Chemistry, Pharmacokinetics, and Pharmacodynamics of T-PA, TNK and DSPA Alpha 1

  • Steffen P. Christow
  • Dietrich C. Gulba
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 193)


Tissue-type plasminogen activator (t-PA), the principal physiological human plasminogen activator, has been expressed in large quantities by recombinant technologies and, thus, has been available for therapeutic use for almost a decade. Despite the initial expectations, subsequent experience with this substance has somewhat reduced clinicians’ early enthusiasm; as a result, attempts have been made to engineer the molecule and to search for alternate and better plasminogen activators.


Acute Myocardial Infarction Plasminogen Activator Type Plasminogen Activator Fibrinogen Degradation Product Kringle Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pennica D, Holmes WE, Kohr W, Harkins RN, Vehar GA, Ward GA, Bennett WF, Yelverton E, Seeburg PH, Heyneker HL, Goeddel DV, Collen D. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 301:214, 1983.PubMedCrossRefGoogle Scholar
  2. 2.
    Rijken DC, Collen D. Purification and characterization of the plasminogen activator secreted by human melanoma cells in culture. J Biol Chem 256:7035, 1981.PubMedGoogle Scholar
  3. 3.
    Rijken DC, Hoylaerts M, Collen D. Fibrinolytic properties of one-chain and two-chain human extrinsic (tissue-type) plasminogen activator. J Biol Chem 257:2920, 1982.PubMedGoogle Scholar
  4. 4.
    Ny T, Elgh F, Lund B. The structure of human tissue-type plasminogen activator gene: Correlation of intron and exon structures to functional and structural domains. Proc Nad Acad Sci USA 81:5355, 1984.CrossRefGoogle Scholar
  5. 5.
    Kok P, Astrup T. Isolation and Purification of a tissue plasminogen activator and its comparison with urokinase. Biochemistry 8:79, 1969.PubMedCrossRefGoogle Scholar
  6. 6.
    Aoki N, von Kaulla KN. The extraction of vascular plasminogen activator from human cadavers and description of some of its properties. Am J Clin Pathol 55:171, 1971.PubMedGoogle Scholar
  7. 7.
    Cole ER, Bachmann FW. Purification and properties of a plasminogen activator from pig heart. J Biol Chem 252:3729, 1977.PubMedGoogle Scholar
  8. 8.
    Collen D, Rijken DC, van Damme J, Billiau A. Purification of human tissue-type plasminogen activator in centigram quantities from human melanoma cell culture fluid and its conditioning for use in vivo. Thromb Haemost 48:294, 1982.PubMedGoogle Scholar
  9. 9.
    Radcliffe R, Heinze T. Isolation of plasminogen activator from human plasma by chromatography on lysine-Sepharose. Arch Biochem Biophys 189:185, 1978.PubMedCrossRefGoogle Scholar
  10. 10.
    Wallen P, Kok P, Ranby M. The tissue activator of plasminogen. In Magnussen S, Ottesen M, Foltman B, Dano K, Neurath H (eds). Regulatory Enzymes and their Control. Oxford: Pergamon Press, 1978:127.Google Scholar
  11. 11.
    Bachmann F. Fibrinolysis. In Verstraete M, Vermylen J, Lijnen R, Arnout J (eds). Thrombosis and Haemostasis 1987. Leuven: University Press, 1987:227.Google Scholar
  12. 12.
    Collen D. On the regulation and control of fibrinolysis. Thromb Haemost 43:77, 1980.PubMedGoogle Scholar
  13. 13.
    Goldsmith GH, Ziats NP, Robertson AL. Studies on plasminogen activator and other proteases in subcultured human vascular cells. Exp Mol Pathol 35:257, 1981.PubMedCrossRefGoogle Scholar
  14. 14.
    Levin EG. Latent tissue plasminogen activator produced by human endothelial cells in culture: Evidence for an enzyme-inhibitor complex. Proc Natl Acad Sci USA 1991.Google Scholar
  15. 15.
    Rijken DC, Wijngaards G, Collen D. Tissue-type plasminogen activator from human tissue and cell cultures and its occurrence in plasma. In Collen D, Lijnen HR, Verstraete M (eds). Thrombolysis, Biological and Therapeutic Properties of New Thrombolytic Agents. Edinburgh: Churchill Livingstone, 1985:15.Google Scholar
  16. 16.
    Bode C, SchÖnermark S, Schuler G, Zimmermann R, Schwarz F, Kiibler W. Efficacy of intravenous prourokinase and a combination of pro-urokinae and urokinase in acute myocardial infarction. Am J Cardiol 61:971, 1988.PubMedCrossRefGoogle Scholar
  17. 17.
    Hoylaerts M, Rijken DC, Lijnen HR, Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem 257:2912, 1982.PubMedGoogle Scholar
  18. 18.
    Norrman B, Wallen P, Ranby M. Fibrinolysis mediated by tissue plasminogen activator. Disclosure of a kinetic transition. Eur J Biochem 149:193, 1985.PubMedCrossRefGoogle Scholar
  19. 19.
    Kohnert U, Rudolph R, Verheijen JH, Jacoline E, Weening-Verhoeff D, Stern A, Opitz U, Martin U, Lill H, Prinz H, Lechner M, Gress G-B, Buckel P, Fischer S. Biochemical properties of the kringle 2 and protease domains are maintained in the refolded t-PA deletion variant BM 06.022. Protein Eng 5:93, 1992.PubMedCrossRefGoogle Scholar
  20. 20.
    Paoni NF, Keyt BA, Refino CJ, Chow AM, Nguyen HV, Berleau LT, Badillo J, Pena LC, Brady K, Wurm FM, Ogez J, Bennett WF. A slow clearing, fibrin-specific, PAI resistant variant of t-PA (T103N, KHRR 296-299 AAAA). Thromb Haemost 70:307, 1993.PubMedGoogle Scholar
  21. 21.
    Zamarron C, Lijnen HR, Coden D. Kinetics of the activation of plasminogen by natural and recombinant tissue-type plasminogen activator. J Biol Chem 259:2080, 1983.Google Scholar
  22. 22.
    Bnngmann P, Gruber D, Liese A, Toschi L, Krätzschmar J, Schleuning W-D, Donner P. Structural features mediating fibrin selectivity of vampire bat plasminogen activator. J Biol Chem 270:25596, 1995.CrossRefGoogle Scholar
  23. 23.
    Williams GT, Neuberger MS. Production of antibody-tagged enzymes by melanoma cells: Application to DNA polymerase I Klenow fragment. Gene 43:319, 1986.PubMedCrossRefGoogle Scholar
  24. 24.
    Gulba DC, Westhoff-Bleck M, Reil G-H. Thrombolysetherapie des akuten Herzinfarktes Ergebnisse und neue Entwicklungen. Dtsch Med Wochenschr 115:187, 1990.PubMedCrossRefGoogle Scholar
  25. 25.
    Bennett WF, Paoni NF, Keyt BA, Botstein D, Jones AJS, Presta L, Wurm FM, Zoller MJ. High resolution analysis of functional determinants on human tissue-type plasminogen activator. J Biol Chem 266:5191, 1991.PubMedGoogle Scholar
  26. 26.
    Eastman D, Wurm FM, van Reis R, Higgins DL. A region of tissue plasminogen activator that affects plasminogen activation differentially with various fibrin(ogen)-related stimulators. Biochemistry 31:419, 1992.PubMedCrossRefGoogle Scholar
  27. 27.
    Paoni NF, Refino CJ, Brady K, Pena LC, Nguyen HV, Kerr EM, Johnson AC, Wurm FM, van Reis R, Botstein D, Bennett WF. Involvement of residues 296–299 in the enzymatic activity of tissue-type plasminogen activator. Protein Eng 5:259, 1992.PubMedCrossRefGoogle Scholar
  28. 28.
    Christophodoulides M, Boucher DW. The potency of tissue-type plasminogen activator (TPA) determined with chromogen and clot lysis assay. Biologicals 18:103, 1990.CrossRefGoogle Scholar
  29. 29.
    Martin U, Fischer S, Kohnert U, Rudolph R, Sponer G, Stern A, Strein K. Coronary thrombolytic properties of a novel recombinant plasminogen activator (BM 06.022) in a canine model. J Cardiovasc Pharmacol 18:111, 1991.PubMedCrossRefGoogle Scholar
  30. 30.
    Emeis JJ, van den Hoogen CM, Jense D. Hepatic clearance of tissue-type plasminogen activator in rats. Thromb Haemost 54:661, 1985.PubMedGoogle Scholar
  31. 31.
    Tiefenbrunn AJ, Robison AK, Kurnik PB, Ludbrook PA, Sobel BE. Clinical pharmacology in patients with evolving myocardial infarction of tissue plasminogen activator produced by recombinant DNA technology. Circulation 71:110, 1985.PubMedGoogle Scholar
  32. 32.
    Verstraete M, Bounameaux H, de Cock F, van de Werf F, Collen D. Pharmacokinetics and systemic fibrinogenolytic effects of recombinant human tissue-type plasminogen activator (rt-PA) in humans. J Pharmacol Exp Ther 235;506, 1985.PubMedGoogle Scholar
  33. 33.
    Verstraete M, Su CAPF, Tanswell P, Feuerer W, Collen D. Pharmacokinetics and effects on fibrinolytic and coagulation parameters of two doses of recombinant tissue-type plasminogen activator (rt-PA) in healthy volunteers. Thromb Haemost 56:1, 1986.PubMedGoogle Scholar
  34. 34.
    Tanswell P, Tebbe U, Neuhaus KL, Gläsle-Schwarz L, Wojcik J, Seifried E. Pharmacokinetics and fibrin specificity of alteplase during accelerated infusions in acute myocardial infarction. J Am Coll Cardiol 19:1071, 1992.PubMedGoogle Scholar
  35. 35.
    Brone MJ, Dodd I, Carey JE, Chapman CG, Robinson JH. Increased yield of human tissue-type plasminogen activator obtained by means of recombinant DNA technology. Thromb Haemost 54:422, 1985.Google Scholar
  36. 36.
    Martin U, Bader R, BÖhm E, Kohnert U, von MÖllendorf E, Fischer S, Sponer G. BM 06.022: A novel recombinant plasminogen activator. Cardiovasc Drug Rev 11:299, 1993.CrossRefGoogle Scholar
  37. 37.
    Matsuo O, Bando H, Okada K, Tanaka K, Tsukada M, Iga Y, Arimura H. Thrombolytic effect of single-chain pro-urokinase in a rabbit jugular vein thrombosis model. Thromb Res 42:187, 1986.PubMedCrossRefGoogle Scholar
  38. 38.
    Matsuo O, Rijken DC, Collen D. Thrombolysis by human tissue plasminogen activator and urokinase in rabbits with experimental pulmonary embolus. Nature 291:590, 1981.PubMedCrossRefGoogle Scholar
  39. 39.
    Korninger G, Matsuo O, Suy R, Stassen JM, Collen D. Thrombolysis with human extrinsic (tissue-type) plasminogen activator in dogs with femoral thrombosis. J Clin Invest 69:573, 1982.PubMedGoogle Scholar
  40. 40.
    Collen D, Stassen JM, Verstraete M. Thrombolysis with human extrinsic (tissue-type) plasminogen activator in rabbits with experimental jugular vein thrombosis. Effect of molecular form and dose of activator, age of the thrombus, and route of administration. J Clin Invest 71:368, 1982.Google Scholar
  41. 41.
    Bergmann SR, Fox AA, Ter-Pogossian MM, Sobel BE, Collen D. Clot-selective coronary thrombolysis with tissue-type plasminogen activator. Science 220:1181, 1983.PubMedCrossRefGoogle Scholar
  42. 42.
    Matsuo O, Rijken DC, Collen D. Comparison of the relative fibrinogenolytic, fibrinolytic and thrombolytic properties of tissue plasminogen activator and urokinase in vitro. Thromb Haemost 45:225, 1981.PubMedGoogle Scholar
  43. 43.
    Lijnen HR, Marafino BJ, Collen D. In vitro fibrinolytic activity of recombinant tissue-type plasminogen activator in the plasma ot various primate species. Thromb Haemost 52:308, 1984.PubMedGoogle Scholar
  44. 44.
    Sobel BA, Nachowiak DA, Fry ETA, Bergmann SR, Torr SR. Paradoxical attenuation of fibrinolysis attributable to “plasminogen steal” and its implication for coronary thrombolysis. Cor Arr Dis 1:111, 1990.Google Scholar
  45. 45.
    Neuhaus K-L, Feuerer W, Jeep-Tebbe S, Niederer W, Vogt A, Tebbe U. Improved thrombolysis with a modified dose regimen of recombinant tissue-type plasminogen activator. J Am Coll Cardiol 14:1566, 1989.PubMedCrossRefGoogle Scholar
  46. 46.
    Neuhaus K-L, von Essen R, Tebbe U, Vogt A, Roth M, Riess M, Niederer W, Forycki F, Wirtzfeld A, Maeurer W, Limbourg P, Merx W, Haerten K. Improved thrombolysis in acute myocardial infarction with front-loaded administration of alteplase: Results of the rt-PA-APSAC patency study (TAPS). J Am Coll Cardiol 19:885, 1992.PubMedGoogle Scholar
  47. 47.
    Purvis JA, McNeill AJ, Siddiqui RA, Roberts MJ, McClements BM, McEneaney D, Campbell NP, Khan MM, Webb SW, Wilson CM, and the GREAT Study Group. Efficacy of 100mg of double-bolus alteplase in achieving complete perfusion in the treatment of acute myocardial infarction. J Am Coll Cardiol 23:6, 1994.PubMedGoogle Scholar
  48. 48.
    Gulba DC, Dechend R, Hauck S, Osterziel KJ, Barthels M, Lichtlen PR, Dietz R. An accelerated “frontloaded” rt-PA thrombolysis regimen achieves higher TIMI III patency rates in acute myocardial infarction (abstr). Fibrinolysis 8(Suppl. 1): 100, 1994.CrossRefGoogle Scholar
  49. 49.
    Topol EJ, Califf RM, George BS, Kereiakes DJ, Rothbaum D, Candela RJ, Abbotsmith CW, Pinkerton CA, Stump DC, Collen D, Lee KL, Pitt B, Kline EM, Boswick JM, O’Neill WW, Stack RS, and the TAMI Study Group. Coronary arterial thrombolysis with combined infusion of recombinant tissue-type plasminogen activator and urokinase in patients with acute myocardial infarction. Circulation 77:1100, 1988.PubMedGoogle Scholar
  50. 50.
    Stump DC, Topol EJ, Chen AB, Hopkins A, Collen D. Monitoring of haemostasts parameters during coronary thrombolysis with recombinant tissue-type plasminogen activator. Thromb Haemost 59:133, 1988.PubMedGoogle Scholar
  51. 51.
    Eisenberg PR, Sobel BE, Jaffe AS. Characterization in vivo of the fibrin specificity of activators of the fibrinolytic system. Circulation 78:592, 1988.PubMedGoogle Scholar
  52. 52.
    Smalling RW, Schumacher R, Morris D, Harder K, Fuentes F, Valentine RP, Batty LL, Merhige M, Pitts DE, Lieberman HA, Nishikawa A, Adyanthaya A, Hopkins A, Grossbard E. Improved infarct-related arterial patency after high dose, weight adjusted, rapid infusion of tissue-type plasminogen activator in myocardial infarction: Results of a multicenter randomized trial of two dosage regimens. J Am Coll Cardiol 15:915, 1990.PubMedCrossRefGoogle Scholar
  53. 53.
    Topol EJ, George BS, Kereiakes DJ, Candela RJ, Abbottsmith CW, Stump DC, Boswick JM, Stack RS, Califf RM, and the TAMI Study Group. Comparison of two dose regimens of intravenous tissue plasminogen activator for acute myocardial infarction. Am J Cardiol 61:723, 1988.PubMedCrossRefGoogle Scholar
  54. 54.
    Khan MI, Hackett DR, Andreotti F, Davies GJ, Regan T, Haider AW, McFadden E, Halson P, Maseri A, Kluft C. Effectiveness of multiple bolus administration of t-PA. Am J Cardiol 65:1051, 1990.PubMedCrossRefGoogle Scholar
  55. 55.
    Li K. The role of beta-amyloid ion the development of Alzheimer’s disease. Drugs Aging 7:97, 1995.Google Scholar
  56. 56.
    Kimura T, Takamatsu J, Araki N, Goto M, Kondo A, Miyakawa T, Horiuchi S. Are advanced glycation end-products associated with amyloidosis in Alzheimer’s disease? Neuroreport 6:866, 1995.PubMedCrossRefGoogle Scholar
  57. 57.
    Coria F, Rubio I, Bayon C. Alzheimer’s disease, beta amyloidosis, and aging. Rev Neurosci 5:275, 1994.PubMedGoogle Scholar
  58. 58.
    Kingston IB, Castro MJM, Andersonb S. In vitro stimulation of tissue-type plasminogen activator by Alzheimer amyloid β-peptide analogues. Nature Med 1:138, 1995.PubMedCrossRefGoogle Scholar
  59. 59.
    The GUSTO Angiographic Investigators. The effects of tissue plasminogen activator, streptokinase, or both on coronary-artery patency, ventricular function, and survival after acute myocardial infarction. N Engl J Med 329:1615, 1993.CrossRefGoogle Scholar
  60. 60.
    The GUSTO Investigators. An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. N Engl J Med 329:673, 1993.CrossRefGoogle Scholar
  61. 61.
    IS1S-3 (Third International Study of Infarct Survival) Collaborative Group. ISIS-3: A randomised comparison of streptokinase vs. tissue plasminogen activator vs. anistreplase and of aspirin plus heparin vs. aspirin alone among 41,299 cases of suspected acute infarction. Lancet 339:753, 1993.Google Scholar
  62. 62.
    Hotchkiss A, Refino CJ, Leonard CK, O’Connor JV, Crowley C, McCabe J, Tate K, Nakamura G, Powers D, Levinson A, Mohler M, Spellman MW. The influence of carbohydrate structure on the clearance of recombinant tissue-type plasminogen activator. Thromb Haemost 60:255, 1988.PubMedGoogle Scholar
  63. 63.
    Madison EL, Goldsmith EJ, Gerard RD, Gething MJH, Sambrook JF, Basel-Duby RS. Amino acid residues that affect interaction of tissue type plasminogen activator with plasminogen activator inhibitor 1. Proc Natl Acad Sci USA 87:3530, 1990.PubMedCrossRefGoogle Scholar
  64. 64.
    Madison EL, Goldsmith EJ, Gerard RD, Gething MJH, Sembrook JF. Serpin-resistant mutants ot human tissue-type plasminogen activator. Nature 339:721, 1989.PubMedCrossRefGoogle Scholar
  65. 65.
    Refino CJ, Paoni NF, Keyt BA, Pater CS, Badillo JM, Wurm FM, Ogez J, Bennett WF. A variant of t-PA (T103N, KHRR 296-299 AAA) that, by bolus, has increased potency and decreased systemic activation of plasminogen. Thromb Haemost 70:313, 1993.PubMedGoogle Scholar
  66. 66.
    Keyt BA, Paoni NF, Refino CI, Berleau L, Nguyen H, Chow A. A faster acting and more potent form of tissue plasminogen activator. Proc Natl Acad Sci USA 91:3670, 1994.PubMedCrossRefGoogle Scholar
  67. 67.
    Benedict CR, Refino CJ, Keyt BA, Pakala R, Paoni NF, Thomas GR. New variant of tissue human plasminogen activator (t-PA) with enhanced efficacy and lower incidence of bleeding compared with recombinant human t-PA. Circulation 92:3032, 1995.PubMedGoogle Scholar
  68. 68.
    Collen D, Stassen J-M, Yasuda T, Refino C, Paoni N, Key B, Roskams T, Guerrero JL, Lijnen HR, Gold UK, Bennett WF. Comparative thrombolytic properties of tissue-type plasminogen activator and of a plasminogen activator inhibitor-1-resistant glycosylation variant, in a combined arterial and venous thrombosis model in the dog. Thromb Haemost 72:98, 1994.PubMedGoogle Scholar
  69. 69.
    Garabedian HD, Svizzero TA, Guerrero JL, Pena LC, Love TW, Leinbach RC, Gold HK. A new dosing strategy for TNK variant of tissue plasminogen activator eliminates heparin and reduces bleeding without loss of thrombolytic efficacy (abstr). Circulation 92(Suppl I):740, 1995.Google Scholar
  70. 70.
    Eppler S, Modi NB. Pharmacokinetics of TNK and activase t-PA in beagle dogs. Genentech report no. 94-434-0218, 1994.Google Scholar
  71. 71.
    Modi NB. Acute intravenous toxicity study with GN 0218 in dogs — pharmacokinetic analysis. Genentech report no. 94-090-0218, 1994.Google Scholar
  72. 72.
    Cannon CP, Love TW, McCabe CH, Kirshenbaum JM, Henry T, Sequira R, Schweiger M, Breed J, Cutler D, Tracy R, for the TIMI 10 investigators. TNK-tissue plasminogen activator in myocardial infarction (TIMI) 10: Results of the initial patients in the TIMI 10 pilot — a phase 1, pharmacokinetics trial (abstr). Circulation 92(Suppl. I): 415, 1995.Google Scholar
  73. 73.
    Krätzschmar J, Haendler B, Langner G, Boidol W, Bringmann P, Alagon A, Donner P, Schleuning W-D. The plasminogen activator family from salivary gland of the vampire bat Desmodus rotundity. Cloning and expression. Gene 105:229, 1991.PubMedCrossRefGoogle Scholar
  74. 74.
    Petri T, Baldus B, Boidol W, Bringmann P, Cashion L, Donner P, Haendler B, Kreatzschmar J, Langer G, Siewert G, Witt W, Schleuning W-D. Novel plasminogen activators from the vampire bat Desmodus rotundas. In Spier RE, Griffiths JB, MacDonald C (eds). Animal Cell Technology: Developments, Processes and Products. European Society for Animal Cell Technology, 1991:599.Google Scholar
  75. 75.
    Bergum PW, Gardell SJ. Vampire bat salivary plasminogen activator exhibits a strict and fastidious requirement for polymeric fibrin as its cofactor, unlike human tissue-type plasminogen activator. J Biol Chem 267:17726, 1994.Google Scholar
  76. 76.
    Gulba DC, Praus M, Witt W. DSPA alpha — properties of the plasminogen activator of the vampire bat Desmodus rotundus. Fibrinolysis 9(Suppl. I):91, 1995.Google Scholar
  77. 77.
    Schleuning W-D, Alagon A, Boidol W, Bringmann P, Petri T, Krätzschmar J, Haendler B, Langer G, Baldus B, Witt W, Donner P. Plasminogen activation in fibrinolysis, on tissue remodeling and in Development. Ann N Y Acad Sci 667:395, 1992.PubMedCrossRefGoogle Scholar
  78. 78.
    Hare TR, Gardell SJ. Vampire bat salivary plasminogen activator promotes robust lysis of plasma clots in a plasma millieu without causing fluid phase plasminogen activation. Thromb Haemost 68:165, 1992.PubMedGoogle Scholar
  79. 79.
    Cartwright T, Hawkey C. Activation of the blood fibrinolytic mechanism in birds by saliva of the vampire bat (Diaemus youngi). Physiological Society 45P, 1968.Google Scholar
  80. 80.
    Hawkey C. Plasminogen activator in saliva of the vampire bat Desmodus rotundas. Nature 211:434, 1966.PubMedCrossRefGoogle Scholar
  81. 81.
    Gardell SJ, Dupe RJ, Diehl RE, York JD, Hare TR, Register RB, Jacobs JW, Dixon RAF, Friedman PA. Isolation, characterization, and cDNA cloning of a vampire bat salivary plasminogen activator. J Biol Chem 264:17947, 1989.PubMedGoogle Scholar
  82. 82.
    Witt W, Baldus B, Bringmann P, Cashion L, Donner P, Schleuning W-D. Thrombolytic properties of Desmodus rotundus (vampire bat) salivary plasminogen activator in experimental pulmonary embolism in rats. Blood 79:1213, 1992.PubMedGoogle Scholar
  83. 83.
    Witt W, Maass B, Baldus B, Hildebrand M, Donner P, Schleuning W-D. Coronary thrombolysis with Desmodus salivary plasminogen activator in dogs — fast and persistent recanalization by intravenous bolus administration. Circulation 90:421, 1994.PubMedGoogle Scholar
  84. 84.
    Gardell SJ, Ramjit DR, Stabilito II, Fujita T, Lynch JJ, Guca GC, Jain D, Wang S, Tung J, Mark GE, Shebuski RJ. Effective thrombolysis without marked plasminemia after bolus intravenous administration of a vampire bat salivary plasminogen activator in rabbits. Circulation 84:244, 1991.PubMedGoogle Scholar
  85. 85.
    Mellott MJ, Stabilito II, Holahan MA, Cuca GC. Wang S, Li P, Gardell SJ. Vampire bar salivary plasminogen activator promotes rapid and sustained repertusion without concomitant systemic plasminogen activation in a canine model of arterial thrombosis. Arterioscler Thromb 12:212, 1992.PubMedGoogle Scholar
  86. 86.
    Muschick P, Zeggert D, Donner P, Witt W. Thrombolytic properties of Desmodus (vampire bat) salivary plasminogen activator DSPA-alpha-1, alteplase and streptokinase following intravenous bolus injection in a rabbit model ol carotid artery thrombosis. Fibrinolysis 7:284, 1993.CrossRefGoogle Scholar
  87. 87.
    Burton G, Graichen G, Witt W. Effect of the novel thrombolytic DSPA alpha 1 on venipuncture bleeding time in the rat: Comparison to anistreplase and t-PA. Thromb Haemost 69:842, 1993.Google Scholar
  88. 88.
    Witt W, Kirchhoff D, Woy P, Zierz R, Bhargava AS. Antibody formation and effects on endogenous fibrinolysis after repeated administration of DSPA alpha 1 in rats. Fibrinolysis 8(Suppl. 1):66, 1994.CrossRefGoogle Scholar
  89. 89.
    Cannon CP, McCabe CH, Gibson CM, Ghali M, Sequeira RF, McKendall GR, Breed J, Modi NB, Fox NL, Tracy RP, Love TW, Braunwald E, TIMI 10 A investigators. TNK-tissue plasminogen activator in acute myocardial infarction Results of the Thrombolysis in Myocardial Infarction trial Circulation 95:351, 1997.PubMedGoogle Scholar
  90. 90.
    Gulba DC, Praus M, Dechend R, Dietz R. Update on the toxicology and pharmacology of rDSPA-alpha-1 (bat-PA) in animals and humans. Fibrinolysis 1997, suppl, in press.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Steffen P. Christow
  • Dietrich C. Gulba

There are no affiliations available

Personalised recommendations