Soil Spectral Properties and Their Relationships with Environmental Parameters - Examples from Arid Regions

  • Richard Escadafal
Part of the Eurocourses: Remote Sensing book series (EURS, volume 4)


The development of global studies on terrestrial environments has led to a renewed interest in soils. In addition to supporting and nourishing the biomass, soils play a very important interface and buffer function in the ecosystems. For instance, large parts of the carbon, water and gases fluxes are controlled by soils which can be referred as the’ skin’ of terrestrial ecosystems.

Remote sensing techniques are essential in the global approach and links between soil properties and spectral features have been investigated. New instruments currently enable to measure these features with high resolution. In this paper we will first summarise the techniques used to measure soil spectra in the laboratory, in the field and remotely. Then, we will discuss the relationships between the shapes of the spectral reflectance curves observed and the soil composition (organic carbon, iron oxides, and hydrous minerals, particularly). The spectral characteristics of aridic soils and their use as ‘desertification’ indicators will illustrate the potential of imaging spectrometry for the assessment of environmental changes through the detection of soil surface spectral variations. Finally, the example of simulated impact of soils on the remote measurement of vegetation parameters will enable to conclude on the necessity of giving more consideration to soils and their spectral variability.


Iron Oxide Remote Sensing Soil Water Content Spectral Reflectance Soil Colour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. Arnold, R.W., I. Szabolcs, and V.O. Targulian (1990) ‘Global soil change’, Report of an IIASA-ISS-UNEP Task force on the role of soil in Global Change, International Institute for Applied System Analysis, Laxenbourg, Austria, 110 p.Google Scholar
  2. Asseline, J., R. Escadafal, and A. Mtimet (1989) ‘Etude expérimentale de la dynamique superficielle d’un sol aride (Bir Lahmar, Sud tunisien)’, Sols de Tunisie, 14, 17–62.Google Scholar
  3. Baumgardner, M.F., L.F. Silva, L.L. Biel, and E.R. Stoner (1985) ‘Reflectance properties of soils’, Adv. in Agronomy, 38, 1–44.CrossRefGoogle Scholar
  4. Bedidi, A., B. Cervelle, J. Madeira, and M. Pouget, (1992) ‘Moisture effects on visible spectral characteristics of lateritic soils’, Soil Science, 153(2), 129–141.CrossRefGoogle Scholar
  5. Bowers, S.A. and R.J. Hanks (1965) ‘Reflectance of radiant energy from soils’, Soil Science, 100, 130–138.CrossRefGoogle Scholar
  6. Casenave, A. and C. Valentine (1989) ‘Les états de surface de la zone sahélienne. Influence sur 1’infiltration’, Orstom, Paris, 229 p.Google Scholar
  7. Condit, H.R. (1970) ‘The spectral reflectance of American soils’, Photogramm. Eng., 36, 955–966.Google Scholar
  8. Courault, D., M.C. Girard, and R. Escadafal (1988) ‘Modélisation de la couleur des sols par télédétection’, Actes du 4e Coll. int.’ signatures spectrales d’objets en télédétection’, Aussois, Janvier 1988, 357–362.Google Scholar
  9. Curran, P.J. (1994) ‘Imaging spectrometry-its present and future role in environmental research’, in J. Hill and J. Mégier (eds.) Imaging spectrometry-a tool for environmental observations, Kluwer Academic Publishers, Dordrecht, (this volume).Google Scholar
  10. Epema, G. (1990) ‘Effect of moisture content on spectral reflectance in playa area in southern Tunisia’, Proc. Int. Symp. ‘Remotes sensing of water resources’, Enschede, The Netherlands, August, 20–24, 1991, 301–308.Google Scholar
  11. Escadafal, R. (1989) ‘Caractérisation de la surface des sols arides par observations de terrain et par télédétection’, Etudes et thèses, Orstom, Paris, 312 p.Google Scholar
  12. Escadafal, R. (1992) ‘Remote sensing of soil color: principles and applications’, Remote Sensing Reviews, in press.Google Scholar
  13. Escadafal, R. and Y. Callot (1991) ‘Monitoring Saharan dust sources areas with multispectral imagery’, Proc. Eighth Thematic Conference Geol. Remote Sensing, April 29–May 2, 1991, Denver, Colorado (USA), 1473–1483Google Scholar
  14. Escadafal, R., M.C. Girard, and D. Courault (1989) ‘Munsell soil color and soil reflectance in the visible spectral bands of Landsat data (MSS and TM)’ Remote Sensing of Environment, 27, 37–46.CrossRefGoogle Scholar
  15. Escadafal, R. and A.R. Huete (1991a) ‘Influence of the viewing geometry on the spectral properties (high resolution visible and NIR) of selected soils from Arizona’, 5th Intern. Coll. ‘Mésures physiques et signatures en télédétection’, Courchevel, France, 14–18 Janvier 1991, European Space Agency, SP-319, 401–404.Google Scholar
  16. Escadafal, R. and A.R. Huete (1991b) ‘Improvement in remote sensing of low vegetation cover in arid regions by correcting vegetation indices for soil ‘noise’, C.R. Acad. Sc. Paris, 312, Sér.II, 1385–1391.Google Scholar
  17. Escadafal, R. and A.R. Huete (1992) ‘Soil optical properties and environmental applications of remote sensing’, Int. Arch. Photogramm. Rent. Sens., vol.29(B7), 709–715.Google Scholar
  18. Escadafal, R., A.R. Huete, and D. Post (1990) ‘Estimating soil spectral properties (visible and NIR) from color and roughness field data’, Proc. 23d Int. Symp. Rem. Sens. Environment, Bangkok, Thailand, April 18–25 1990.Google Scholar
  19. Escadafal, R. and M. Pouget (1989) ‘Comparaison des données Landsat MSS et TM pour la cartographie des formations superficielles en zone aride (Tunisie méridionale)’, Proc. Workshop ‘Earthnet pilot project on Landsat Thematic Mapper applications’, Dec. 1987, Frascati (Italie), ESA publ. SP-1102, 301–307Google Scholar
  20. Fernanadez, R.N. and D.G. Schulze (1987) ‘Calculation of soil color from reflectance spectra’, Soil Sci. Soc. Am. J., 51. 1277–1282CrossRefGoogle Scholar
  21. Hill, J. and J. Mégier (1991) ‘The use of imaging spectrometry in mediterranean land degradation and soil hazard assessments’, Proc. 5th Int. Coll. ‘Physical measurements and Signatures in Remote Sensing’, Courchevel, France, 14–18 Jan., ESA SP-319, 185–188.Google Scholar
  22. Hill, J., W. Mehl, and M. Altherr (1994), ‘Land degradation and soil erosion mapping in a Mediterranean ecosystem’, in J. Hill and J. Mégier (eds.) Imaging spectrometry-a tool for environmental observations, Kluwer Academic Publishers, Dordrecht, (this volume).Google Scholar
  23. Huete, A.R. and R. Escadafal (1991) ‘Assessment of biophysical soil properties through spectral decomposition technique’, Remote Sensing of Environment, 35, 149–159.CrossRefGoogle Scholar
  24. Jackson, R.D., P.M. Teillet, P.N. Slater, G. Fedosejevs, M.F. Jasinski, J.K. Aase, and M.S. Moran (1990) ‘Bidirectional measurements of surface reflectance for view angle of oblique imagery’, Remote Sensing of Environment, 32, 189–202.CrossRefGoogle Scholar
  25. Latz, K., R.A. Weismiller, G.E. van Scoyoc, and M.F. Baumgardner (1984) ‘Characteristic variations in spectral reflectance of selected eroded alfisols’, Soil Sci. Soc. Am. J., 48, 1130–1134.CrossRefGoogle Scholar
  26. Mabbutt, J.A. and C. Floret (eds.) (1980) ‘Case studies on desertification’, Natural Resources Research XVIII, Unesco, Paris, 279 p.Google Scholar
  27. Madeira, J. (1991) ‘Etude quantitative des relations constituants minéralogiques-réflectance diffuse des latosols brésiliens. Application à l’utilisation pédologique des données satellitaires TM (région de Brasilia)’, These de doctorat, Université Pierre et Marie Curie, Paris, 232 p.Google Scholar
  28. Mougenot, B. (1991) ‘Caractéristiques spectrales de surfaces salées à chlorures et sulfates (Sénégal)’, in M. Pouget (ed.) ‘Caractérisation et suivi des milieux terrestres en régions arides et tropicales’, Colloques et Séminaires, Orstom, Paris, 49–70.Google Scholar
  29. Mulders, M.A. (1987) ‘Remote sensing in soil science’, Developments in Soil Science, 15, Elsevier, Amsterdam, 379 p.Google Scholar
  30. Price, J.C. (1990) ‘On the information content of soil reflectance spectra’, Remote Sensing of Environment, 33, 113–121.CrossRefGoogle Scholar
  31. Schwertmann, U. and R.M. Taylor (1977) ‘Iron oxides’, in Dixon and Weed (eds.) ‘Minerals in soil environment’, Soil Sci. Soc. Am., Madison (USA), 145–180.Google Scholar
  32. Smith, M.O., J.B. Adams, and D.E. Sabol (1993) ‘Mapping sparse vegetation canopies’, in J. Hill and J. Mégier (eds.) Imaging spectrometry-a tool for environmental observations, Kluwer Academic Publishers, Dordrecht, (this volume).Google Scholar
  33. Stoner, E.R., M.F. Baumgardner, L.L. Biehl, and B.F. Robinson (1980b) ‘Atlas of soil reflectance properties’, L.A.R.S., Purdue University, 75 p.Google Scholar
  34. Torrent, J., U. Schwertmann, H. Fechter, and F. Alferez (1983) ‘Quantitative relationships between soil color and hematite content’, Soil Science, 136, 354–358.CrossRefGoogle Scholar
  35. Wilson, M.F., and A. Henderson-Sellers (1987) ‘Sensitivity of BATS to the inclusion of variable soil characteristics’, J. Clim. Appl. Meteorol, 26, 341–362.CrossRefGoogle Scholar
  36. Wysecki, G. and W.S. Stiles (1982) ‘Color science: concept and methods, quantitative data and formulae’, Wiley, New York, 2nd edition, 950 p.Google Scholar

Copyright information

© ECSC, EEC, EAEC, Brussels and Luxembourg 1994

Authors and Affiliations

  • Richard Escadafal
    • 1
  1. 1.Mission ORSTOMEl MenzahTunisia

Personalised recommendations