Polynomial Factorization

  • K. O. Geddes
  • S. R. Czapor
  • G. Labahn


The problem of factoring polynomials arises in numerous areas in symbolic computation. Indeed, it plays a critical role as a subproblem to many other problems including simplification, symbolic integration and the solution of polynomial equations. Polynomial fac torization also plays a significant role in such diverse fields as algebraic coding theory, cryptography and number theory.


Computer Algebra Minimal Polynomial Irreducible Polynomial Irreducible Factor Multivariate Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.R. Berlekamp, “Factoring Polynomials over Finite Fields,” Bell System Technical Journal, 46 pp. 1853–1859 (1967).MathSciNetGoogle Scholar
  2. 2.
    E.R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York (1968).zbMATHGoogle Scholar
  3. 3.
    E.R. Berlekamp, “Factoring Polynomials over Large Finite Fields,” Math. Comp., 24 pp. 713–735 (1970).MathSciNetGoogle Scholar
  4. 4.
    D.G. Cantor and H. Zassenhaus, “A New Algorithm for Factoring Polynomials over a Finite Field,” Math. Comp., 36 pp. 587–592 (1981).zbMATHMathSciNetGoogle Scholar
  5. 5.
    I.N. Herstein, Topics in Algebra, Blaisdell (1964).Google Scholar
  6. 6.
    E. Kaltofen, “Factorization of Polynomials,” pp. 95–113 in Computer Algebra — Symbolic and Algebraic Computation, ed. B. Buchberger, G.E. Collins and R. Loos, Springer-Verlag (1982).Google Scholar
  7. 7.
    D.E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms (second edition), Addison-Wesley (1981).Google Scholar
  8. 8.
    S. Landau, “Factoring Polynomials over Algebraic Number Fields,” SIAM J. of Computing, 14 pp. 184–195 (1985).zbMATHCrossRefGoogle Scholar
  9. 9.
    D. Lazard, “On Polynomial Factorization,” pp. 126–134 in Proc. EUROCAM’ 82, Lecture Notes in Computer Science 144, Springer-Verlag (1982).MathSciNetGoogle Scholar
  10. 10.
    A.K. Lenstra, “Factorization of Polynomials,” pp. 169–198 in Computational Methods in Number Theory, ed. H.W. Lenstra, R. Tijdeman, (1982).Google Scholar
  11. 11.
    A.K. Lenstra, H.W. Lenstra, and L. Lovasz, “Factoring Polynomials with Rational Coefficients,” Math. Ann., 261 pp. 515–534 (1982).zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    A.K. Lenstra, “Factoring Polynomials over Algebraic Number Fields,” pp. 245–254 in Proc. EUROCAL’ 83, Lecture Notes in Computer Science 162, ed. H. van Hulzen, Springer-Verlag (1983).Google Scholar
  13. 13.
    R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications, Cambridge University Press (1986).Google Scholar
  14. 14.
    R.J. McEliece, Finite Fields for Computer Scientists and Engineers, Kluwer Academic Publishers (1987).Google Scholar
  15. 15.
    R.T. Moenck, “On the Efficiency of Algorithms for Polynomial Factoring,” Math. Comp., 31 pp. 235–250 (1977).zbMATHMathSciNetGoogle Scholar
  16. 16.
    M.O. Rabin, “Probabilistic Algorithms in Finite Fields,” SIAM J. Computing, 9 pp. 273–280 (1980).zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    B. Trager, “Algebraic Factoring and Rational Function Integration,” pp. 219–226 in Proc. SYMSAC’ 76, ed. R.D. Jenks, ACM Press (1976).Google Scholar
  18. 18.
    B.L. van der Waerden, Modern Algebra (Vols. I and II), Ungar (1970).Google Scholar
  19. 19.
    P. Wang, “Factoring Multivariate Polynomials over Algebraic Number Fields,” Math. Comp., 30 pp. 324–336 (1976).zbMATHMathSciNetGoogle Scholar
  20. 20.
    P.S. Wang, “An Improved Multivariate Polynomial Factoring Algorithm,” Math. Comp., 32 pp. 1215–1231 (1978).zbMATHMathSciNetGoogle Scholar
  21. 21.
    P.S. Wang, “Parallel p-adic Construction in the Univariate Polynomial Factoring Algorithm,” Proc. of MACSYMA Users Conference, pp. 310–318 (1979).Google Scholar
  22. 22.
    D.Y.Y. Yun, “On Square-Free Decomposition Algorithms,” pp. 26–35 in Proc. SYMSAC’ 76, ed. R.D. Jenks, ACM Press (1976).Google Scholar
  23. 23.
    H. Zassenhaus, “Hensel Factorization I,” J. Number Theory, 1 pp. 291–311 (1969).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • K. O. Geddes
    • 1
  • S. R. Czapor
    • 2
  • G. Labahn
    • 1
  1. 1.University of WaterlooCanada
  2. 2.Laurentian UniversityCanada

Personalised recommendations