The Risch Integration Algorithm

  • K. O. Geddes
  • S. R. Czapor
  • G. Labahn


When solving for an indefinite integral, it is not enough simply to ask to find an antiderivative of a given function f(x). After all, the fundamental theorem of integral calculus gives the area function A(x)=∭ x a f(t) dt as an antiderivative of f (x). One really wishes to have some sort of closed expression for the antiderivative in terms of well-known functions (e.g. sin(x), e x, log(x)) allowing for common function operations (e.g. addition, multiplication, composition). This is known as the problem of integration in closed form or integration in finite terms. Thus, one is given an elementary function f(x), and asks to find if there exists an elementary function g(x) which is the antiderivative of f(x) and, if so, to determine g(x)


Computer Algebra Rational Part Integration Algorithm Constant Field Integral Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Baddoura, “Integration in Finite Terms and Simplification with Dilogarithms: a Progress Report,” pp. 166–171 in Proc. Computers and Math., ed. E. Kaltofen, S.M. Watt, Springer-Verlag (1989).Google Scholar
  2. 2.
    R.J. Bradford, “On the Computation of Integral Bases and Defects of Integrity,” Ph.D. Thesis, Univ. of Bath, England (1988).Google Scholar
  3. 3.
    M. Bronstein, “Simplification of Real Elementary Functions,” pp. 207–211 in Proc. ISSAC’ 89, ed. G.H. Gnnet, ACM Press (1989).Google Scholar
  4. 4.
    M. Bronstein, “The Transcendental Risch Differential Equation,” J. Symbolic Comp., 9(1) pp. 49–60 (1990).zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    M. Bronstein, “Integration of Elementary Functions,” J. Symbolic Comp., 9(2) pp. 117–173 (1990).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    M. Bronstein, “A Unification of Liouvillian Extensions,” Appl. Alg. in E.C.C., 1(1) pp. 5–24 (1990).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    G.W. Cherry, “Integration in Finite Terms with Special Functions: the Error Function,” J. Symbolic Comp., 1 pp. 283–302 (1985).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    G.W. Cherry, “Integration in Finite Terms with Special Functions: the Logarithmic Integral,” SIAM J. Computing, 15 pp. 1–21 (1986).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    J.H. Davenport, “Integration Formelle,” IMAG Res. Rep. 375, Univ. de Grenoble (1983).Google Scholar
  10. 10.
    J.H. Davenport, “The Risch Differential Equation Problem,” SIAM J. Computing, 15 pp. 903–918 (1986).zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    E. Hecke, Lectures on the Theory of Algebraic Numbers, Springer-Verlag (1980).Google Scholar
  12. 12.
    E. Kaltofen, “A Note on the Risch Differential Equation,” pp. 359–366 in Proc. EUROSAM’ 84, Lecture Notes in Computer Science 174, ed. J. Fitch, Springer-Verlag (1984).Google Scholar
  13. 13.
    A. Ostrowski, “Sur l’integrabilite elementaire de quelques classes d’expressions,” Commentaai Math. Helv., 18 pp. 283–308 (1946).zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    R. Riscn, “On the Integration of Elementary Functions which are built up using Algebraic Operations,” Report SP-2801/002/00. Sys. Dev. Corp., Santa Monica, CA (1968).Google Scholar
  15. 15.
    R. Riscn, “The Problem of Integration in Finite Terms,” Trans. AMS, 139 pp. 167–189 (1969).Google Scholar
  16. 16.
    R. Risch, “The Solution of the Problem of Integration in Finite Terms,” Bull. AMS, 76 pp. 605–608 (1970).zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    R. Risch, “Algebraic Properties of the Elementary Functions of Analysis,” Amer. Jour. of Math., 101 pp. 743–759 (1979).zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    J.F. Ritt, Integration in Finite Terms, Columbia University Press, New York (1948).zbMATHGoogle Scholar
  19. 19.
    M. Rosenlicht, “Integration in Finite Terms,” Amer. Math. Monthly, 79 pp. 963–972 (1972).zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    M. Rosenlicht, “On Liouville’s Theory of Elementary Functions,” Pacific J. Math, 65 pp. 485–492 (1976).zbMATHMathSciNetGoogle Scholar
  21. 21.
    M. Rothstein, “Aspects of Symbolic Integration and Simplification of Exponential and Primitive Functions,” Ph.D. Thesis, Univ. of Wisconsin, Madison (1976).Google Scholar
  22. 22.
    M. Singer, B. Saunders, and B.F. Caviness, “An Extension of Liouville’s Theorem on Integration in Finite Terms,” SIAM J. Computing, pp. 966–990 (1985).Google Scholar
  23. 23.
    B. Trager, “Integration of Algebraic Functions,” Ph.D. Thesis, Dept. of EECS, M.l.T. (1984).Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • K. O. Geddes
    • 1
  • S. R. Czapor
    • 2
  • G. Labahn
    • 1
  1. 1.University of WaterlooCanada
  2. 2.Laurentian UniversityCanada

Personalised recommendations