Imaging Spectrometry as a Research Tool for Inland Water Resources Analysis

  • Arnold G. Dekker
  • Marcel Donze
Part of the Eurocourses: Remote Sensing book series (EURS, volume 4)


Qualitative and quantitative aspects of optical water quality of inland waters may be determined by remote sensing. The potential of imaging spectrometry for inland waters is discussed following the analytical method where the inherent and apparent optical properties are used to model the reflectance and vice versa. A classification is proposed for describing the contributions to the total absorption spectrum of water and the three main constituents: aquatic humus, photosynthetic pigments and tripton. The relevant literature on airborne spectrometry is discussed. An example is given how photosynthetic algal pigments (i.e. cyanophycocyanin) may be estimated by imaging spectrometry. Absorption spectra of water, aquatic humus and the particulate matter and scattering spectra of 31 inland water samples are presented. Using these inherent optical properties it was possible to compare in situ measured subsurface irradiance reflectance R(0) with the modelled R(0) and with the airborne measured spectra recalculated to R(0).


Aquatic Humus Imaging Spectroscopy Imaging Spectrometry Secchi Disk Transparency Inherent Optical Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. Austin, R.W. (1974) ‘The remote sensing of spectral radiance from below the ocean surface’, In: Jerlov, N.G. and E. Steeman Nielsen (ed.), Optical Aspects of Oceanography, Academic Press, London and New York, 316–344.Google Scholar
  2. Bennett, A. and L. Bogorad (1973) ‘Complementary chromatic adaptation in a filamentous blue-green alga’, J. Cell. Biol., 58, 410–435.CrossRefGoogle Scholar
  3. Carder, K.L., S.K. Hawes, K.A. Baker, R.C. Smith, R.G. Steward, and B.G. Mitchell (1991) ‘Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products’, J. Geoph. Res., 96(C11), 20.599–20.611.Google Scholar
  4. Davies-Colley, R.J., W.N. Vant, and R.J. Wilcock (1988) ‘Lake water colour: comparison of direct observations with underwater spectral irradiance’, Water Resources Bulletin, 24(1), 11–18.Google Scholar
  5. Davies-Colley, R.J. and W.N. Vant (1987) ‘Absorption of light by yellow substance in freshwater lakes’, Limnol. Oceanogr, 32(2), 416–425.Google Scholar
  6. Davies-Colley, R.J., R.D. Pridmore, and J.E. Hewitt (1986) ‘Optical properties of some freshwater phytoplanktonic algae’, Hydrobiologia, 133, 165–178.CrossRefGoogle Scholar
  7. Dekker, A.G., ‘Imaging spectrometry and multispectral remote sensing of surface water quality of eutrophic waters’, thesis (in prep.)Google Scholar
  8. Dekker, A.G., T.J. Malthus, and L.M. Goddijn (1992a) ‘Monitoring cyanobacteria in eutrophic waters using airborne imaging spectroscopy and multispectral remote sensing systems’, Proceedings 6th Australasian Remote Sensing Conference, Wellington, New Zealand, 2–6 November 1992.Google Scholar
  9. Dekker, A.G., T.J. Malthus, and M.M. Wijnen (1992b) ‘Spectral band location for remote sensing of turbid and/or eutrophic waters’, Proceedings First Thematic Conference on Remote Sensing for Marine and Coastal Environments, New Orleans, Louisiana, USA, 15–17 June 1992.Google Scholar
  10. Dekker, A.G., T.J. Malthus, M.M. Wijnen, and E. Seyhan (1992c) ‘The effect of spectral band width and positioning on the spectral signature analysis of inland waters’, Remote Sensing of Environment, 41(2/3), 211–226.CrossRefGoogle Scholar
  11. Dekker, A.G., T.J. Malthus, M.M. Wijnen, and E. Seyhan (1992d) ‘Remote sensing as a tool for assessing water quality in Loosdrecht lakes’, Hydrobiologia, 233, 137–159.CrossRefGoogle Scholar
  12. Dekker, A.G., T.J. Malthus, and E. Seyhan (1991) ‘Quantitative modelling of inland water quality for high resolution MSS-systems’, IEEE Trans, on Geosc. and Rem. Sens., 29(1), 89–95.CrossRefGoogle Scholar
  13. Dekker, A.G. and S.W.M. Peters, ‘The use of the Thematic Mapper for the analysis of eutrophic lakes: A case study in The Netherlands’, Int. J. Rem. Sens., in press.Google Scholar
  14. Dekker, A.G., T.J. Malthus, and E. Seyhan (1990a) ‘Improving quantitative analysis of inland water quality using high spectral resolution imaging and non-imaging data’, Proc. IGARSS’ 90 Symposium, Washington, May 20–24, 1990:p 117–120.Google Scholar
  15. Dekker, A.G., T.J. Malthus, and E. Seyhan (1990b) ‘An inland water quality handset for the CAESAR system based on spectral signature analysis’, Proc. Int. Symp. Remote Sensing and Water, Enschede, The Netherlands, August 1990, 597–606.Google Scholar
  16. Doerffer, R. (1989) ‘Imaging spectroscopy for detection of chlorophyll and suspended matter’, In: F. Toselli and J. Bodechtel (eds.), Imaging Spectroscopy: Fundamentals and Prospective Applications, EuroCourses: Remote Sensing vol. 2, Kluwer Acad. Publ., Dordrecht, The Netherlands, 215–258.Google Scholar
  17. Donze, M., Dubelaar, and Visser (1987) ‘Anomalous behaviour of forward and perpendicular lightscattering of a cyanobacteria due to intracellular gas vacuoles’, BCRS Report 87-08 (Dutch Remote Sensing Board), NIWARS 42/28 (87-0).Google Scholar
  18. Dubelaar, G.B.J. et al.(1989) ‘Optical plankton analyzer: A flow cytometer for plankton analysis, II: specifications’, Cytometry, 10, 529–539.CrossRefGoogle Scholar
  19. Gitelson, A.A. and K.Y. Kondratiev (1991) ‘Optical models of water bodies’, Int. J. Rent. Sensing, vol. 12,no. 3, 373–385.CrossRefGoogle Scholar
  20. Gitelson, A.A. and G.P. Keydan (1990) ‘Remote sensing of inland surface water quality-measurements in the visible spectrum’, Acta Hydrophys., Berlin 34(1.S), 5–27.Google Scholar
  21. Gitelson, A.A., A.M. Nikanorov, G.Y. Szabo, and F. Szilagyi (1986) ‘Étude de la qualityé des eaux de surface par télédétection’, Proc. Budapest Symp. on Monitoring to Detect Changes in Water Quality Series, July 1986, IAHS 157., 111–121.Google Scholar
  22. Gordon, H.R. and A.Y. Morel (1983) ‘Remote assessment of ocean color for interpretation of satellite visible imagery: a review’, Lecture Notes on Coastal and Estuarine Studies, 4, Springer, New York.Google Scholar
  23. Jerlov, N.G. (1976) ‘Marine optics’, Elsevier, Amsterdam, the Netherlands.Google Scholar
  24. Kirk, J.T.O. (1980) ‘Spectral absorption properties of natural waters: contribution of the soluble and particulate fractions to light absorption in some inland waters of South-eastern Australia’, Austr. J. Mar. Freshwater Res., 31, 287–296.CrossRefGoogle Scholar
  25. Kirk, J.T.O. (1981a) ‘Monte Carlo Study of the nature of the underwater light field in, and the relationships between optical properties of, turbid yellow waters’, Austr. J. Mar. Freshwater Res., 32, 517–532.CrossRefGoogle Scholar
  26. Kirk, J.T.O. (1981b) ‘Estimation of the scattering coefficient of natural waters using underwater irradiance measurements’, Austr. J. Mar. Freshwater Res., 32, 533–539.CrossRefGoogle Scholar
  27. Kirk, J.T.O. (1983) ‘Light and photosynthesis in aquatic ecosystems’, CSIRO, Canberra, Australia, Cambridge University Press.Google Scholar
  28. Kirk, J.T.O. (1991) ‘Volume scattering function, average cosines, and the underwater light field’, Limnol. Oceanogr., 36(3), 455–467.Google Scholar
  29. Klepper, O., S.G. Vermij, and R. Lingeman (1984) ‘The influence of light scattering on vertical extinction in Lake Maarsseveen’, Verh. Int. Ver. Limnol, 22, 82–86.Google Scholar
  30. Kondratyev, K. Y., and D.V. Pozdniakov, (1990) ‘Passive and active optical remote sensing of the inland water phytoplankton’, ISPRSJ. Of Photogramm. and Rem. Sensing, 44, 257–294.CrossRefGoogle Scholar
  31. McGarrigle, M.L., E. O’Mongain, J.E. Walsh, T. Sommerville, and M. Bree (1990) ‘National survey of lakes by remote sensing: Calibration of a low altitude water quality spectrometry’, Environm. Res. Unit, St Martin’s House, Waterloo Rd, Dublin, Rep. Ireland.Google Scholar
  32. Melack, J.M. and S.H. Pilorz (1990) ‘Reflectance spectra from eutrophic Mono Lake, California, measured with the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS)’, SPIE, Vol. 1298, Imaging Spectroscopy of the Terrestrial Environment, 202–212.CrossRefGoogle Scholar
  33. Miyazaki, T., H. Shimizu, and Y. Yasuoka (1987) ‘High-speed spectroradiometer for remote sensing’, Applied Optics, 26(22), 4761–4766.Google Scholar
  34. Morel, A. and H.R. Gordon (1980) ‘Report of the working group on water color’, Boundary Layer Meteorolgy, 18, 343–355.CrossRefGoogle Scholar
  35. Oishi, T. (1990) ‘Significant relationship between the backward scattering coefficient of sea water and the scatterance at 120°’, Applied Optics, 29(31), 4658–4665.CrossRefGoogle Scholar
  36. O’Neill, N.T., A.R. Kalinauskas, G.A. Borstad, H. Edel, G.A. Gower, and H. van der Piepen (1987) ‘Imaging spectrometry for water applications’, Proc. 31st Ann. Int. Techn. Symp. Opt. & Optoelectr. Appl. Sc. & Engineering-Imag. Spectroscopy II, San Diego, California. SPIE Proc. 834, August 1987.Google Scholar
  37. Peacock, T.G., K.L. Carder, CO Davis, and R.G. Steward (1990) ‘Effects of fluorescence and water Raman scattering on models of remote sensing reflectance’, SPIE Proceedings, Ocean Optics X, 1302, 303–319.Google Scholar
  38. Petzold, T.J. (1972) ‘Volume scattering functions for selected Ocean Waters’, Rep. Visibility Lab. Scripps Oceanogr. Inst., U. California, Refs. 72–78Google Scholar
  39. Preisendorfer, R.W. (1976) ‘Hydrologic Optics, Vol 1’, Washington, Dep. of Commerce.Google Scholar
  40. Prieur, L. and S. Sathyendranath (1981) ‘An optical classification of coastal and oceanic waters based on the spectral absorption curves of phytoplankton pigments, dissolved organic matter and other particulate materials’, Limnol. & Oceanogr., 26(4), 671–689.CrossRefGoogle Scholar
  41. Seyhan, E., N.J.J. Bunnik, W. Verhoef, and J. van Kuilenburg (1974) ‘Measurements of spectral signatures for water quality monitoring’, N1WARS Publication No. 24, Delft, The Netherlands; Paper presented at the First General Conference of the Remote Sensing Society, Birmingham, Great Britain, Sept. 1974, 29.Google Scholar
  42. Visser, S.A. (1984) ‘Seasonal changes in the concentration and colour of humic substances in some aquatic environments’, Freshwater Biology, 14, 79–87.CrossRefGoogle Scholar
  43. Vos, W.L., M. Donze, and H. Buiteveld (1986) ‘On the reflectance spectrum of algae in water: the nature of the peak at 700 nm and its shift with varying concentration’, Comm. on San. Eng. and Water Managem., nr. 7, ISSN-0169-6246, TU Delft, 86-22.Google Scholar
  44. Whitlock, C.H., L.R. Poole, J.W. Usry, W.M. Houghton, W.G. Witte, W.D. Morris, and E.A. Gurganus (1981) ‘Comparison of reflectance with backscatter and absorption parameters for turbid waters’, Applied Optics, 20(3), 517–522.Google Scholar

Copyright information

© ECSC, EEC, EAEC, Brussels and Luxembourg 1994

Authors and Affiliations

  • Arnold G. Dekker
    • 1
  • Marcel Donze
    • 2
  1. 1.Institute of Environmental StudiesVrije UniversiteitAmsterdamThe Netherlands
  2. 2.Faculty of Civil EngineeringTechnical University of DelftGA DelftThe Netherlands

Personalised recommendations