Advertisement

Plasma Coagulation Factors

  • Pamela Sakkinen
  • Russell P. Tracy
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 193)

Abstract

The role of thrombosis in precipitating acute cardiovascular disease (CVD) events has been well known since the early 1970s [1]. It is now becoming increasingly apparent that thrombosis may also be involved with the chronic development of CVD [2, 3, 4]. Clot formation or thrombosis can be conceptualized as a balance between procoagulant and anticoagulant and fibrinolytic forces C5 (Figure 2-1). Although some factors, such as thrombin, may have more than one role, this “pseudoequilibrium” provides a schema for assessing the relative coagulant balance.

Keywords

Factor Versus Tissue Factor Pathway Inhibitor Plasma Fibrinogen Level Standard Heparin Phospholipid Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    DeWood M, Spores J, Notske R, Mouser L, Burroughs R, Goldens M, Lang H. Prevalence of rotal coronary occlusion during the early hours of transmural myocardial infarction. N Engl J Med 303:897, 1980.PubMedGoogle Scholar
  2. 2.
    Harker LA, Hanson SR, Runge MS. Thrombin hypothesis of thrombus generation and vascular lesion formation. Am J Cardiol 75:12B, 1995.PubMedGoogle Scholar
  3. 3.
    Fuster V, Badimon L, Badimon J, Chesebro J. The pathogenesis of coronary artery disease and the acute coronary syndromes: Part 1. N Engl J Med 326:242, 1992.Google Scholar
  4. 4.
    Fuster V, Badimon L, Badimon J, Chesebro J. The pathogenesis of coronary artery disease and the acute coronary syndromes: Part 2. N Engl J Med 326:310, 1992.Google Scholar
  5. 5.
    Tracy R, Mann K, Bovill E. Mechanisms of thrombolysis. In Ezekowitz M (ed). Cardiac Sources of Sysremic Embolization. New York: Marcel Dekker, 1994:55.Google Scholar
  6. 6.
    Rapaport SI, Rao LVM. Initiation and regulation of tissue factor-dependent blood coagulation. Arterioscleros Thrombos 12:.1111, 1992.Google Scholar
  7. 7.
    Bauer K, Rosenberg R. The pathophysiology of the prethrombotic state in humans: Insignts gained from studies using markers of hemostatic system activation. Blood 70:343, 1987.PubMedGoogle Scholar
  8. 8.
    Hoffman M, Monroe DM, Oliver JA, Roberts HR. Factors IXa and Xa play distinct roles in tissue factordependent initiation of coagulation. Blood 86:1794, 1995.PubMedGoogle Scholar
  9. 9.
    Rao LVM, Rapaport SI. Studies of a mechanism inhibiting the initiation of the extrinsic pathway of coagulation. Blood 69:645, 1987.PubMedGoogle Scholar
  10. 10.
    Lawson JH, Mann KG. The cooperative activation of human factor IX by the human extrinsic pathway of blood coagulation. J Biol Chem 266:11317, 1991.PubMedGoogle Scholar
  11. 11.
    Mann K, Lawson J. The role of the membrane in the expression of the vitamin K-dependent enzymes. Arch Pathol Lab Med 116:1330, 1992.PubMedGoogle Scholar
  12. 12.
    Mann K, Nesheim M, Church W, Haley P, Krishnaswamy S. Surface dependent reactions of the vitamin K dependent enzyme complexes. Blood 76:1, 1990.PubMedGoogle Scholar
  13. 13.
    Mann K. The assembly of blood clotting complexes as membranes. Trends Biochem Sci 12:229, 1987.Google Scholar
  14. 14.
    Mosesson MW. Fibrin polymerization and its regulatory role in hemostasis. J Lab Clin Med 116: 8, 1990.PubMedGoogle Scholar
  15. 15.
    Broze G, Tollefsen D. Regulation of blood coagulation by protease inhibitors. In Stamatoyannopoulos G, Nienhuis A, Majerus P, Varmus H (eds). The Molecular Basis of Blood Diseases. Philadelphia: W B. Saunders, 1994:629.Google Scholar
  16. 16.
    Sandset PM, Warn-Cramer BJ, Rao LVM, Maki SL, Rapaport SI. Depletion of the extrinsic pathway inhibitor (EPI) sensitizes rabbits to disseminated intravascular coagulation induced with tissue factor: Evidence supporting a physiologic role for EPI as a natural anticoagulant. Proc Natl Acad Sci USA 88:708, 1991.PubMedGoogle Scholar
  17. 17.
    Sandset PM, Warn-Caramer BJ, Maki SL, Rapaport SI. Immunodepletion of extrinsic pathway inhibitor sensitizes rabbits to endotoxin-induced intravascular coagulation and the generalized Schwartzman reaction. Blood 78:1496, 1991.PubMedGoogle Scholar
  18. 18.
    Sandset PM, Hellgren M, Uvebrandt M, Bergstrom H. Extrinsic coagulation pathway inhibitor and heparin cofactor II during normal and hypertensive pregnancy. Thromb Res 55:665, 1989.PubMedGoogle Scholar
  19. 19.
    Sandset PM, Sirnes PA, Abilgaard U. Factor VII and extrinsic pathway inhibitor in acute coronary disease. Br J Haematol 72:391, 1989.PubMedGoogle Scholar
  20. 20.
    Lindahl AK, Sandset PM, Abilgaard U. The present status of tissue factor pathway inhibitor. Blood Coagul Fibrinolysis 3:439, 1992.PubMedGoogle Scholar
  21. 21.
    Novotny WF, Brown SG, Miletich JP, Rader DJ, Broze GJJ. Plasma antigen levels of the lipoprotein-associated coagulation inhibitor in patient samples. Blood 1991:2, 1991.Google Scholar
  22. 22.
    Bajaj MS, Rana SV, Wysolmerski RB, Bajaj SP. Inhibitor of the VIIa-tissue factor complex is reduced in patients with disseminated intravascular coagulation but not in patients with hepatocellular disease. J Clin Invest 79:1874, 1987.PubMedGoogle Scholar
  23. 23.
    Esmon C. The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem 264:4743, 1987.Google Scholar
  24. 24.
    Gensini GF, Rostagno C, Abbate R, Favilla S, Mannucci PM, Serneri GGN. Increased protein C and fibrinopeptide A concentration in patients wich angina. Thromb Res 50:517, 1988.PubMedGoogle Scholar
  25. 25.
    Bovill E, Bauer K, Dickerman J, Callas P, West B. The clinical spectrum of heterozygous protein C deficiency in a large New England kindred. Blood 73:712, 1989.PubMedGoogle Scholar
  26. 26.
    Pabinger I, Brucker S, Kyrle PA, Schneider B, Korninger HC, Niessner H, Lechner K. Hereditary deficiency of antithrombin III, Protein C and Prorein S: Prevalence in patients with a history of venous thrombosis and criteria for rational patient screening. Blood Coagul Fibrinolysis 3:547, 1992.PubMedGoogle Scholar
  27. 27.
    Dahlback B, Carlsson M, Svensson P. Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: Prediction of a cofactor to activated protein C. Proc Natl Acad Sci USA 90:1004, 1993.PubMedGoogle Scholar
  28. 28.
    Griffin J, Evatt B, Wideman C, Fernandez J. Anricoagulant protein C pathway defective in majority of thrombophilic patients. Blood 82:1989, 1993.Google Scholar
  29. 29.
    Griffin JH, Heeb MJ, Kojima Y, Fernandez JA, Kojima K, Hackeng TM, Greengard JS. Activated protein C resistance: Molecular mechanism. Thromb Haemost 74:444, 1995.PubMedGoogle Scholar
  30. 30.
    Kalafatis M, Bertina R, Rand M, Mann K. Characterisation of the molecular defect in factor VR5O6Q. J Biol Chem 270:4053, 1995.PubMedGoogle Scholar
  31. 31.
    Camire R, Kalafatis M, Cushman M, Tracy R, Mann K, Tracy P. The mechanism of inactivacion of human platelet factor Va from normal and activated Protein C-resistant individuals. J Biol Chem 270:20794,1995.PubMedGoogle Scholar
  32. 32.
    Cushman M, Bhushan F, Bovill E, Tracy R. Plasma resistance to activated protein C in venous and arterial thrombosis. Thromb Haemost 72:643, 1994.Google Scholar
  33. 33.
    Ridker P, Hennekens C, Lindpaintner K, Stampfer M, Eisenberg P, Miletich J. Mutation in the gene coding for coagulation factor V and the risk of myocardial infarction, stroke, and venous thrombosis in apparently healthy men. N Engl J Med 332:912, 1995.PubMedGoogle Scholar
  34. 34.
    Kcmtula K, Ylikorkala A, Miettinen H, Vuorio A, Kauppinen-Makehn R, Hamalainen H, Palomaki H, Kaste M. Arg506Gln factor V mutation (factor V leiden) in patients with ischemic cerebrovascular disease and survivors of myocardial infarction. Thromb Haemost 73:558, 1995.Google Scholar
  35. 35.
    Ardissino D, Peyvandi F, Merlini PA, Colombi E, Mannucci PM. Factor V (Arg506-Gln) mutation in young surviors of myocardial infarction. Thromb Haemost:701, 1996.Google Scholar
  36. 36.
    van der Bom JG, Bots ML, Grobbee DE, Slagboom PE, Haverkate F, Meijer P, Kluft C. Activated Protein C and risk of stroke and transient ischemic attack (abstr). Circulation 95:622, 1996.Google Scholar
  37. 37.
    Miletich J, Sherman L, Broze G. Absence of thrombosis in subjects with heterozygous protein C deficiency. N Engl J Med 317:991, 1987.PubMedGoogle Scholar
  38. 38.
    Bertina R, Koeleman B, Koster T, Rosendaal F, Dirven R, deRonde H, van der Velden P, Reitsma P. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 369:64,1994.PubMedGoogle Scholar
  39. 39.
    Greengard J, Eichinger S, Griffin J, Bauer K. Brief report: Variability of thrombosis among homozygous siblings with resistance to activated protein C due to an Arg > Gln mutation in the gene for factor V. N Engl J Med 331:1559, 1994.PubMedGoogle Scholar
  40. 40.
    Rintelen C, Pabinger I, Knobl P, Lechner K, Mannhalter C. Probability of recurrence of thrombosis in patients with and without Factor V Leiden. Thromb Haemost 75:229, 1996.PubMedGoogle Scholar
  41. 41.
    Furie B, Furie B. Molecular and cellular biology of blood coagulation. N Engl J Med 326:800, 1992.PubMedGoogle Scholar
  42. 42.
    Soriano-Gacia M, Park CH, Tulinsky A, Ravichandran KG, Skrzypczak-Jankun E. Structure of Ca2+ prothrombin fragment 1 including the conformation of the Gla domain. Biochemistry 28:6805, 1989.Google Scholar
  43. 43.
    Whitlon DS, Sadowski JA. Suttie JW. Mechanisms of coumarin action: Significance of vitamin K epoxide reductasc inhibition. Biochemisrry 17:1371, 1978.Google Scholar
  44. 44.
    Malhotra OP. Dicoumarol-induced prothrombins. Ann NY Acad Sci 370:426, 1981.PubMedGoogle Scholar
  45. 45.
    Malhotra OP, Nesheim ME, Mann KG. The kinetics of activation of normal and gammacarboxylated glutamine acid-deficient prothrombins. J Biol Chem 260:279, 1985.PubMedGoogle Scholar
  46. 46.
    Malhotra OP. Dicoumarol-induced prothrombins containing 6, 7 and 8 gamma-carboxyglutamic acid residues: Isolation and characterization. Biochem Cell Biol 67:411, 1989.PubMedGoogle Scholar
  47. 47.
    Malhotra OP. Dicoumarol-induced gamma carboxyglutamic acid prothrombin: Isolation and comparison with 6-, 7-, 8-and 10-gamma-carboxyglutamic acid isomers. Biochem Cell Biol 68:705, 1990.PubMedGoogle Scholar
  48. 48.
    Bauer KA. Coumarin-induced skin necrosis. Arch Dermatol 129:766, 1993.PubMedGoogle Scholar
  49. 49.
    Wessler S, Gitel SN. Warfarin: From bedside to bench. N Engl J Med 311:645, 1984.PubMedGoogle Scholar
  50. 50.
    Zivelin A, Rao VM, Rapaport SI. Mechanism of the anticoagulant effect of warfarin as evaluated by selective depression of individual procoagulant vitamin-K dependent clotting factors. J C.lin Invest 92:2131, 1993.Google Scholar
  51. 51.
    Wankmuller H, Ellbruck D, Seifried E. Pathophysiologie, klinik und therapie der cumarinnekrose. Dtsch Med Wochenschr 116:1322, 1991.PubMedGoogle Scholar
  52. 52.
    Broekmans AW, Teepe RGC, van der Meer FJM, Briet E, Bertina RM. Protein C (PC) and coumarin-induced skin necrosis (abstr). Thromb Res 6:137, 1986.Google Scholar
  53. 53.
    Magnusson S, Sottrup JL, Petersen TE, Dudek WG, Glaeys H. Homologous “kringle” structures common to plasminogen and prothrombin. Substrate specificity of enzymes activating prothrombin and plasminogen. In Ribbons DW, Brew K (eds). Proteolysis and Physiological Regulation. New York: Academic Press, 1976.Google Scholar
  54. 54.
    Doolittle RF, Feng DF, Johnson MS. Computer-based characterization of epidermal growth factor domains. Nature 307:558, 1984.PubMedGoogle Scholar
  55. 55.
    Lindahl U, Backstrom G, Thunberg L. The anrithrombin-binding sequence in heparin. J Biol Chem 258:9826, 1983.PubMedGoogle Scholar
  56. 56.
    Hirsh J, Levine M. Low molecular weight heparin. Blood 79;1, 1992.PubMedGoogle Scholar
  57. 57.
    Carter CJ, Kelton JG, Hirsh J, Cerskus AL, Santos AV, Gent M. The relationship between the hemorrhagic and antithrombotic properties of low molecular weight heparins and heparin. Blood 59: 1239, 1982.PubMedGoogle Scholar
  58. 58.
    Esquivel CO, Bergqvist D, Bjork C-G, Nilsson B. Comparison between commercial hepann, low-molecular weight heparin and pentosan polysulphate on haemostasis and platelets in vivo. Thromb Res 35:613, 1982.Google Scholar
  59. 59.
    Cade JF, Buchanan MR, Boneau B, Ockelford P, Carter CJ, Cerskus AL, Hirsh J. A comparison of the antithrombotic and haemorrhagic effects of low-molecular weight heparin fractions: The influence of the method of preparation. Thromb Res 35:613,1984.PubMedGoogle Scholar
  60. 60.
    Holmer E, Matsson C, Nilsson S. Anticoagulant and antithrombotic effects of low molecular weight heparin fragments in rabbits. Thromb Res 25:475, 1982.PubMedGoogle Scholar
  61. 61.
    Andriuoli G, Mastacchi R, Barnti M, Sarret M. Comparison of the antithrombotic and hemorrhagic effects and a new low molecular weight heparin in the rat. Haemostasis 15:234, 1985.Google Scholar
  62. 62.
    Bergqvist D, Nilsson B, Hedner U, Pedersen PC, Ostergaard PB. The effects of heparin fragments of different molecular weight in experimental thrombosis and haemostasis. Thromb Res 38:589, 1985.PubMedGoogle Scholar
  63. 63.
    Kakkar VV, Murray WJG. Efficacy and safety of low molecular weight heparin (CY216) in preventing postoperative venous thromboembolism. Br J Surg 72:786, 1985.PubMedGoogle Scholar
  64. 64.
    Group EFS. Comparison of a low molecular weight heparin and unfractionated heparin for the prevention of deep vein thrombosis in patients undergoing abdominal surgery. Br J Surg 75:1058, 1988.Google Scholar
  65. 65.
    Bergqvist D, Burmark US, Frisell J, Hallbrook T, Lindblad B, Risberg B, Torngren S, Wallin G. Low molecular weight heparin once daily compared with conventional low dose heparin twice daily: A prospective double-blind multicentre trial on prevention of postoperative thrombosis. Br J Surg 73:204, 1986.PubMedGoogle Scholar
  66. 66.
    Bergqvist D, Matzsch T, Burmark US, Frisell J, Guilbaud O, Hallbook T, Horn A, Lindhagen A, Ljungner H, Ljungstrom K-G, Onarheim H, Risberg B, Torngren S, Ortenwall P. Low molecular weight heparin given the evening before surgery compared with conventional low dose heparin in prevention of thrombosis. Br J Surg 75:888, 1988.PubMedGoogle Scholar
  67. 67.
    Turpie AGG, Levine MN, Power PJ, Ginsberg JS, Jay RM, Klimek M, Leclerc J, Cote R, Neemeh J, Geerts W, Hirsh J, Gent M. A double-blind randomized trial of ORG 10172 low molecular weight heparinoid versus unfractionated heparin in the prevention of deep vein thrombosis in patients with thrombotic stroke. Thromb Haemost 65(Suppl):753, 1991.Google Scholar
  68. 68.
    Pezzuoli G, Neri Sernerri GG, Settembrini P, Coggi G, Olivara N, Buzzetti G, Chierichetti S, Scotti A, Scatigna M, Carnovali M. STEP-Study group: Prophylaxis of fatal pulmonary embolism in general surgery using low molecular weight heparin CY216: A multicentre double-blind randomized controlled clinical trial versus placebo. Int Surg 74:205, 1989.PubMedGoogle Scholar
  69. 69.
    Ockelford PA, Patterson J, Johns AS. A double-blind randomized placebo controlled trial of thrombo-prophylaxis in major elective general surgery using once daily injections of a low molecular weight heparin fragment. Thromb Haemost 62:1046, 1989.PubMedGoogle Scholar
  70. 70.
    Turpie AGG, Levine MN, Hirsh J, Carter CJ, Jay RM, Powers PJ, Andrew M, Magnani HN, Hull RD, Gent M. A double-blind randomized trial of ORG 10172 low molecular weight heparinoid in the prevention of deep vein thrombosis in thrombotic stroke. Lancet 1:523, 1987.PubMedGoogle Scholar
  71. 71.
    Prins MH, den Ottolander GJH, Gelsema R, van Woerkom TCM, Sing AK, Heller I. Deep vein thrombosis prophylaxis with a low molecular weight heparin (Kabi 2165) in stroke patients. Thromb Haemost 58:(Suppl):l17, 1987.Google Scholar
  72. 72.
    Bratt G, Aberg W, Johansson M, Tornebohm E, Granqvist S, Lockner D. Two daily subcutaneous injections of fragmin as compared with intravenous standard heparin in the treatment of deep venous thrombosis. Thromb Haemost 64:506, 1990.PubMedGoogle Scholar
  73. 73.
    Duroux P, Beclere A. A randomized trial of subcutaneous low molecular weight heparin (CY216) compared with intravenous unfractionated heparin in the treatment of deep venous thrombosis. Thromb Haemost 65:251, 1991.Google Scholar
  74. 74.
    Sobel M, McNeill PM, Carlson PL, Kermode JC, Adelman B, Conroy R, Marques D. Heparin inhibition of von Willebrand factor-dependenr platelet function in vitro and in vivo. J Clin Invest 87:1787, 1991.PubMedGoogle Scholar
  75. 75.
    Blajchman MA, Young E, Ofosu FA. Effects of unfractionated heparin, dermatan sulfate and low molecular weight on vessel wall permeability in rabbits. Ann NY Acad Sci 556:245, 1989.PubMedGoogle Scholar
  76. 76.
    Bara L, Billaud E, Gramond G, Kher A, Samama M. Comparative pharmokinetics of low molecular weight heparin (PK 10169) and unfractionated heparin after intravenous and subcutaneous administration. Thromb Res 39:631, 1985.PubMedGoogle Scholar
  77. 77.
    Lane DA. Heparin binding and neutralizing protein. In Lane DA, Lindahl U (eds). Heparin, Chemical and Biological Properties, Clinical Applications. London: Edward Arnold, 1989.Google Scholar
  78. 78.
    Lane DA, Pejler G, Flynn AM, Thompson EA. Lindahl U. Neutralization of heparin-related saccharides by histidine-rich glycoprotein and platelet factor 4. J Biol Chem 258:3803, 1986.Google Scholar
  79. 79.
    Barzu T, Molho P, Tobelem G, Petitou M, Caen J. Binding and endocytosis of heparin by human endothelial cells in culture. Biochem Biophys Acta 845:196, 1985.PubMedGoogle Scholar
  80. 80.
    de Swart CAM, Nijmeyer B, Roelofs JMM, Sixma JJ. Kinetics of intravenously administered heparin in normal humans. Blood 60:1251, 1982.PubMedGoogle Scholar
  81. 81.
    Olsson P, Lagergren H, Ek S. The elimination from plasma of intravenous heparin. An experimental study on dogs and humans. Acta Med Stand 173:619, 1963Google Scholar
  82. 82.
    Bjornsson TO, Wolfram BS, Kitchell BB. Heparin kinetics determined by three assay methods. Clin Pharmacol Ther 31:104, 1982.PubMedGoogle Scholar
  83. 83.
    Bara L, Samama MM. Pharmacokinecics of low molecular weight heparins. Acta Chir Scand 543:65, 1988.Google Scholar
  84. 84.
    Spicer EK, Horton R, Bloem L. Isolation of cDNA clones coding tor human tissue factor: Primary structure of the protein and cDNA. Proc Natl Acad Sci (ISA) 84:5148, 1987.Google Scholar
  85. 85.
    Morrissey JH, Fakhrai H, Edgington TS. Molecular cloning of the cDNA for tissue factor. Cell 50:129, 1987.PubMedGoogle Scholar
  86. 86.
    Wilcox JN. Smith KM, Schwartz SM, Gordon D. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci USA 86:2839, 1989.PubMedGoogle Scholar
  87. 87.
    Tracy R, Bovill E. Thrombosis and cardiovascular risk in rhe elderly. Arch Pathol Lab Med 116:1307, 1992.PubMedGoogle Scholar
  88. 88.
    Meade T, Chakrabarti R, Haines A, North W, Stirling Y, Thompson S. Haemostatic function and cardiovascular death: Early results of a prospective study. Lancet 1:1050, 1980.PubMedGoogle Scholar
  89. 89.
    Meade T, Brozovic M, Chakrabarti R, Haines A, Imeson J. Mellows S, Miller G, North W, Stirling Y, Thompson S. Haemostatic function and ischaemic heart disease: Principal results of the Northwick Park Heart Study. Lancet 2:533, 1986.PubMedGoogle Scholar
  90. 90.
    Wilhelmsen L, Svardsudd K, Korsan-Bengtsen K, Larsson B, Welin L, Tibblin G. Fibnnogen as a risk factor for stroke and myocardial infarction. N Engl J Med 311:501, 1984.PubMedGoogle Scholar
  91. 91.
    Stone M, Thorp J. Plasma fibrinogen — a major coronary risk factor. J R Coll Gen Pract 35:565, 1985.PubMedGoogle Scholar
  92. 92.
    Yarnell J, Baker I, Sweetnam P, Bainron D, O’Brien J, Whitehead P, Elwoocl P. Fibrinogen, viscosity, and white blood cell count are major risk factors for ischemic heart disease. Circulation 83:836, 1991.PubMedGoogle Scholar
  93. 93.
    Kannel W, Wolf P, Castelli W, D’Agostino R. Fibrinogen and risk of cardiovascular disease: The Framinghum study. JAMA 258:1183, 1987.PubMedGoogle Scholar
  94. 94.
    Naski M. Shafer J. A kinetic model for the alphathrombin-catalyzed conversion of plasma levels of fibrinogen to fibrin in the presence of antithrombin III. J Biol Chem 266:13003, 1991.PubMedGoogle Scholar
  95. 95.
    Marguerie G, Plow E, Edgington T. Human platelets possess an inducible and saturable receptor specific for fibnnogen. J Biol Chem 254:5357, 1979.PubMedGoogle Scholar
  96. 96.
    Plow E, Ginsberg M. Cellular adhesion: GPIIb-IIIa as a prototypic adhesion receptor. In Coller B (ed). Progress in Hemostasis and Thrombosis, Vol. 9. Peiladelphia: WB Saunders, 1989:117.Google Scholar
  97. 97.
    Letcher R, Chien S, Pickering T, Sealey J, Laragh J. Direct relationship between blood pressure and blood viscosity in normal and hypertensive subjects: Role of tibrinogen and concentration. Am J Med 70:1195, 1981.PubMedGoogle Scholar
  98. 98.
    Esmon C, Taylor F, Snow T. Inflammation and coagulation: Linked processes potentially regulatedthrough a common pathway mediated by protein C. Thromb Haemost 66:160, 1991.PubMedGoogle Scholar
  99. 99.
    Libby P, Clinton S. Possible roles for cytokines in atherogenesis. J Cell Biochem 16(Suppl A):2, 1992.Google Scholar
  100. 100.
    Kuller L, Eichner J, Orchard T, Grandits G, McCallum L, Tracy R, for the MRFIT Research Group. The relation between serum albumin levels and risk of coronary heart disease in the Multiple Risk Factor Intervention Trial. Am J Epidemiol 134:1266, 1991.PubMedGoogle Scholar
  101. 101.
    Marcus A. Thrombosis and inflammation as multicellular processes: Pathophysiologic significance of transcellular metabolism. Blood 76:1903, 1990.PubMedGoogle Scholar
  102. 102.
    Munro J, Cotran R. Biology of disease: The pathogenesis of atherosclerosis: Atherogenesis and inflammation. Lab Invest 58:249, 1988.PubMedGoogle Scholar
  103. 103.
    Schwartz C, Sprague E, Valenre A, Kelley J, Edwards E, Suenram C. Inflammatory components of the human atherosclerotic plaque. In Glagov S, Newman W, Schaffer S (eds). Pathobiology of the Human Atherosclerotic Plaque. New York: Springer-Verlag, 1990:107.Google Scholar
  104. 104.
    Schwartz C, Valente A, Sprague E, Kelley J, Suenram C, Rozek M. Atherosclerosis as an inflammatory process: The roles of the monocyte-macrophage. Ann N Y Acad Sci 454:115, 1985.PubMedGoogle Scholar
  105. 105.
    Meade T. The epidemiology of haemostatic and other variables in coronary artery disease. In Verstraere M, Vermylen J, Lijnen H, Arnout J (eds). Thrombosis and Haemostasis 1987, Leuven: International Society on Thrombosis and Haemostasis and Leuven University Press, 1987:37.Google Scholar
  106. 106.
    Heinrich J, Balleisen L, Schulte H, Assmann G, van de Loo J. Fibrinogen and factor VII in the prediction of coronary risk: Results from the PROCAM study in healthy men. Arterioscler Thromb 14:54, 1994.PubMedGoogle Scholar
  107. 107.
    Folsom A, Wu K, Rosamond W, Sharrett A, Chambless L. Hemostatic factors and incidence of coronary heart disease in the Atherosclerosis Risk in Communities (ARIC) study (abstr). Circulation 93:622, 1996.Google Scholar
  108. 108.
    Dalaker K, Smith P, Arnesen H, Prydz H. Factor VII-phospholipid complex in male survivors of acute myocardial infarction. Acta Med Scand 222:111, 1987.PubMedGoogle Scholar
  109. 109.
    Dalaker K, Hjermann I, Prydz H. A novel form of factor VII in plasma from men at risk for cardiovascular disease. Br J Haematol 61:315, 1985.PubMedGoogle Scholar
  110. 110.
    Hoffman C, Miller R, Lawson W, Hultin M. Elevation of factor VII activity and mass in young adults at risk of ischaemic heart disease. J Am Coll Cardiol 14:941, 1989.PubMedGoogle Scholar
  111. 111.
    Hoffman C, Shah A, Sodums M, Hultin M. Factor VII activity state in coronary artery disease. J Lab Clin Med 111:475, 1988.PubMedGoogle Scholar
  112. 112.
    Bruckert E, Carvalho de Sousa J, Giral P, Soria C, Chapman M, Caen J, de Gennes J-L. Interrelationship of plasma triglyceride and coagulant factor VII levels in normotriglyceridemic hypercholesterolemia. Atherosclerosis 75:129, 1989.PubMedGoogle Scholar
  113. 113.
    Tracy R, Bovill E, Yanez D, Psaty B, Fried L, Heiss G, Lee M, Polak J, Savage P, for the CHS Investigators. Fibrinogen and factor VIII, but not factor VII, are associated with measures of subclinical cardiovascular disease in the elderly: Results from the Cardiovascular Health Study. Arterioscler Thromb Vasc Biol 15:1269, 1995.PubMedGoogle Scholar
  114. 114.
    Cushman M, Yanez D, Psaty B, Fried L, Heiss G, Lee M, Polak J, Savage P, Tracy R, for the CHS Investigators. Association of fibrinogen and coagulation factors VII and VIII with cardiovascular risk factors in the elderly: The Cardiovascular Health Study. Am J Epidemiol 143:665, 1996.PubMedGoogle Scholar
  115. 115.
    Folsom A, Wu K, Davis C, Conlan M, Sorlie P, Szklo M. Population correlates of plasma fibrinogen and factor VII, putative cardiovascular risk factors. Atherosclerosis 91:191, 1991.PubMedGoogle Scholar
  116. 116.
    Carvalho de Sousa J, Bruckert E, Giral P, Soria C, Truffert J, Mirshahi M, de Gennes J, Caen J, Plasma factor VII, triglyceride concentration and fibrin degradation products in primary hyperlipidemia: A clinical and laboratory study. Haemostasis 19:83, 1989.PubMedGoogle Scholar
  117. 117.
    Miller G, Walter S, Stirling Y, Thompson S, Esnouf M, Meade T. Assay of factor VII activity by two techniques: Evidence for increased conversion of VII to VIIa in hyperlipidemia, with possible implications for ischaemic heart disease. Br J Haematol 59:249, 1985.PubMedGoogle Scholar
  118. 118.
    Skartlien A, Lyberg-Beckmann S, Holme I, Hjermenn I, Prydz H. Effect of alteration in triglyceride levels on factor VII-phosphlipid complexes in plasma. Arteriosclerosis 9:798, 1989.PubMedGoogle Scholar
  119. 119.
    Kario K, Matsuo T, Asada R, Sakata T, Kato H, Miyata T. The strong positive correlation between factor VII clotting activity using bovine thromboplastin and the activated factor VII level. Thromb Haemost 73:429, 1995.PubMedGoogle Scholar
  120. 120.
    Morrissey J, Macik B, Neuenschwander P, Comp P. Quantitation of activated factor VII levels in plasma using a tissue factor mutant selectively deficient in promoting factor VII activation. Blood 81:734, 1993.PubMedGoogle Scholar
  121. 121.
    Theroux P, Latour J, Leger-Gauthier C, De Lara J. Fibrinopeptide A and platelet factor levels in unstable angina pectoris. Circulation 75:156, 1987.PubMedGoogle Scholar
  122. 122.
    Eisenberg P, Sherman L, Schectman K, Perez J, Sobel B, Jaffe A. Fibrinopeptide A: A marker of acute coronary thrombosis. Circulation 71:912, 1985.PubMedGoogle Scholar
  123. 123.
    Pacchiarini L, Storti C, Zuchella M, Salerno JA, Grignani G, Fratino P. Fibrinopeptide A levels in patients with acute ischemic heart disease. Haemostasis 19:147, 1989.PubMedGoogle Scholar
  124. 124.
    Yudelman IM, Nossel HL, Kaplan KL, Hirsh J. Plasma fibrinopeptide A levels in symptomatic venous thromboembolism. Blood 51:1189, 1978.PubMedGoogle Scholar
  125. 125.
    De Buyzere M, Philippe J, Duprez G, Baele G, Clement DL. Coagulation system activation and increase of D-dimer levels in peripheral arterial occlusive disease. Am J Haematol 43:91, 1993.Google Scholar
  126. 126.
    Cushman M, Psaty B, Macy E, Bovill E, Cornell E, Kuller L, Tracy R. Correlates of thrombin markers in an elderly cohort free of clinical cardiovascular disease. Arterioscler Thromb Vase Biol 16:1163, 1996.Google Scholar
  127. 127.
    Rugman FP, Jenkins JA, Duguid JK., Maggs PB, Hay CR. Prothrombin fragment F1 + 2: Correlations with cardiovascular risk factors. Blood Coag Fibrinolysis 5:335, 1994.Google Scholar
  128. 128.
    Agewall S, Fagerberg B, Wikstrand J. Circulation 94:457, 1996.Google Scholar
  129. 129.
    Cortellaro M, Boschetti C, Cofrancesco E, Zanussi C, Catalano M, de Gaetano G, Gabrielli L, Lombardi B, Specchia G, Tavazzi L, Tremoli E, della Volpe A, Polli E, for the PLAT Study Group. The PLAT study: Hemostatic function in relation to atherothrombotic ischemic events in vascular disease patients. Principal results. Arterioscler Thromb 12:1063, 1992.PubMedGoogle Scholar
  130. 130.
    Folsom AR, Wu KK, Rosamond WD, Sharret AR, Chambless LE. Hemostatic factors and incidence of coronary heart disease in the Atherosclerosis Risk in Communities (ARIC) study (abstr). Circulation 93:622, 1996.Google Scholar
  131. 131.
    Tracy RP, Arnold A, Ettinger WH, Fried LP, Meilahn E, Savage PJ. Circulatio 93:457, 1996.Google Scholar
  132. 132.
    Reed T, Tracy R, Fabsitz R. Minimal genetic influences on plasma fibrinogen level in adult males in the NHLBI twin study. Clin Genet 45:71, 1994.PubMedGoogle Scholar
  133. 133.
    Hamsten A, Iselius L, DeFaire U, Blomback M. Genetic and cultural inheritance of plasma fibrinogen concentration. Lancet 2:988, 1987.PubMedGoogle Scholar
  134. 134.
    Kant JA, Crabtree GR. The rat fibrinogen genes. J Biol Chem 258:4666, 1983.PubMedGoogle Scholar
  135. 135.
    Kant JA, Furnace AJJ, Saxe D. Evolution and organization of the fibrinogen locus on chromosome 4: Gene duplication accompanied by transcription and inversion. Proc Natl Acad Sci USA 82:2344, 1985.PubMedGoogle Scholar
  136. 136.
    Yu S, Sher B, Kudryk B, Redman CM. Intracellular assembly of human fibrinogen. J Biol Chem 258:13407, 1983.PubMedGoogle Scholar
  137. 137.
    Yu S, Sher B, Redman C. A scheme for the intracellular assembly of human fibrinogen, In Lane DA, Henshen A, Jasani MK (eds). Fibrinogen, Fibrin Formation and Fibrinolysis, Vol. 4. Berlin: de Gruytler, 1986:3.Google Scholar
  138. 138.
    Ray SM, Mukhopadtyay G, Redman CM. Transcription of HepG2 cells with B beta cDNA specifically enhances synthesis of the three component chains of fibrinogen. J Biol Chem 265:6389, 1990.Google Scholar
  139. 139.
    Courtois G, Morgan J, Campbell L, Fourel G, Crabtree G. Interaction of a liver-specfic nuclear factor with the fibrinogen and α-antitrypsin promoters. Science 238:688, 1987.PubMedGoogle Scholar
  140. 140.
    Fowkes FGR, Connor JM, Smith FB, Wood J, Donnan PT, Lowe GDO. Fibrinogen genotype and risk of peripheral atherosclerosis. Lancet 339:693, 1992.PubMedGoogle Scholar
  141. 141.
    Connor JM, Fowkes FGR, Wood J, Smith FB, Donnan PT, Lowe GDO. Genetic variation at fibrinogen loci and plasma fibrinogen levels. J Med Genet 29:480, 1992.PubMedGoogle Scholar
  142. 142.
    Iso H, Folsom A. Winkelman J, Koike K, Harada S, Greenberg B, Sato S, Shimamoto T, Iida M, Komachi Y. Polymorphisms of the beta fibrinogen gene and plasma fibrinogen concentration in Caucasian and Japanese population samples. Thromb Haemos 75:106, 1995Google Scholar
  143. 143.
    Humphries S, Cook M, Dubowitz M, Stirling Y, Meade T. Role of genetic variation at the fibrinogen locus in determination of plasma fibrinogen concentrations. Lancet 1:1452, 1987.PubMedGoogle Scholar
  144. 144.
    Berg K., Kierulf P. DNA polymorphisms at the fibnnogen loci and plasma fibrinogen concentration. Clin Genet 36:229, 1989.PubMedGoogle Scholar
  145. 145.
    Behague I, Poirier O, Nicatid V, Evans A, Arveiler D, Luc G, Cambou J-P, Scarabin P-Y, Bara L, Green F, Cambien F. Beta-fibrinogen gene polymorphisms are associated with plasma fibrinogen and coronary artery disease in patients with myocardial infarction. Circulation 95:440, 1996.Google Scholar
  146. 146.
    de Maat MPM, de Knijff P, Green PR, Thomas AE, Jespersen J, Kluft C. Gender-related association between beta-fibrinogen genotype and plasma fibrinogen levels and linkage disequilibrium at the fibrinogen locus in Greenland Inuit. Arterioscler Thromb Vase Biol 15:856, 1995.Google Scholar
  147. 147.
    Green F, Hamsten A, Blomback M, Humphries S. The role of beta-fibrinogen genotypes in determining plasma fibrinogen levels in young survivors of myocardial infarction and healthy controls from Sweden. Thromb Haemost 70:915, 1995.Google Scholar
  148. 148.
    Thomas A, Kelleher C, Green F. Variation in the promoter region of the beta-fibrinogen gene is associated with plasma fibrinogen levels in smokers and non-smokers. Thromb Haemost 65:487, 1991.PubMedGoogle Scholar
  149. 149.
    Green F, Kelleher C, Wilkes H, Temple A, Meade T, Humphries S. A common genetic polymorphism associated with low coagulation factor VII levels in healthy individuals. Arterioscler Thromb 11:540, 1991.PubMedGoogle Scholar
  150. 150.
    Lane A, Cruickshank J, Stewart J, Henderson A, Humphries S, Green F. Genetic and environmental determinants of factor VII coagulant activity in different ethnic groups at differing risk of coronary heart disease. Atherosclerosis 94:43, 1992.PubMedGoogle Scholar
  151. 151.
    Meilahn E, Ferrell R, Kiss J, Temple A, Green F, Humphries S, Kuller L. Genetic determination of coagulation factor VIIc levels among healthy middleaged women. Thromb Haemost 73:625, 1995.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Pamela Sakkinen
  • Russell P. Tracy

There are no affiliations available

Personalised recommendations