Skip to main content

Experimental Models of Coronary Arterial Resistance and Blood Flow

  • Chapter
Textbook of Coronary Thrombosis and Thrombolysis

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 193))

  • 181 Accesses

Abstract

In this chapter, experimental preparations that have been used to examine facets of coronary artery resistance and its effects on blood flow are reviewed. Before discussing the experimental models, the characteristics of human coronary vessel - the characteristics that we are trying to model in our experimental studies - are reviewed. Also, because most clinical problems involve restriction of blood flow through the large epicardial coronary vessels, the focus is on these large coronary arteries and not on small-vessel disease models. Remember that there are no perfect experimental models; they all have shortcomings. The biggest shortcoming is using models to address questions the models were not designed to answer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vlodaver Z, Edwards JE. Pathology of cornary atherosclerosis. Prog Cardiovasc Dis 14:256, 1971.

    Article  PubMed  CAS  Google Scholar 

  2. Freudenberg H, Lichtlen PR. Z. The normal wall segment in coronary stenosis. A postmortem study. Cardiology 70:863, 1981.

    CAS  Google Scholar 

  3. Saner HE, Gobel FL, Salomonowitz E, Erlien DA, Edwards JE. The disease-free wall in coronary atherosclerosis: Its relation to degree of obstruction. J Am Coll Cardiol 6:1096, 1985.

    PubMed  CAS  Google Scholar 

  4. Brown BG, Josephson MA, Petersen RB, Pierce CD, Wong M, Hecht HS, Bolson E, Dodge HT. Intravenous dipyridamole combined with isometric handgrip for near maximal acute increase in coronary flow in patients with coronary artery disease. Am J Cardiol 48:1077, 1982.

    Article  Google Scholar 

  5. Tousoulis D, Davies G, McFadden E, Clarke J, Kaski JC, Maseri A. Coronary vasomotor effects of serotonin in patients with angina. Circulation 88: 1518, 1993.

    PubMed  CAS  Google Scholar 

  6. Gage JE, Hess OE, Murakami T, Ritter M, Grimm J, Krayenbuehl HP. Vasoconstriction of stenotic coronary arteries during dynamic exercise in patients with clasic anginapectoris: Reversibility by nitroglycerin. Circulation 73:865, 1986.

    PubMed  CAS  Google Scholar 

  7. Suter TM, Buechi M, Hess OM, Haemmerli-Saner C, Gaglione A, Krayenbuehl HP. Normalization of coronary vasomotion after percutaneous transluminal coronary angioplasty? Circulation 85:86, 1992.

    PubMed  CAS  Google Scholar 

  8. Nabel EG, Ganz P, Gordon JB, Alexander RW, Selwyn AP. Dilation of normal and constriction of atherosclerotic coronary arteries caused by the cold pressor test. Circulation 77:43, 1988.

    PubMed  CAS  Google Scholar 

  9. Deanfield JE, Maseri A, Selwin AP, Ribeiro P, Chierchia S, Krikler S, Morgan M. Myocardial ischemia during daily life in patients with stable angina: Its relation to symptoms and heart rate changes. Lancet 2:753, 1983.

    Article  PubMed  CAS  Google Scholar 

  10. Banai S, Moriel M, Benhorin J, Gavish A, Stern S, Tzivoni D. Changes in myocardial ischemic threshold during daily activities. Am J Cardiol 66:1403, 1990.

    Article  PubMed  CAS  Google Scholar 

  11. Chiechia S, Brunelli C, Simonetti I, Lazzari M, Maseri A. Sequence of events in angina at rest: Primary reduction in coronary flow. Circulation 61:759, 1980.

    Google Scholar 

  12. Rocco MB, Barry J, Campbell S, Naber E, Cook E.F, Goldman L, Selwyn AP. Circadian variation of transient myocardial ischemia in patients with coronary artery disease. Circulation 75:395, 1987.

    PubMed  CAS  Google Scholar 

  13. Kishida H, Fukuma N, Saito T. Circadian variation of ischemic threshold in patients with chronic sable angina. Int J Cardiol 35:65, 1992.

    Article  PubMed  CAS  Google Scholar 

  14. Benhorin J, Banai S, Moriel M, Gavish A, Keren A, Stern S, Tzivoni D. Circadian variations in ischemic threshold and their relation to the occurrence of ischemic episodes. Circulation 87:808, 1993

    PubMed  CAS  Google Scholar 

  15. Reiber JHC, Serruys PW, Slager CJ. The role of vascular wall thickening during changes in coronary artery tone. In Reiber JHC, Serruys PW, Slager CJ (eds). Quantitative Coronary and Left Ventricular Cineangiography. Martinus Nijhoff, 1986:373.

    Google Scholar 

  16. Kaski JC, Maseri A, Vejar M, Crea F, Hackett D. Spontaneous coronary artery spasm in variant angina is caused by a local hyperreactivity to a generalized constrictor stimulus. J Am Coll Cardiol 14:1456, 1989.

    Article  PubMed  CAS  Google Scholar 

  17. Freedman B, Richmond DR, Kelly DT. Pathophysiology of coronary artery spasm. Circulation 66:705, 1982.

    PubMed  CAS  Google Scholar 

  18. Santamore WP, Tulenko TN, Bove AA. The importance of endothelial function on stenotic hemodynamic responses. Cardiovasc Res 25:988, 1991.

    Article  PubMed  CAS  Google Scholar 

  19. Santamore WP, Bove AA. A theoretical model of a compliant arterial stenosis. Am J Physiol 248:H274, 1985.

    PubMed  CAS  Google Scholar 

  20. Santamore WP, Yelton B, Ogilby D. Dynamics of coronary occlusion in the pathogenesis of myocardial infarction J Am Coll Cardiol 18:1397, 1991.

    PubMed  CAS  Google Scholar 

  21. Barnea O, Santamore WP. Coronary autoregulation and optimal myocardial oxygen utilization. Basic Res Cardiol 87:290, 1992.

    Article  PubMed  CAS  Google Scholar 

  22. Ginsburg R, Bristow MR, Davis K, Dibiase A, Billingham ME. Quantitative pharmacologic responses of normal and atherosclerotic isolated human epicardial coronary arteries. Circulation 69:30, 1984.

    Google Scholar 

  23. Li K, Santamore WP, Morley DL, Tulenko TN. Stenosis as an amplifier of stenotic hemodynamic response. Am J Physiol 256:H1044, 1989.

    PubMed  CAS  Google Scholar 

  24. Tulenko TN, Constantinescu D, Kikuchi T, Santamore WP, Cox RH. Mutual interaction of vasoconstriction and endothelial damage in stenotic arteries. Am J Physiol Heart Circ 256:H881, 1989.

    CAS  Google Scholar 

  25. Ghods M, Mangal R, Iskandrian A, Santamore WP. Importance of intraluminal pressure on hemodynamic and vasoconstriction responses of stenotic arteries. Circularion 85:708, 1992.

    CAS  Google Scholar 

  26. Ogletree ML, Smith JB, Lefer AM. Actions of prostaglandins on isolated perfused cat coronary arteries. Am J Physiol 235:400, 1978.

    Google Scholar 

  27. Cox RH. Mechanical aspects of larger coronary arteries. In Santamore WP, Bova AA (eds). Coronary Artery Disease: Etiology, Hemodynamic Consequences, Drug Therapy and Clinical Implications, Baltimore: Urban & Schwarzenberg, 1982:19.

    Google Scholar 

  28. Malindzak GS Jr, Kosinski EJ, Green HD, Yarborough GW. The effects of adrenergic stimulation on conductive and resistive segments of the coronary vascular bed. J Pharmacol Exp Ther 206:248, 1978.

    PubMed  CAS  Google Scholar 

  29. Cohen MV, Kirk ES. Differential response of large and small coronary arteries to nitroglycerin and angiotensin. Autoregulation and tachyphylaxis. Circ Res 33:445, 1973.

    PubMed  CAS  Google Scholar 

  30. Winbury MM, Howe BB, Hefner MA. Effects of nitrates and other coronary dilators on large and small coronary vessels. Hypothesis for the mechanism of action of nitrates. J Pharmacol Exp Ther 168:70, 1969.

    PubMed  CAS  Google Scholar 

  31. Vatner SE. Regulation of coronary resistance vessels and large coronary arteries. Am J Cardiol 56:16E, 1985.

    Article  PubMed  CAS  Google Scholar 

  32. Vatner SE, Pasipoularides A, Mirsky I. Measurement of arterial pressure dimension relationships in conscious animals. Ann Biomed Eng 12:521, 1984.

    Article  PubMed  CAS  Google Scholar 

  33. Young MA, Vatner DE, Knight DR, Graham RM, Homey CJ, Vatner SE. α-Adrenergic vasoconstriction and receptor subtypes in large coronary arteries of calves. Am J Physiol 255:H1452, 1988.

    PubMed  CAS  Google Scholar 

  34. May AG, Van der Berg L, DeWeese JA, Rob CC. Critical arterial stenosis. Surgery 54:250, 1963.

    PubMed  CAS  Google Scholar 

  35. Santamore WP, Walinsky P, Bove AA, Cox RH, Carey RA, Spann JF. The effects of vasoconstriction on experimental coronary artery stenosis. Am Heart J 100:852, 1980.

    Article  PubMed  CAS  Google Scholar 

  36. Folts JD, Crowell ED, Row GG. Platelet aggregation in partially obstructed vessels and its elimination with aspirin. Circulation 54:365, 1976.

    PubMed  CAS  Google Scholar 

  37. Folts J. An in vivo model of experimental arterial stenosis, intimal damage, and periodic thrombosis. Circulation 83(Suppl. IV):IV3, 1991.

    PubMed  CAS  Google Scholar 

  38. Gallagher KP, Folts JD, Rowe CG. Comparison of coronary arteriograms with direct measurements of stenosed coronary arteries in dogs. Am Heart J 95:338, 1978.

    Article  PubMed  CAS  Google Scholar 

  39. Appril P, Schmitz JM, Campbell WW, Tilton G, Ashton J, Raheja S, Buja M, Willerson JT. Cyclic blood flow variations induced by platelet-activating factor in stenosed canine coronary arteries despite inhibition of thromboxane synthetase, serotonin receptors, and ALPHA-adrenergic receptors. Circulation 72:397, 1985.

    Google Scholar 

  40. Santamore WP, Bove AA, Carey R, Walinsky P, Spann JF. Synergist relation between vasoconstriction and fixed epicardial vessel stenosis in coronary artery disease. Am Heart J 101:428, 1981.

    Article  PubMed  CAS  Google Scholar 

  41. Santamore WP, Bove AA, Carey RA. Tachycardia induced reduction in coronary blood flow distal to stenosis. Int J Cardiol 2:23, 1982.

    Article  PubMed  CAS  Google Scholar 

  42. Bove AA, Santamore WP, Carey RA. Reduced myocardial blood flow resulting from dynamic changes in coronary artery stenosis. Int J Cardiol 4:301, 1983.

    Article  PubMed  CAS  Google Scholar 

  43. Santamore WP, Kent RL, Carey RA, Bove AA. Synergistic effects of pressure, distal resistance and vasoconstriction on stenosis. Am J Physiol 243:H236, 1982.

    PubMed  CAS  Google Scholar 

  44. Higgins DR, Santamore WP, Bove AA, Nemir J Jr. Mechanisms for dynamic changes in stenotic severity. Am J Physiol 249:H293, 1985.

    PubMed  CAS  Google Scholar 

  45. Higgins DR, Santamore WP, Walinsky P, Nemir J Jr. Hemodynamic of human arterial stenosis. Int J Cardiol 8:177, 1985.

    Article  PubMed  CAS  Google Scholar 

  46. Santamore WP, Li KS. Disassociation of intrinsic and haemodynamic responses in stenotic ateries. Cardiovasc Res 27:2058, 1992.

    Google Scholar 

  47. Kuga T, Tagawa H, Tomike H, Mitsuoka W, Egashira S, Ohara YI, Takeshita A, Nakamura M. Role of coronary artery spasm in progression of organic coronary stenosis and acute myocardial infection in a swine model. Importance of mode of onset and duration of coronary artery spasm. Circulation 87:573, 1993.

    PubMed  CAS  Google Scholar 

  48. Shimokawa H, Tomike H, Nabeyama S, Yamato H, Nakamura M. Histamine induced spasm not significantly modulated by prostanoids in a swine model of coronary artery spasm. J Am Coll Cardiol 6:321, 1985.

    Article  PubMed  CAS  Google Scholar 

  49. Shimokawa H, Tomike H, Nabeyama S, Yamamoto H, Ishii Y, Tanaka K, Nakamura M. Coronary artery spasm induced in minature swine: Angiographic evidence and relation to coronary atherosclerosis. Am Heart J 110:300, 1985.

    Article  PubMed  CAS  Google Scholar 

  50. Yamamoto Y, Tomike H, Egashira K, Nakamur M. Attenuation of endothelium related relaxation and enhanced responsiveness of vascular smooth muscle to histamine in spastic coronary arterial segments from minature pigs. Circ Res 61:772, 1987.

    PubMed  CAS  Google Scholar 

  51. Yamamoto Y, Tomike H, Egashira K, Dobayashi T, Kawasaki T, Nakamura M. Pathogenesis of coronary artery spasm in miniature swine with regional intimai thickening after balloon denudation. Circ Res 60:113, 1987.

    PubMed  CAS  Google Scholar 

  52. Gronenschild E, Janssen J, Tijdens F. CSSA II: A second generation system for off-line and on-line quantitative coronary angiography. Cathet Cardiovasc Diagn 33:61, 1994.

    Article  PubMed  CAS  Google Scholar 

  53. Pinto FJ, St Goar F, Fischell TA, Stadius ML, Valantine HA, Alderman EL, Popp RL. Nitroglycerin-induced coronary vasoldilation in cardiac transplant recipients. Evaluation with in vivo intracoronary ultrasound. Circulation 85:69, 1992.

    PubMed  CAS  Google Scholar 

  54. Dupouy P, Geschwind HJ, Pelle G, Gallot D, Dubois-Randé. Assessment of coronary vasomotion by intracoronary ultrasound. Am Heart J 126:76, 1993.

    Article  PubMed  CAS  Google Scholar 

  55. Doucette JW, Cod PD, Payne HM, Flynn AE, Goto M, Nassi M, Segal J. Validation of a Dopplerguidewire tor intravascular measurements of coronary artery flow velocity. Circulation 85:1899, 1992.

    PubMed  CAS  Google Scholar 

  56. Kern MJ, Donohue TJ, Aguirre FV, Bach RG, Caracciolo HA, Wolford T, Mechem CJ, Flynn MS, Chaitman B. Clinical outcome of deferring angioplasty in patients with normal translesional pressure-flow velocity measurements. J Am Coll Cardiol 25:178, 1995.

    Article  PubMed  CAS  Google Scholar 

  57. Kern MJ, Aguirre FV, Bach RG, Caracciolo EA, Donohue TJ. Translesional pressure-flow velocity assessment in patients: Part I. Cathet Cardiovasc Diagn 31:49, 1994.

    Article  PubMed  CAS  Google Scholar 

  58. Tron C, Kern MJ, Donohue TJ, Back RG, Aguirre FV, Caracciolo EA, Moore JA. Comparison of quantitative angiographically derived and measured translesion pressure and flow velocity in coronary artery disease. Am J Cardiol 75:111, 1995.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Kluwer Academic Publishers

About this chapter

Cite this chapter

Santamore, W.P. (1997). Experimental Models of Coronary Arterial Resistance and Blood Flow. In: Becker, R.C. (eds) Textbook of Coronary Thrombosis and Thrombolysis. Developments in Cardiovascular Medicine, vol 193. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-33754-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-33754-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-9923-0

  • Online ISBN: 978-0-585-33754-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics