Skip to main content

Gröbner Bases for Polynomial Ideals

  • Chapter
Algorithms for Computer Algebra

Abstract

We have already seen that, among the various algebraic objects we have encountered, polynomials play a central role in symbolic computation. Indeed, many of the (higher-level) algorithms discussed in Chapter 9 (and later in Chapters 11 and 12) depend heavily on com putation with multivariate polynomials. Hence, considerable effort has been devoted to improving the efficiency of algorithms for arithmetic, GCD's and factorization of polynomials. It also happens, though, that a fairly wide variety of problems involving polynomials (among them, simplification and the solution of equations) may be formulated in terms of polynomial ideals. This should come as no surprise, since we have already used particular types of ideal bases (i.e. those derived as kernels of homomorphisms) to obtain algorithms based on interpolation and Hensel's lemma. Still, satisfactory algorithmic solutions for many such problems did not exist until the fairly recent development of a special type of ideal basis, namely the Gröbner basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Armbruster, “Bifurcation Theory and Computer Algebra: An Initial Approach,” pp. 126–137 in Proc. EUROCAL’ 85, Vol. 2, Lecture Notes in Computer Science 204, ed. B. F. Caviness, Springer-Verlag (1985).

    Google Scholar 

  2. L. Bachmair and B. Buchberger, “A Simplified Proof of the Characterization Theorem for Gröbner Bases,” ACM SIGSAM Bull., 14(4) pp. 29–34 (1980).

    Article  MATH  Google Scholar 

  3. A.M. Ballantyne and D.S. Lankford, “New Decision Algorithms for Finitely Presented Commutative Semigroups,” Comp. Math. Appl., 7 pp. 159–165 (1981).

    Article  MathSciNet  Google Scholar 

  4. L.J. Billera and L.L. Rose, “Gröbner Basis Methods for Multivariate Splines,” RRR # 1-89, Rutgers Univ. Department of Mathematics and Center for Operations Research (1989).

    Google Scholar 

  5. B. Buchberger, “An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-Dimensional Polynomial Ideal (German),” Ph.D. Thesis, Univ. of Innsbruck, Math. Inst. (1965).

    Google Scholar 

  6. B. Buchberger, “An Algorithmical Criterion for the Solvability of Algebraic Systems of Equations (German),” Aequationes math., 4(3) pp. 374–383 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  7. B. Buchberger, “Some Properties of Gröbner-Bases for Polynomial Ideals,” ACM SIG-SAM Bull., 10(4) pp. 19–24 (1976).

    MathSciNet  Google Scholar 

  8. B. Buchberger, “A Theoretical Basis for the Reduction of Polynomials to Canonical Forms,” ACM SIGSAM Bull., 10(3) pp. 19–29 (1976).

    Article  MathSciNet  Google Scholar 

  9. B. Buchberger, “A Criterion for Detecting Unnecessary Reductions in the Construction of Gröbner Bases,” pp. 3–21 in Proc. EUROSAM’ 79, Lecture Notes in Computer Science 72, ed. W. Ng, Springer-Verlag (1979).

    Google Scholar 

  10. B. Buchberger and F. Winkler, “Miscellaneous Results on the Construction of Gröbner Bases for Polynomial Ideals,” Tech. Rep. 137, Univ. of Linz, Math. Inst. (1979).

    Google Scholar 

  11. B. Buchberger, “A Note on the Complexity of Constructing Gröbner Bases,” pp. 137–145 in Proc. EUROCAL’ 83, Lecture Notes in Computer Science 162, ed. H. van Hulzen, Springer-Verlag (1983).

    Google Scholar 

  12. B. Buchberger and R. Loos, “Algebraic Simplification,” pp. 11–43 in Computer Algebra — Symbolic and Algebraic Computation (Second Edition), ed. B. Buchberger, G. Collins and R. Loos, Springer-Verlag, Wein — New York (1983).

    Google Scholar 

  13. B. Buchberger, “Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory,” pp. 184–232 in Progress, directions and open problems in multidimensional systems theory, ed. N.K. Bose, D. Reidel Publishing Co. (1985).

    Google Scholar 

  14. W. Böge, R. Gebauer, and H. Kredel, “Some Examples for Solving Systems of Algebraic Equations by Calculating Gröbner Bases,” J. Symbolic Comp., 2(1) pp. 83–98 (1986).

    Article  MATH  Google Scholar 

  15. L. Caniglia, A. Galligo, and J. Heintz, “Some New Effectivity Bounds in Computational Geometry,” pp. 131–152 in Proc. AAECC-6, Lecture Notes in Computer Science 357, Springer-Verlag (1989).

    MathSciNet  Google Scholar 

  16. L. Caniglia, A. Galligo, and J. Heintz, “How to Compute the Projective Closure of an Affine Algebraic Variety in Subexponential Time,” in Proc. AAECC-7 (to appear), (1989).

    Google Scholar 

  17. P. Le Chenadec, “Canonical Forms in Finitely Presented Algebras (French),” Ph.D. Thesis, Univ. of Paris-Sud, Centre d’Orsay (1983).

    Google Scholar 

  18. S.C. Chou, “Proving Elementary Geometry Theorems Using Wu’s Algorithm,” Contemporary Math., 29 pp. 243–286 (1984).

    Google Scholar 

  19. S.R. Czapor, “Gröbner Basis Methods for Solving Algebraic Equations,” Ph.D. Thesis, University of Waterloo, Dept. of Applied Math. (1988).

    Google Scholar 

  20. J.C. Faugère, P. Gianni, D. Lazard, and T. Mora, “Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering,” Preprint (1990).

    Google Scholar 

  21. P. Gianni and B. Trager, “GCD’s and Factoring Multivariate Polynomials Using Gröbner Bases,” pp. 409–410 in Proc. EUROCAL’ 85, Vol. 2, Lecture Notes in Computer Science 204, ed. B.F. Caviness, Springer-Verlag (1985).

    Google Scholar 

  22. W. Gröbner, Modern Algebraic Geometry (German), Springer-Verlag, Wien-Innsbruck (1949).

    Google Scholar 

  23. G. Hermann, “The Question of Finitely Many Steps in Polynomial Ideal Theory (German),” Math. Ann., 95 pp. 736–788 (1926).

    Article  MATH  MathSciNet  Google Scholar 

  24. H. Hironaka, “Resolution of Singularities of an Algebraic Variety over a Field of Characteristic Zero I, II,” Ann. Math., 79 pp. 109–326 (1964).

    Article  MathSciNet  Google Scholar 

  25. M. Kalkbrener, “Solving Systems of Algebraic Equations by Using Buchberger’s Algorithm,” pp. 282–297 in Proc. EUROCAL’ 87, Lecture Notes in Computer Science 378, ed. J.H. Davenport, Springer-Verlag (1989).

    Google Scholar 

  26. A. Kandri-Rody and D. Kapur, “Algorithms for Computing Gröbner Bases of Polynomial Ideals over Various Euclidean Rings,” pp. 195–206 in Proc. EUROSAM’ 84, Lecture Notes in Computer Science 174, ed. J. Fitch, Springer-Verlag (1984).

    Google Scholar 

  27. D. Kapur, “Geometry Theorem Proving Using Hubert’s Nullstellensatz,” pp. 202–208 in Proc. SYMSAC’ 86, ed. B.W. Char, ACM Press (1986).

    Google Scholar 

  28. D.E. Knuth and P.B. Bendix, “Simple Word Problems in Universal Algebras,” pp. 263–298 in Proc. OXFORD’ 67, ed. J. Leech, Pergamon Press, Oxford (1970).

    Google Scholar 

  29. B. Kutzler and S. Stifter, “Automated Geometry Theorem Proving Using Buchberger’s Algorithm,” pp. 209–214 in Proc. SYMSAC’ 86, ed. B. W. Char, ACM Press (1986).

    Google Scholar 

  30. D. Lazard, “Gröbner Bases, Gaussian Elimination, and Resolution of Systems of Algebraic Equations,” pp. 146–156 in Proc. EUROCAL’ 83, Lecture Notes in Computer Science 162, ed. H. van Hulzen, Springer-Verlag (1983).

    Google Scholar 

  31. D. Lazard, “Ideal Bases and Primary Decomposition: Case of Two Variables,” J. Symbolic Comp., 1(3) pp. 261–270 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  32. E. Mayr and A. Meyer, “The Complexity of the Word Problems for Commutative Semigroups and Polynomial Ideals,” Report LCS/TM-199, M.I.T. Lab. of Computer Science (1981).

    Google Scholar 

  33. H.M. Möller and F. Mora, “Upper and Lower Bounds for the Degree of Gröbner Bases,” pp. 172–183 in Proc. EUROSAM’ 84, Lecture Notes in Computer Science 174, ed. J. Fitch, Springer-Verlag (1984).

    Google Scholar 

  34. M.E. Pohst and D.Y.Y. Yun, “On Solving Systems of Algebraic Equations via Ideal Bases and Elimination Theory,” pp. 206–211 in Proc. SYMSAC’ 81, ed. P.S. Wang, ACM Press (1981).

    Google Scholar 

  35. B.L. van der Waerden, Modern Algebra (Vols. I and II), Ungar (1970).

    Google Scholar 

  36. F. Winkler, “Reducing the Complexity of the Knuth-Bendix Completion Algorithm: A Unification of Different Approaches,” pp. 378–389 in Proc. EUROCAL’ 85, Vol. 2, Lecture Notes in Computer Science 204, ed. B.F. Caviness, Springer-Verlag (1985).

    Google Scholar 

  37. F. Winkler, “A p-adic Approach to the Computation of Gröbner Bases,” J. Symbolic Comp., 6 pp. 287–304 (1988).

    Article  MATH  Google Scholar 

  38. W. Wu, “Basic Principles of Mechanical Theorem Proving in Elementary Geometries,” J. Syst. Sci. and Math. Sci., 4(3) pp. 207–235 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Kluwer Academic Publishers

About this chapter

Cite this chapter

Geddes, K.O., Czapor, S.R., Labahn, G. (1992). Gröbner Bases for Polynomial Ideals. In: Algorithms for Computer Algebra. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-33247-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-33247-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-9259-0

  • Online ISBN: 978-0-585-33247-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics