Skip to main content

Scientific Issues and Instrumental Opportunities in Remote Sensing and High Resolution Spectrometry

  • Chapter
Book cover Imaging Spectrometry — a Tool for Environmental Observations

Part of the book series: Eurocourses: Remote Sensing ((EURS,volume 4))

Abstract

The effective use of remote sensing techniques requires a basic understanding of the fundamental processes that affect radiation during its transport between the source of light, the target of interest, and the detector. The principles of radiation emission and scattering in the optical domain are outlined, paying particular attention to the spatial, temporal, spectral, and directional sources of variability in the data. The problems of measuring and interpreting these observations are addressed, and the specifications of existing and planned space-borne instruments are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  • Butler, D. (editor) (1987) ‘From pattern to process: The strategy of the Earth Observing System’, Report of the Eos Science Steering Committee, Vol II.

    Google Scholar 

  • Curran, P. J. (1981) ‘Multispectral remote sensing for estimating biomass and productivity’, in: Smith (ed.) Plants and the daylight spectrum, Academic Press, London, 65–96.

    Google Scholar 

  • ESA (1992) ‘The Medium Resolution Imaging Spectrometer (MERIS)’, Draft internal document, European Space Agency, 92 pp.

    Google Scholar 

  • Estes, J. and M. Consentino (1989) ‘Remote sensing of vegetation’, in M. Rambler, L. Margulis, and R. Fester (eds.) Global ecology, Academic Press, New York, 75–111.

    Google Scholar 

  • Freden, S. and F. Gordon, Jr. (1983) ‘Landsat satellites’, in R. Colwell (ed.) ‘Manual of Remote Sensing, Vol. 1’, American Society of Photogrammetry, Falls Church, 517–570.

    Google Scholar 

  • Houghton, J. (1986) ‘The Physics of Atmospheres’, Cambridge University Press, Cambridge, 271 pp.

    Google Scholar 

  • NASA (1986) ‘Data and information system: Report of the EOS Data Panel’, in Earth Observing System, Vol IIa, NASA Technical Memorandum 87777, Washington, 49 pp.

    Google Scholar 

  • Kaufman, Y. and D. Tanré (1992) ‘Atmospherically resistant vegetation index (ARVI) for EOSMODIS’, IEEE Transactions on Geoscience and Remote Sensing 30, 261–270.

    Article  Google Scholar 

  • Kidwell, K. (1991) ‘TCOAA Polar Orbiter Data Users Guide’, US Department of Commerce, NOAA, Washington.

    Google Scholar 

  • Neckel, H. and D. Labs (1984) ‘The solar radiation between 3300 and 12500 A’, Sol. Phys., 90, 205–258.

    Article  Google Scholar 

  • Norwood, V. and J. Lansing (1983) ‘Electro-optical imaging sensors’, in R. Colwell (ed.), Manual of Remote Sensing, Vol. 1, American Society of Photogrammetry, Falls Church, 335–367.

    Google Scholar 

  • Pagano, T. and J. Young (1992) ‘MODIS-N Instrument Status’, Santa Barbara Research Center, Document 92-0257-1, Hughes Corporation.

    Google Scholar 

  • Rees, W. (1990) ‘Physical Principles of Remote Sensing’, Cambridge University Press, Cambridge 247 pp.

    Google Scholar 

  • Robinson, B. and D. DeWitt (1983) ‘Electro-optical non-imaging sensors’, in R. Colwell (ed.), Manual of Remote Sensing, Vol. 1, American Society of Photogrammetry, Falls Church, 293–333.

    Google Scholar 

  • Rozelot, J.-P. (1973) ‘La Couronne Solaire’, Doin, Paris, 144 pp.

    Google Scholar 

  • Sellers, W. (1965) ‘Physical Climatology’, Chicago University Press, Chicago, 272 pp.

    Google Scholar 

  • Simonett, D. (1983) ‘The development and principles of remote sensing’, in R. Colwell (ed.), Manual of Remote Sensing, Vol. 1, American Society of Photogrammetry, Falls Church, 1–35.

    Google Scholar 

  • Slater, P. (1983) ‘Photographic systems for remote sensing’, in R. Colwell, (ed.), Manual of Remote Sensing, Vol. 1, American Society of Photogrammetry, Falls Church, 231–291.

    Google Scholar 

  • Pinty, B. and M. M. Verstraete (1992) ‘GEMI: A non-linear index to monitor global vegetation from satellites’, Vegetatio, 101, 15–20.

    Article  Google Scholar 

  • Vogt, J. (1992) ‘Characterizing the spatio-temporal variability of surface parameters from NOAA AVHRR data: A case for Southern Mali’, Ph.D. Thesis, Trier University, 216 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 ECSC, EEC, EAEC, Brussels and Luxembourg

About this chapter

Cite this chapter

Verstraete, M.M. (1994). Scientific Issues and Instrumental Opportunities in Remote Sensing and High Resolution Spectrometry. In: Hill, J., Mégier, J. (eds) Imaging Spectrometry — a Tool for Environmental Observations. Eurocourses: Remote Sensing, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-0-585-33173-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-33173-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-2965-7

  • Online ISBN: 978-0-585-33173-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics