Skip to main content

From Visual Information to Cognitive Maps

  • Chapter

Part of the book series: GeoJournal Library ((GEJL,volume 32))

Abstract

It has been suggested that much of animal navigation takes place without reference to visual information in the environment (Gallistel 1990). A geocentric dead reckoning process, which tracks the travel trajectory of animals internally with only periodic reference to external visual cues, is thought to be a major component underlying animal navigation. Following Gibson (1979),and in contrast to the non-visual emphesis for animal navigation, two types of structure in visual flow are thought to be important for human navigation: perspective structure, which specifies self-motion and self-to-object relations, and invariant structure, which specifies object-to-object relations. A review of the cognitive mapping literature for sighted and blind human adults suggests that the invariant structure in visual flow is important to the formation of cognitive maps, or survey knowledge, of environments. In contrast, a geocentric dead reckoning process which uses the self-movement information provided by perspective structure may be importantly involved in the formation of route knowledge. Findings reviewed from studies of the development of navigational skills in children are consistent with the idea that cognitive mapping skills develop in concert with the ability to perceptually differentiate perspective and invariant structure in visual flow.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acredolo L.P. (1987). Early development of spatial orientation in humans. In Cognitive processes and spatial orientation in animal and man (P. Ellen and C. Thinus-Blanc, eds.), pp. 185–201. Dordrecht: Marinus Nijhoff.

    Google Scholar 

  • Acredolo, L. P. (1978). Development of spatial orientation in infancy, Developmental Psychology, 14, 224–234.

    Article  Google Scholar 

  • Acredolo, L. P. (1977). Developmental changes in the ability to coordinate perspectives of a large-scale space, Developmental Psychology, 13, 1–8.

    Article  Google Scholar 

  • Acredolo L.P. (1976). Frames of reference used by children for orientation in unfamiliar spaces. In Environmental knowing (G. Moore and R. Golledge, eds.), pp. 165–172. Stroudsburg, PA: Dowden, Hutchinson & Ross.

    Google Scholar 

  • Acredolo L.P. & Evans D. (1980). Developmental changes in the effects of landmarks on infant spatial behavior, ∖i Developmental Psychology, 16, 312–318.

    Article  Google Scholar 

  • Acredolo L.P., Pick H. L. & Olsen M.G. (1975). Environmental differentiation and familiarity as determinants of children’s memory for spatial location. Developmental Psychology, 11, 495–501.

    Article  Google Scholar 

  • Bai D.L. & Bertenthal B.I. (1992). Locomotor status and the development of spatial search skills. Child Development, 62, 215–226.

    Article  Google Scholar 

  • Bertenthal B.I. & Bai D.L. (1989). Infant’s sensitivity to optical flow for controlling posture. Developmental Psychology, 25, 936–945.

    Article  Google Scholar 

  • Byrne R.W. & Salter E. (1983). Distances and directions in the cognitive maps of the blind. Canadian Journal of Psychology, 37, 293–299.

    Google Scholar 

  • Dichgans J. & Brandt Th. (1974). The psychophysics of visually induced perception of self-motion and tilt, In J. Dichgans & Th. Brandt, The Neurosciences: Third Study Program, Cambridge, MA: MIT Press.

    Google Scholar 

  • Easton R.D. & Sholl M.J. Frames of reference and accessibility of spatial knowledge. Journal of Experimental Psychology: Learning, Memory and Cognition, In press.

    Google Scholar 

  • Gallistel C.R. (1990). The organization of learning, Cambridge MA: MIT press.

    Google Scholar 

  • Gibson J.J. (1979). The Ecological Approach to Visual Perception, Boston: Houghton Mifflin.

    Google Scholar 

  • Gould J.L.& Able K.P. (1981). Human homing: An elusive phenomena. Science, 212, 1061–1063.

    Article  Google Scholar 

  • Hazen N.L., Lockman J.J. & Pick H.L. (1978). The development of children’s representations of large-scale environments. Child Development, 49, 623–636.

    Article  Google Scholar 

  • Herman J.F., Chatman, S.P. and Roth, S. F. (1983). Cognitive mapping in blind people: Acquisition of spatial relationships in a large-scale environment, Journal of Visual Impairment & Blindness, 77, 161–166.

    Google Scholar 

  • Juurmaa J. (1973). Transposition in mental spatial manipulation: A theoretical analysis, AFB Research Bulletin, 26, 87–134.

    Google Scholar 

  • Juurmaa J. (1965). An analysis of the components of orientation ability and mental manipulation of spatial relationships, Helinski: Reports from the Institute of Occupational Health (No. 28).

    Google Scholar 

  • Keating M.B., McKenzie, B.E. and Day, R.H. (1986). Spatial localization in infancy: Position constancy in a square and circular room with and without a landmark, Child Development, 57, 115–124.

    Article  Google Scholar 

  • Klatzky R.L., Loomis J.M., Golledge R.G., Cicinelli J.G., Doherty S. & Pellegrino J.W. (1990). Acquisition of route and survey knowledge in the absence of vision, Journal of Motor Behavior, 22, 19–43.

    Google Scholar 

  • Landau B., Gleitman H. & Spelke E. (1981). Spatial knowledge and geometric representation in a child blind from birth, Science, 213, 1275–1278.

    Article  Google Scholar 

  • Lee D.N. (1980). The optical flow field, Philosophical Transactions of the Royal Society (B), 290, 169–178.

    Article  Google Scholar 

  • Lee D.N. (1974). Visual information during locomotion, In Perception: Essays in honor of James J. Gibson (R. B. MacLeod & H. L. Pick, eds.), pp. 250–269. Ithica: Cornell University Press.

    Google Scholar 

  • Lepecq J.C. & Lafaite M. (1984). The early development of position constancy in a no-landmark environment, British Journal of Developmental Psychology, 7, 289–306.

    Google Scholar 

  • Levine M., Jankovic I.N. & Palij M. (1982). Principles of spatial problem solving, Journal of Experimental Psychology: General, 111, 157–175.

    Article  Google Scholar 

  • Lindberg E. & Garling T. (1983). Acquisition of different types of locational information in cognitive maps: Automatic or effortful processing? Psychological Research, 45, 19–38.

    Article  Google Scholar 

  • Lishman J. R. & Lee D.N. (1973). The autonomy of visual kinesthesis, Perception, 2, 287–294.

    Article  Google Scholar 

  • Loomis J.M., Klatzky R.L., Golledge R.G., Cicinelli J.G., Pellegrino J.W. & Pry P.A. (1993). Nonvisual navigation by blind and sighted: Assessment of path integration ability, Journal of Experimental Psychology: General, 122, 73–91.

    Article  Google Scholar 

  • McKenzie B.E., Day R.H., Colussa, S. & Connell S. (1988). Spatial localization by infants after rotational and translational shifts, Australian Journal of Psychology, 40, 165–178.

    Google Scholar 

  • McKenzie B.E., Day R.H. & Ihsen E. (1984). Localization of events in space: Young infants are not always egocentric, British Journal of Developmental Psychology, 2, 1–9.

    Google Scholar 

  • McNaughton B.L., Chen L.L. & Markus E.J. (1991). “Dead reckoning,” landmark learning, and sense of direction: A neurophysiological and computational hypothesis, Journal of Cognitive Neuroscience, 3, 190–202.

    Article  Google Scholar 

  • Millar W.S. & Shaffer H.R. (1972). The influence of spatially displaced feedback on infant operant conditioning, Journal of Experimental Child Psychology, 14, 442–452.

    Article  Google Scholar 

  • Mishkin M., Ungerleider L.G. & Macko K.A. (1983). Object vision and spatial vision: two cortical visual pathways, Trends in Neuroscience, 6, 414–417.

    Article  Google Scholar 

  • Miura T. (1990). Active function of eye movement and useful field of view in a realistic setting. In From eye to mind: Information acquisition in perception, search, and reading/ (R. Groner, G. d’Ydewaile, and R. Parham, eds.), pp., North-Holland: Elsevier Science.

    Google Scholar 

  • O’Keefe J. & Nadel L. (1978). The Hippocampus as a Cognitive Map, Oxford: Clarendon Press.

    Google Scholar 

  • Passini R. & Proulx G. (1988). Wayfinding without vision an experiment with congenitally totally blind people. Environment and Behavior 20, 227–252.

    Article  Google Scholar 

  • Passini R., Proulx G. & Rainville C. (1990). The spatio-cognitive abilities of the visually impaired population, Environment and Behavior, 22, 91–118.

    Article  Google Scholar 

  • Pick H.L. (1993). Organization of spatial knowledge in children. In Spatial Representation (N. Eilan, R. McCarthy, B. Brewer, eds.), pp. 31–42. Oxford: Blackwell.

    Google Scholar 

  • Poucet B. (1993). Spatial cognitive maps in animals: New hypotheses on their structure and neural mechanisms, Psychological Review, 100, 163–182.

    Article  Google Scholar 

  • Rieser J.J. (1990). Development of perceptual-motor control while walking without vision: The calibration of perception and action. In Sensory-Motor Organizations and Development in Infancy and Early Childhood (H. Bloch & B. I. Bertenthal, eds.), pp. 379–408. Netherlands: Kluwer Academic.

    Google Scholar 

  • Rieser J.J. & Heiman M.L. (1982). Spatial self-reference systems and shortest route behavior in toddlers, Child Development, 53, 524–533.

    Article  Google Scholar 

  • Rieser J.J., Guth D.A. & Hill E. W. (1986). Sensitivity to perspective structure while walking without vision, Perception, 15, 173–188.

    Article  Google Scholar 

  • Rieser J.J., Lockman J.J. & Pick H. L. (1980). The role of visual experience in knowledge of spatial layout, Perception & Psychophysics, 28, 185–190.

    Google Scholar 

  • Rieser J.J., Pick H.L., Ashmead D.H. & Garling A. E. (in press). The calibration of human locomotion and models of perceptual-motor organization, Journal of Experimental Psychology: Human Perception and Performance.

    Google Scholar 

  • Rieser J.J., Hill E.W., Taylor C.R., Bradfield A. & Rosen S. (1992). Visual experience, visual field size, and the development of nonvisual sensitivity to the spatial structure of outdoor neighborhoods explored by walking, Journal of Experimental Psychology: General, 121, 210–221.

    Article  Google Scholar 

  • Rolls E.T. (1991). Functions of primate hippocampus in spatial processing and memory, In Brain and Space (J. Paillard, ed.), pp. 334–352. Oxford: Oxford University Press.

    Google Scholar 

  • Schmuckler M.A. & Gibson E.J. (1989). The effect of imposed optical flow on guided locomotion in young walkers, British Journal of Developmental Psychology 7, 193–206.

    Google Scholar 

  • Sholl M.J. (1987). Cognitive maps as orienting schemata, Journal of Experimental Psychology: Learning, Memory, and Cognition, {∖i 13}, 615–628.

    Google Scholar 

  • Sholl M.J. (1993, November). The effect of restricting vision to the central field on spatial knowledge acquisition, Paper presented at the Annual Meeting of the Psychonomic Society, Washington, DC.

    Google Scholar 

  • Smyth M.M. & Kennedy J.E. (1982). Orientation and spatial representation within multiple frames of reference, British Journal of Psychology, 73, 527–535.

    Google Scholar 

  • Stoffregen T.A. (1985). Flow structure versus retinal location in the optical control of stance, ∖i Journal of Experimental Psychology: Human Perception and Performance 11, 554–665.

    Article  Google Scholar 

  • Stoffregen T.A., Schmuckler M.A. & Gibson E.J. (1987). Use of central and peripheral optical flow in stance and locomotion in young walkers, Perception 16, 113–119.

    Article  Google Scholar 

  • Telford L. & Frost B.J. (1993). Factors affecting the onset and magnitude of linear vection, Perception and Psychophysics, 53, 682–692.

    Google Scholar 

  • Thinus-Blanc C, Save E., Buhot M.C., Poucet B. (1991). The hippocampus, exploratory activity, and spatial memory, ∖i Brain and Space (J. Paillard, ed.), pp. 334–352. Oxford: Oxford University Press.

    Google Scholar 

  • Thorndyke P.W. & Hayes-Roth B. (1982). Difference in spatial knowledge acquired from maps and navigation, Cognitive Psychology 14, 560–589.

    Article  Google Scholar 

  • Trevarthen C.B. (1968). Two mechanisms of vision in primates, Psychologische Forschung {∖i 31}, 299–337.

    Google Scholar 

  • Tyler D. & McKenzie B.E. (1990). Spatial updating and training effects in the first year of life, Journal of Experimental Child Psychology 50, 445–461.

    Article  Google Scholar 

  • Ungerleider L.G. & Mishkin M. (1982). Two cortical visual systems. In D.J. Ingle, M.A. Goodale & R.J.W. Mansfield, Analysis of Visual Behavior, Cambridge, MA: MIT Press.

    Google Scholar 

  • Veraart C. & Wanet-Defalque M.C. (1987). Representation of locomotor space by the blind, Perception & Psychophysics, 42, 132–139.

    Google Scholar 

  • Warren W.H., Morris M.W. & Kalish M. (1988). Perception of translational heading from optical flow, Journal of Experimental Psychology: Human Perception and Performance, 14, 646–660.

    Article  Google Scholar 

  • Williams L.J. (1982). Cognitive load and the functional visual field, Human Factors, 24, 683–692.

    Google Scholar 

  • Worchel P. (1951). Space perception and orientation in the blind, Psychological Monographs, 65, 1–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sholl, M.J. (1996). From Visual Information to Cognitive Maps. In: Portugali, J. (eds) The Construction of Cognitive Maps. GeoJournal Library, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-0-585-33485-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-33485-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3949-6

  • Online ISBN: 978-0-585-33485-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics