Skip to main content

Imaging Spectrometry as a Research Tool for Inland Water Resources Analysis

  • Chapter
Imaging Spectrometry — a Tool for Environmental Observations

Part of the book series: Eurocourses: Remote Sensing ((EURS,volume 4))

Abstract

Qualitative and quantitative aspects of optical water quality of inland waters may be determined by remote sensing. The potential of imaging spectrometry for inland waters is discussed following the analytical method where the inherent and apparent optical properties are used to model the reflectance and vice versa. A classification is proposed for describing the contributions to the total absorption spectrum of water and the three main constituents: aquatic humus, photosynthetic pigments and tripton. The relevant literature on airborne spectrometry is discussed. An example is given how photosynthetic algal pigments (i.e. cyanophycocyanin) may be estimated by imaging spectrometry. Absorption spectra of water, aquatic humus and the particulate matter and scattering spectra of 31 inland water samples are presented. Using these inherent optical properties it was possible to compare in situ measured subsurface irradiance reflectance R(0) with the modelled R(0) and with the airborne measured spectra recalculated to R(0).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  • Austin, R.W. (1974) ‘The remote sensing of spectral radiance from below the ocean surface’, In: Jerlov, N.G. and E. Steeman Nielsen (ed.), Optical Aspects of Oceanography, Academic Press, London and New York, 316–344.

    Google Scholar 

  • Bennett, A. and L. Bogorad (1973) ‘Complementary chromatic adaptation in a filamentous blue-green alga’, J. Cell. Biol., 58, 410–435.

    Article  Google Scholar 

  • Carder, K.L., S.K. Hawes, K.A. Baker, R.C. Smith, R.G. Steward, and B.G. Mitchell (1991) ‘Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products’, J. Geoph. Res., 96(C11), 20.599–20.611.

    Google Scholar 

  • Davies-Colley, R.J., W.N. Vant, and R.J. Wilcock (1988) ‘Lake water colour: comparison of direct observations with underwater spectral irradiance’, Water Resources Bulletin, 24(1), 11–18.

    Google Scholar 

  • Davies-Colley, R.J. and W.N. Vant (1987) ‘Absorption of light by yellow substance in freshwater lakes’, Limnol. Oceanogr, 32(2), 416–425.

    Google Scholar 

  • Davies-Colley, R.J., R.D. Pridmore, and J.E. Hewitt (1986) ‘Optical properties of some freshwater phytoplanktonic algae’, Hydrobiologia, 133, 165–178.

    Article  Google Scholar 

  • Dekker, A.G., ‘Imaging spectrometry and multispectral remote sensing of surface water quality of eutrophic waters’, thesis (in prep.)

    Google Scholar 

  • Dekker, A.G., T.J. Malthus, and L.M. Goddijn (1992a) ‘Monitoring cyanobacteria in eutrophic waters using airborne imaging spectroscopy and multispectral remote sensing systems’, Proceedings 6th Australasian Remote Sensing Conference, Wellington, New Zealand, 2–6 November 1992.

    Google Scholar 

  • Dekker, A.G., T.J. Malthus, and M.M. Wijnen (1992b) ‘Spectral band location for remote sensing of turbid and/or eutrophic waters’, Proceedings First Thematic Conference on Remote Sensing for Marine and Coastal Environments, New Orleans, Louisiana, USA, 15–17 June 1992.

    Google Scholar 

  • Dekker, A.G., T.J. Malthus, M.M. Wijnen, and E. Seyhan (1992c) ‘The effect of spectral band width and positioning on the spectral signature analysis of inland waters’, Remote Sensing of Environment, 41(2/3), 211–226.

    Article  Google Scholar 

  • Dekker, A.G., T.J. Malthus, M.M. Wijnen, and E. Seyhan (1992d) ‘Remote sensing as a tool for assessing water quality in Loosdrecht lakes’, Hydrobiologia, 233, 137–159.

    Article  Google Scholar 

  • Dekker, A.G., T.J. Malthus, and E. Seyhan (1991) ‘Quantitative modelling of inland water quality for high resolution MSS-systems’, IEEE Trans, on Geosc. and Rem. Sens., 29(1), 89–95.

    Article  Google Scholar 

  • Dekker, A.G. and S.W.M. Peters, ‘The use of the Thematic Mapper for the analysis of eutrophic lakes: A case study in The Netherlands’, Int. J. Rem. Sens., in press.

    Google Scholar 

  • Dekker, A.G., T.J. Malthus, and E. Seyhan (1990a) ‘Improving quantitative analysis of inland water quality using high spectral resolution imaging and non-imaging data’, Proc. IGARSS’ 90 Symposium, Washington, May 20–24, 1990:p 117–120.

    Google Scholar 

  • Dekker, A.G., T.J. Malthus, and E. Seyhan (1990b) ‘An inland water quality handset for the CAESAR system based on spectral signature analysis’, Proc. Int. Symp. Remote Sensing and Water, Enschede, The Netherlands, August 1990, 597–606.

    Google Scholar 

  • Doerffer, R. (1989) ‘Imaging spectroscopy for detection of chlorophyll and suspended matter’, In: F. Toselli and J. Bodechtel (eds.), Imaging Spectroscopy: Fundamentals and Prospective Applications, EuroCourses: Remote Sensing vol. 2, Kluwer Acad. Publ., Dordrecht, The Netherlands, 215–258.

    Google Scholar 

  • Donze, M., Dubelaar, and Visser (1987) ‘Anomalous behaviour of forward and perpendicular lightscattering of a cyanobacteria due to intracellular gas vacuoles’, BCRS Report 87-08 (Dutch Remote Sensing Board), NIWARS 42/28 (87-0).

    Google Scholar 

  • Dubelaar, G.B.J. et al.(1989) ‘Optical plankton analyzer: A flow cytometer for plankton analysis, II: specifications’, Cytometry, 10, 529–539.

    Article  Google Scholar 

  • Gitelson, A.A. and K.Y. Kondratiev (1991) ‘Optical models of water bodies’, Int. J. Rent. Sensing, vol. 12,no. 3, 373–385.

    Article  Google Scholar 

  • Gitelson, A.A. and G.P. Keydan (1990) ‘Remote sensing of inland surface water quality-measurements in the visible spectrum’, Acta Hydrophys., Berlin 34(1.S), 5–27.

    Google Scholar 

  • Gitelson, A.A., A.M. Nikanorov, G.Y. Szabo, and F. Szilagyi (1986) ‘Étude de la qualityé des eaux de surface par télédétection’, Proc. Budapest Symp. on Monitoring to Detect Changes in Water Quality Series, July 1986, IAHS Publ.no. 157., 111–121.

    Google Scholar 

  • Gordon, H.R. and A.Y. Morel (1983) ‘Remote assessment of ocean color for interpretation of satellite visible imagery: a review’, Lecture Notes on Coastal and Estuarine Studies, 4, Springer, New York.

    Google Scholar 

  • Jerlov, N.G. (1976) ‘Marine optics’, Elsevier, Amsterdam, the Netherlands.

    Google Scholar 

  • Kirk, J.T.O. (1980) ‘Spectral absorption properties of natural waters: contribution of the soluble and particulate fractions to light absorption in some inland waters of South-eastern Australia’, Austr. J. Mar. Freshwater Res., 31, 287–296.

    Article  Google Scholar 

  • Kirk, J.T.O. (1981a) ‘Monte Carlo Study of the nature of the underwater light field in, and the relationships between optical properties of, turbid yellow waters’, Austr. J. Mar. Freshwater Res., 32, 517–532.

    Article  Google Scholar 

  • Kirk, J.T.O. (1981b) ‘Estimation of the scattering coefficient of natural waters using underwater irradiance measurements’, Austr. J. Mar. Freshwater Res., 32, 533–539.

    Article  Google Scholar 

  • Kirk, J.T.O. (1983) ‘Light and photosynthesis in aquatic ecosystems’, CSIRO, Canberra, Australia, Cambridge University Press.

    Google Scholar 

  • Kirk, J.T.O. (1991) ‘Volume scattering function, average cosines, and the underwater light field’, Limnol. Oceanogr., 36(3), 455–467.

    Google Scholar 

  • Klepper, O., S.G. Vermij, and R. Lingeman (1984) ‘The influence of light scattering on vertical extinction in Lake Maarsseveen’, Verh. Int. Ver. Limnol, 22, 82–86.

    Google Scholar 

  • Kondratyev, K. Y., and D.V. Pozdniakov, (1990) ‘Passive and active optical remote sensing of the inland water phytoplankton’, ISPRSJ. Of Photogramm. and Rem. Sensing, 44, 257–294.

    Article  Google Scholar 

  • McGarrigle, M.L., E. O’Mongain, J.E. Walsh, T. Sommerville, and M. Bree (1990) ‘National survey of lakes by remote sensing: Calibration of a low altitude water quality spectrometry’, Environm. Res. Unit, St Martin’s House, Waterloo Rd, Dublin, Rep. Ireland.

    Google Scholar 

  • Melack, J.M. and S.H. Pilorz (1990) ‘Reflectance spectra from eutrophic Mono Lake, California, measured with the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS)’, SPIE, Vol. 1298, Imaging Spectroscopy of the Terrestrial Environment, 202–212.

    Article  Google Scholar 

  • Miyazaki, T., H. Shimizu, and Y. Yasuoka (1987) ‘High-speed spectroradiometer for remote sensing’, Applied Optics, 26(22), 4761–4766.

    Google Scholar 

  • Morel, A. and H.R. Gordon (1980) ‘Report of the working group on water color’, Boundary Layer Meteorolgy, 18, 343–355.

    Article  Google Scholar 

  • Oishi, T. (1990) ‘Significant relationship between the backward scattering coefficient of sea water and the scatterance at 120°’, Applied Optics, 29(31), 4658–4665.

    Article  Google Scholar 

  • O’Neill, N.T., A.R. Kalinauskas, G.A. Borstad, H. Edel, G.A. Gower, and H. van der Piepen (1987) ‘Imaging spectrometry for water applications’, Proc. 31st Ann. Int. Techn. Symp. Opt. & Optoelectr. Appl. Sc. & Engineering-Imag. Spectroscopy II, San Diego, California. SPIE Proc. 834, August 1987.

    Google Scholar 

  • Peacock, T.G., K.L. Carder, CO Davis, and R.G. Steward (1990) ‘Effects of fluorescence and water Raman scattering on models of remote sensing reflectance’, SPIE Proceedings, Ocean Optics X, 1302, 303–319.

    Google Scholar 

  • Petzold, T.J. (1972) ‘Volume scattering functions for selected Ocean Waters’, Rep. Visibility Lab. Scripps Oceanogr. Inst., U. California, Refs. 72–78

    Google Scholar 

  • Preisendorfer, R.W. (1976) ‘Hydrologic Optics, Vol 1’, Washington, Dep. of Commerce.

    Google Scholar 

  • Prieur, L. and S. Sathyendranath (1981) ‘An optical classification of coastal and oceanic waters based on the spectral absorption curves of phytoplankton pigments, dissolved organic matter and other particulate materials’, Limnol. & Oceanogr., 26(4), 671–689.

    Article  Google Scholar 

  • Seyhan, E., N.J.J. Bunnik, W. Verhoef, and J. van Kuilenburg (1974) ‘Measurements of spectral signatures for water quality monitoring’, N1WARS Publication No. 24, Delft, The Netherlands; Paper presented at the First General Conference of the Remote Sensing Society, Birmingham, Great Britain, Sept. 1974, 29.

    Google Scholar 

  • Visser, S.A. (1984) ‘Seasonal changes in the concentration and colour of humic substances in some aquatic environments’, Freshwater Biology, 14, 79–87.

    Article  Google Scholar 

  • Vos, W.L., M. Donze, and H. Buiteveld (1986) ‘On the reflectance spectrum of algae in water: the nature of the peak at 700 nm and its shift with varying concentration’, Comm. on San. Eng. and Water Managem., nr. 7, ISSN-0169-6246, TU Delft, 86-22.

    Google Scholar 

  • Whitlock, C.H., L.R. Poole, J.W. Usry, W.M. Houghton, W.G. Witte, W.D. Morris, and E.A. Gurganus (1981) ‘Comparison of reflectance with backscatter and absorption parameters for turbid waters’, Applied Optics, 20(3), 517–522.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 ECSC, EEC, EAEC, Brussels and Luxembourg

About this chapter

Cite this chapter

Dekker, A.G., Donze, M. (1994). Imaging Spectrometry as a Research Tool for Inland Water Resources Analysis. In: Hill, J., Mégier, J. (eds) Imaging Spectrometry — a Tool for Environmental Observations. Eurocourses: Remote Sensing, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-0-585-33173-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-33173-7_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-2965-7

  • Online ISBN: 978-0-585-33173-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics