruger K, Bleifeld W. Prevalence and mechanism of streptokinase-induced platelet stimulation: Effect of acetylsalicylic acid. Eur Heart J 13:1514, 1992.PubMedGoogle Scholar
  79. 79.
    Eisenberg PR, Sherman LA, Jaffe AS. Paradoxic elevation of fibrin peptide A after streptokinase: Evidence for intense thrombosis despite intense fibrinolysis. J Am Coll Cardiol 10:527, 1987.PubMedGoogle Scholar
  80. 80.
    Winters KJ, Santoro SA, Miletich JP, Eisenberg PR. Relative importance of thrombin compared with plasmin-mediated platelet activation in response to plasminogen activation with streptokinase. Circulation 84:1522, 1991.Google Scholar
  81. 81.
    Aronson DL, Chang P, Kessler CM. Platelet-dependent thrombin generation after in vitro fibrinolytic treatment. Circulation 85:1706, 1992.PubMedGoogle Scholar
  82. 82.
    Loscalzo J, Vaughan D. Tissue plasminogen activator promotes platelet disaggregation in plasma. J Clin Invest 79:1749, 1987.PubMedCrossRefGoogle Scholar
  83. 83.
    Gouin I, Lecompte T, Morel MC, Lebrazi J, Modderman PW, Kaplan C, Samama MM. In vitro effects of plasmin on human platelet function in plasma. Circulation 85:935, 1992.PubMedGoogle Scholar
  84. 84.
    Jang IK-K, Gold HK, Ziskind AA, Fallon JT, Holt RE, Leinbach RC, May JW, Collen D. Differential sensitivity of erythrocyte-rich and platelet-rich arterial thrombi to lysis with recombinant tissue-type plasminogen activator: A possible explanation for resistance to coronary thrombolysis. Circulation 79:920, 1989.PubMedGoogle Scholar
  85. 85.
    Gertz SD, Kragel AH, Kalan JM, Braunwald E, Roberts WC, and the TIMI Investigators. Comparison of coronary and myocardial morphologic findings in patients with and without thrombolytic therapy during fatal first acute myocardial infarction. Am J Cardiol 66:904, 1990.PubMedGoogle Scholar
  86. 86.
    Kragel AH, Gertz SD, Roberts WC. Morphologic comparison of frequency and types of acute lesions in the major epicardial coronary arteries in unstable angina pectoris, sudden coronary death, and acute myocardial infarction. J Am Coll Cardiol 18:801, 1991.PubMedGoogle Scholar
  87. 87.
    Roth GJ, Majerus PW. The mechanism of the effect of aspirin on human platelets: I: Acetylation of a particular fraction protein. J Clin Invest 56:624, 1975.PubMedGoogle Scholar
  88. 88.
    Terres W, Beythien C, Kupper W, Bleifeld W. Effects of aspirin and prostaglandin E1 on in vitro thrombolysis with urokinase: Evidence for a possible role of inhibiting platelet activity in thrombolysis. Circulation 79:1309, 1989.PubMedGoogle Scholar
  89. 89.
    Turner NA, Kamat SG, Moake JL, Schafer AI, Kleiman NS, Jordan R, McIntire LV. Comparative real-time effects on platelet adhesion and aggregation under flowing conditions of in vivo aspirin, heparin, and monoclonal antibody fragment against glycoprotein IIb/IIIa. Circulation 91:1354, 1995.PubMedGoogle Scholar
  90. 90.
    O’Brien JR. Shear-induced platelet aggregation. Lancet 335:711, 1990.PubMedGoogle Scholar
  91. 91.
    Bates ER, McGillem MJ, Mickelson JK, Pitt B, Mancini GBJ. A monoclonal antibody against the platelet glycoprotein IIb/IIIa receptor complex prevents platelet aggregation and thrombosis in a canine model of coronary angioplasty. Circulation 84:2463, 1991.PubMedGoogle Scholar
  92. 92.
    Robertson TL, Forman SA, Williams DO, Dodge HT, and TIMI Research Group. Aspirin rt-PA, and reperfusion in AMI: A TIMI observational study (abstr). Circulation 78(Suppl. II):II128, 1988.Google Scholar
  93. 93.
    Ohman EM, Califf RM, Topol EJ, Candela R, Abbottsmith C, Ellis S, Sigmon KN, Kereiakes D, George B, Stack R, and the TAMI Study Group. Consequences of reocclusion after successful reperfusion therapy in acute myocardial infarction. Circulation 82:781, 1990.PubMedGoogle Scholar
  94. 94.
    Roux S, Christeller S, Ludin E. Effects of aspirin on coronary reocclusion and recurrent ischemia after thrombolysis: A meta-analysis. J Am Coll Cardiol 19:671, 1992.PubMedGoogle Scholar
  95. 95.
    Patrignani P, Filabozzi P, Patrono C. Selective cumulative inhibition of platelet thromboxane production by low-dose aspirin in healthy subjects. J Clin Invest 69:1366, 1982.PubMedGoogle Scholar
  96. 96.
    Kallmann R, Nieuwenhuis HK, Groot PGD, Gijn J, Sixma JJ. Effects of low doses of aspirin, 10mg and 30mg daily, on bleeding time, thromboxane production and 6-keto-PGF1α excretion in healthy subjects. Thromb Res 45:355, 1987.PubMedGoogle Scholar
  97. 97.
    Weksler BB, Pett SB, Alonso D, Richter RC, Stelzer P, Subramanian V, Tack-Goldman K, Gay WA. Differential inhibition by aspirin of vascular and platelet prostaglandin synthesis in atherosclerotic patients. N Engl J Med 308:800, 1983.PubMedCrossRefGoogle Scholar
  98. 98.
    Rasmains G, Vesterqvist O, Green K, Edhag O, Henriksson P. Effects of intermittent treatment with aspirin on thromboxane and prostacyclin formation in patients with acute myocardial infarction. Lancet 2:245, 1988.Google Scholar
  99. 99.
    Patrono C. Aspirin as an antiplatelet drug. N Engl J Med 330:1287, 1994.PubMedGoogle Scholar
  100. 100.
    Clarke RJ, Mayo G, Price P, Fitzgerald G. Suppression of thromboxane A2, but not of systemic prostacyclin by controlled-release aspirin. N Engl J Med 325:1137, 1991.PubMedCrossRefGoogle Scholar
  101. 101.
    Berglund U, Wallentin L. Persistent inhibition of platelet function during long-term treatment with 75 mg acetylsalicylic acid daily in men with unstable coronary artery disease. Eur Heart J 12:428, 1991.PubMedGoogle Scholar
  102. 102.
    Reilly IAG, Fitzgerald GA. Inhibition of thromboxane formation in vivo and ex vivo: Implications for therapy with platelet inhibitory drugs. Blood 68:180, 1987.Google Scholar
  103. 103.
    Antiplatelet Trialists’ Collaboration. Collaborative overview of randomised trials of antiplatelet therapy — I: Prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. Br Med J 308:81, 1994.Google Scholar
  104. 104.
    Peto R, Warlow C, and the UK-TIA Study Group. United Kingdom transient ischaemic attack (UK-TIA) aspirin trial: Interim results. Br Med J 296:316, 1988.Google Scholar
  105. 105.
    Ball G, Brereton GG, Fulwood M, Ireland DM, Yates P. Effect of prostaglandin El alone and in combination with theophylline or aspirin on collagen-induced platelet aggregation and on platelet necleotides including adenosine 3’:5’-cyclic monophosphate. Biochem J 120:709, 1970.PubMedGoogle Scholar
  106. 106.
    Harfenist EJ, Packham MA, Kinlough-Rathbone RL, Mustard JF. Inhibitors of ADP-induced platelet aggregation prevent fibrinogen binding to rabbit platelets and cause rapid deaggregation and dissociation of bound fibrinogen. J Lab Clin Med 97:680, 1981.PubMedGoogle Scholar
  107. 107.
    Hackett D, Davies G, Maseri A. Effect ot prostacyclin on coronary occlusion in acute myocardial infarction. Int J Cardiol 26:53, 1990.PubMedGoogle Scholar
  108. 108.
    Armstrong PW, Langevin LM, Watts DG. Randomized trial of prostacyclin infusion in acute myocardial infarction. Am J Cardiol 61:455, 1987.Google Scholar
  109. 109.
    Topol EJ, Ellis SG, Califf RM, George BS, Stump DC, Bates ER, Nabel EG, Walton JA, Candela RJ, Lee KL, Kline EM, Pitt B, and the TAMI 4 Study Group. Combined tissue-type plasminogen activator and prostacyclin therapy for acute myocardial infarction, TAMI (4) Study Group. J Am Coll Cardiol 14:877, 1989.PubMedGoogle Scholar
  110. 110.
    Nicolini FA, Mehta JL, Nichols WW, Saldeen TGP, Grant M. Prostacyclin analogue iloprost decreases thrombolyric potential of tissue-type plaminogen activator in canine coronary thrombosis. Circulation 81:1115, 1990.PubMedGoogle Scholar
  111. 111.
    Kerins DM, Roy L, Kunitada S, Adedoyin A, Fitzgerald GA, Fitzgerald DJ. Pharmacokinetics of tissue-type plasminogen activator during myocardial infarction in men: Effect of a prostacyclin analogue. Circulation 85:526, 1992.PubMedGoogle Scholar
  112. 112.
    Bar FW, Meyer J, Michels R, Uebis R, Lange S, Barth H, Groves R, Vermeer F. The effect of taprostene in patients with acute myocardial infarction treated with thrombolytic therapy: Results of the START study. Saruplase Taprostene Acute Reocclusion Trial. Eur Heart J 14:1118, 1993.PubMedGoogle Scholar
  113. 113.
    Feldman RL, Rose B, Verbust KM. Hemodynamic and angiographic effects of prostaglandin E1 in coronary artery disease. Am J Cardiol 62:698, 1988.PubMedGoogle Scholar
  114. 114.
    Karinguian A, Legrand YJ, Caen JP. Prostaglandins: Specific inhibition of platelet adhesion to collagen and relationship with cAMP level. Prostaglandins 23:437, 1982.Google Scholar
  115. 115.
    Mills DCB, Smith JB. The influence of platelet aggregation on drugs that affect the accumulation of adenosine 3’:5’-cyclic monophosphate in platelets. Biochem J 121:185, 1971.PubMedGoogle Scholar
  116. 116.
    Vaughan DE, Plavin SR, Schafer AI, Loscalzo J. PGE1 accelerates thrombolysis by tissue plasminogen activator. Blood 73:1213, 1989.PubMedGoogle Scholar
  117. 117.
    Golub M, Zia P, Matsuno M, Horton R. Metabolism of prostaglandins A1 and E1 in man. J Clin Invest 56:1404, 1975.PubMedGoogle Scholar
  118. 118.
    Peskar BA, Cawello W, Rogatti W, Rudofsky G. On the metabolism of prostaglandin E1 in administered intravenously to human volunteers. J Physiol Pharmacol 42:327, 1991.PubMedGoogle Scholar
  119. 119.
    Sharma B, Wyeth RP, Gimenez HJ, Franciosa JA. Intracoronary prostaglandin E1 plus streptokinase in acute myocardial infarction. Am J Cardiol 58:1161, 1986.PubMedGoogle Scholar
  120. 120.
    Kleiman NS, Tracy RP, Schaaf LJ, Harris S, Hill RD, Puleo P, Roberts R. Prostaglandin E1 does not accelerate rTPA-induced thrombolysis in acute myocardial infarction. Am Heart J 127:738, 1994.PubMedGoogle Scholar
  121. 121.
    Bertele V, Certletti C, Schieppati A, Di Minno G, De Gaetano G. Inhibition of thromboxane synthase does not necessarily prevent platelet aggregation. Lancet 1:1057, 1981.Google Scholar
  122. 122.
    Shebuski RJ, Storer BL, Fujita T. Effect of thromboxane synthase inhibition on thrombolytic action of tissue-type plasminogen activator in a rabbit model of peripheral arterial thrombosis. Thromb Res 52:381, 1988.PubMedGoogle Scholar
  123. 123.
    Kopia GA, Kopaciewicz LJ, Ohlstein EH, Horohonich S, Storer BL, Shebuski RJ. Combination of the thromboxane receptor antagonist, sulotroban, with streptokinase: Demonstration of thrombolytic synergy. J Pharmacol Exp Ther 250:887, 1989.PubMedGoogle Scholar
  124. 124.
    Grover GJ, Parham CS, Schumacher WA. The combined antiischemic effects of the thromboxane receptor antagonist SQ 30741 and tissue type plasminogen activator. Am Heart J 121:426, 1991.PubMedGoogle Scholar
  125. 125.
    Tranchesi B, Caramelli B, Gebara O, Bellotti G, Pileggi F, Van de Werf F, Verstraete M. Efficacy and safety of ridogrel versus aspirin in coronary thrombolysis with alteplase for myocardial infarction (abstr). J Am Coll Cardiol 19:92A, 1992.Google Scholar
  126. 126.
    The RAPT Investigators. Randomized trial of ridogrel, a combined thromboxane A2 synthase inhibitor and thromboxane A2/prostaglandin endoper-oxide recepror antagonist, versus aspirin as adjunct to thrombolysis in patients with acute myocardial infarction: The ridogrel versus aspirin patency trial (RAPT). Circulation 89:588, 1994.Google Scholar
  127. 127.
    Golino P, Ashton JH, Glas-Greenwalt P, McNatt J, Buja LM, Willerson JT. Mediation of reocclusion by thromboxane A2 and serotonin after thrombolysis with tissue-type plasminogen activator in a canine preparation of coronary thrombosis. Circulation 77:678, 1988.PubMedGoogle Scholar
  128. 128.
    Coller BS. A new murine monoclonal antibody reports on activation-dependent change in the conformation and/or microenvironment of the glycoprotein IIb/IIIa complex. J Clin Invest 76:101, 1985.PubMedGoogle Scholar
  129. 129.
    Ellis SG, Bates ER, Schiable T. Prospects for the use of antagonists to the platelet glycoprotein IIb/IIIa receptor to prevent postangioplasty restenosis and thrombosis. J Am Coll Cardiol 17:89B, 1991.PubMedGoogle Scholar
  130. 130.
    Gold HK, Coller BS, Yasuda T, Saito T, Fallon JT, Guerrero JL, Leinbach RC, Ziskind AA, Collen D. Rapid and sustained coronary artery recanalization with combined bolus injection of recombinant tissue-type plasminogen activator and monoclonal antiplatelet GP IIb/IIIa antibody in a canine preparation. Circulation 77:670, 1988.PubMedGoogle Scholar
  131. 131.
    Mickelson JK, Simpson PJ, Cronin M, Homeister JW, Laywell E, Kitzen J, Lucches BR. Antiplatelet antibody [7E3 F(ab)2] prevents rethrombosis after recombinant tissue-type plasminogen activator-induced coronary artery thrombolysis in a canine model. Circulation 81:617, 1990.PubMedGoogle Scholar
  132. 132.
    Yasuda T, Gold HK, Fallon JT, Leinbach RC, Guerrero JL, Scudder LE, Kanbe M, Shealy D, Ross MJ, Collen D, Coller BS. Monoclonal antibody against the platelet glycoprotein (GP) IIb/IIIa receptor prevents coronary artery reocclusion after reperfusion with recombinant tissue-type plasminogen activator in dogs. J Clin Invest 81:1284, 1988.PubMedGoogle Scholar
  133. 133.
    Yasuda T, Gold HK, Leinbach RC, Saito T, Guerrero JL, Jang IK, Holt R, Fallon JT, Collen D. Lysis of plasminogen activator-resistant platelet-rich coronary artery thrombus with combined bolus injection of recombinant tissue-type plasminogen activator and antiplatelet GP IIb/IIIa antibody. J Am Coll Cardiol 16:1728, 1990.PubMedGoogle Scholar
  134. 134.
    Ellis SG, Tcheng JE, Navetta FI, Muller DW, Weisman HF, Smith C, Anderson KM, Califf RM. Safety and anti-platelet effect of murine monoclonal antibody 7E3 Fab directed against platelet glycoprotein IIb/IIIa in patients undergoing elective coronary angioplasty. Cor Art Dis 4:167, 1993.CrossRefGoogle Scholar
  135. 135.
    Kleiman NS, Ohman EM, Califf RM, George BS, Kereiakes D, Aguirre FV, Weisman H, Schaible T, Topol EJ. Profound inhibition of platelet aggregation with monoclonal antibody 7E3 Fab after thrombolytic therapy: Results of the TAMI 8 pilot study. J Am Coll Cardiol 22:381, 1993.PubMedCrossRefGoogle Scholar
  136. 136.
    Wagner CL, Knight D, McAleer MF, Lance E, Mattis J, Coller B, Weisman HF, Jordan RE. Immunological comparison of murine and chimeric 7E3 Fab fragments in human clinical trials (abstr). J Immunol 150:158, 1993.Google Scholar
  137. 137.
    Gan ZR, Gould RJ, Jacobs JW, Friedman PA, Polokoff MA. Echistatin: A potent platelet aggregation inhibitor from the venom of the viper Echis carinatus. J Biol Chem 263:19827, 1988.PubMedGoogle Scholar
  138. 138.
    Dennis MS, Henzel WJ, Pitti RM, Lipati MT, Napier MA, Deisher TA, Bunting S, Lazarus RA. Platelet glycoprotein GPIIb/IIIa protein antagonists from snake venoms: Evidence for a family of platelet-aggregation inhibitors. Proc Natl Acad Sci USA 87:2471, 1989.Google Scholar
  139. 139.
    Musial J, Niewiarowski S, Rucinski B, Stewart G, Cook JJ, Williams JA, Edmunds LH. Inhibition of platelet adhesion to surfaces of extracorporeal circuits by disintegrins: RGD-containing peptides from viper venoms. Circulation 82:261, 1990.PubMedGoogle Scholar
  140. 140.
    The EPIC Investigators. Use of a monoclonal antibody directed against the platelet glycoprotein IIb/IIIa receptor in high-risk coronary angioplasty. N Engl J Med 330:956, 1994.Google Scholar
  141. 141.
    Lefkovits J, Ivanhoe R, Anderson K, Weisman H, Topol EJ. Platelet IIb/IIIa receptor inhibition during PTCA for acute myocardial infarction: Insights from the EPIC trial (abstr). Circulation 90:1546, 1994.Google Scholar
  142. 142.
    Ohman EM, Kleiman NS, Gacioch G, Worley S, Talley JD, Navetta FI, Anderson HV, Spriggs D, Miller M, Cohen M, Kereiakes D, George BS, Sigmon KN, Krucoff M, Califf RM, Topol EJ, for the IMPACT-AMI Group. Simultaneous platelet glycoprotein IIb/IIIa integrin blockade and front-loaded tissue plasminogen activator in acute myocardial infarction: Results from a randomized trial (abstr). J Am Coll Cardiol 27(Suppl. A):167, 1996.Google Scholar
  143. 143.
    Faulds D, Sorkm EM. Abciximab (c7E3 Fab): A review of its pharmacology and therapeutic potential in ischaemic heart disease. Drugs 48:583, 1994.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Christopher J. Ellis
  • Harvey D. White

There are no affiliations available

Personalised recommendations