Advertisement

Integration of Rational Functions

  • K. O. Geddes
  • S. R. Czapor
  • G. Labahn
Chapter
  • 706 Downloads

Abstract

The problem of indefinite integration is one of the easiest problems of mathematics to describe: given a function f(x), find a function g(x) such that g´(x) =f(x)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Hermite, “Sur l’Integration des Fractions Rationelles,” Nouvelles Annales de Mathematiques, pp. 145–148 (1872).Google Scholar
  2. 2.
    I.N. Herstein, Topics in Algebra, Blaisdell (1964).Google Scholar
  3. 3.
    E. Horowitz, “Algorithms for Partial Fraction Decomposition and Rational Integration,” pp. 441–457 in Proc. SYMSAM’ 71, ed. S.R. Petrick, ACM Press (1971).Google Scholar
  4. 4.
    I. Kaplansky, “An Introduction to Differential Algebra (second edition),” Publications de l’Institut de Mathematique de l’Universite de Nancago V, Herman, Paris (1976).Google Scholar
  5. 5.
    E.R. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, London (1973).zbMATHGoogle Scholar
  6. 6.
    D. Lazard and R. Rioboo, “Integration of Rational Functions: Rational Computation of the Logarithmic Part,” J. Symbolic Comp., 9(2) pp. 113–116 (1990).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    D. Mack, “On Rational Function Integration,” UCP-38, Computer Science Dept., University of Utah (1975).Google Scholar
  8. 8.
    J. Moses, “Symbolic Integration: The Stormy Decade,” Comm. ACM, 14 pp. 548–560 (1971).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    J.F. Ritt, Integration in Finite Terms, Columbia University Press, New York (1948).zbMATHGoogle Scholar
  10. 10.
    J.F. Ritt, “Differential Algebra,” AMS Colloquium Proceedings, 33 (1950).Google Scholar
  11. 11.
    M. Rothstein, “Aspects of Symbolic Integration and Simplification of Exponential and Primitive Functions,” Ph.D. Thesis, Univ. of Wisconsin, Madison (1976).Google Scholar
  12. 12.
    R.G. Tobey, Algorithms for Antidifferentiation of Rational Functions, Ph.D. Thesis, Harvard University (1967).Google Scholar
  13. 13.
    B. Trager, “Algebraic Factoring and Rational Function Integration,” pp. 219–226 in Proc. SYMSAC’76, ed. R.D. Jenks, ACM Press (1976).Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • K. O. Geddes
    • 1
  • S. R. Czapor
    • 2
  • G. Labahn
    • 1
  1. 1.University of WaterlooCanada
  2. 2.Laurentian UniversityCanada

Personalised recommendations