Optical Properties of Leaves: Modelling and Experimental Studies

  • Jean Verdebout
  • Stephane Jacquemoud
  • Guido Schmuck
Part of the Eurocourses: Remote Sensing book series (EURS, volume 4)


This paper deals with the interpretation of leaves spectra following an approach based on modelling and laboratory studies. First, the leaves structure and principal constituents are described together with the way they interact with light. The effects of growth, senescence and environmental factors on the leaf optical properties are summarised. A laboratory study conducted on drought stress of maize (Zea Mays) plants is reported as an example. A succinct review of the existing models is then made: ray tracing, Kubelka-Munk and developments, plate models, and the stochastic model. The use of these models to determine leaf constituents and structure by inversion on reflectance spectra is then discussed with an emphasis on the research of good specific absorption coefficients for the constituents. The validation of the PROSPECT model (generalised plate model) on the basis of leaves spectra is presented. The problems linked with the application of these procedures to remote sensing data is evoked, and an example of inversion on experimental spectra of sugar beet (Beta vulgaris L) fields is briefly reported.


Infrared Reflectance Palisade Parenchyma Specific Absorption Coefficient Canopy Reflectance Leaf Water Status 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. Allen, W.A. and Richardson, A.J. (1968) ‘Interaction of light with a plant canopy’, J. Opt. Soc. Am., 58(8), 1023–1028.Google Scholar
  2. Allen, W.A., Gausman, H.W., Richardson, A.J. and Thomas, J.R. (1969) ‘Interaction of isotropic light with a compact leaf’, J. Opt. Soc. Am., 59(10), 1376–1379.Google Scholar
  3. Allen, W.A., Gayle, T.V., Richardson, A.J. (1970) ‘Plant-canopy irradiance specified by the Duntley equations’, J. Opt. Soc. Am., 60(3), 372–376.Google Scholar
  4. Allen, W.A., Gausman, H.W., Richardson, A.J., Cardenas R. (1971) ‘Water and air changes in grapefruit, corn and cotton leaves with maturation’, Agron. J., 63, 392–394.CrossRefGoogle Scholar
  5. Allen, W.A., Gausman, H.W. and Richardson, A.J. (1973) Willstätter-Stoll theory of leaf reflectance evaluation by ray tracing’, Appl. Opt., 12(10), 2448–2453.Google Scholar
  6. Baret, F., Jacquemoud, S., Guyot, G. and Leprieur, C. (1992) ‘Modelled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands’, Remote Sens. Environ., 41, 133–142.CrossRefGoogle Scholar
  7. Belanger, B. J. (1990) ‘A seasonal perspective of several leaf developmental characteristics as related to the red edge of plant leaf reflectance’, PhD thesis, York University, Ontario (Canada).Google Scholar
  8. Bone, R.A., Lee, D.W. and Norman, J.M. (1985) ‘Epidermal cells functioning as lenses in leaves of tropical rain forest shade plants’, Appl. Opt., 24(10), 1408–1414.Google Scholar
  9. Bowman, W.D. (1989), ‘The relationships between leaf water status, gas exchange, and spectral reflectance in cotton leaves’, Remote Sens. Environ., 30, 249–255.CrossRefGoogle Scholar
  10. Boyer, M., Miller, J., Belanger, M., Hare, E. and Wu, J. (1988) ‘Senescence and spectral reflectance in leaves in Northern Pin Oak (Quercus palustris Muenchh.)’, Remote Sens. Environ., 25, 71–87.CrossRefGoogle Scholar
  11. Brakke, T.W., Smith, J.A. and Harnden, J.M. (1989) ‘Bi-directional scattering of light from tree leaves’, Remote Sens. Environ., 29, 175–183.CrossRefGoogle Scholar
  12. Breece, H.T. and Holmes, R.A. (1971) ‘Bi-directional scattering characteristics of healthy green soybeans and corn leaves in vivo’, Appl. Opt., 10(1), 119–127.Google Scholar
  13. Camefort, H. (1972) ‘Morphologic des végétaux vasculaires (Cytologie, anatomie, adaptation)’, Doin, Paris.Google Scholar
  14. Camefort, H. and Boué, H. (1969) ‘Reproduction et biologie des principaux groupes végélaux (Les Cormophytes ou Archégoniates)’, Doin, Paris.Google Scholar
  15. Chappelle, E., Kim, E.S. and McMurtrey III, J.E. (1992) ‘Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves’, Remote Sens. Environ., 39, 239–247.CrossRefGoogle Scholar
  16. Curcio, J.A. and Petty, C.C. (1951) The near infrared absorption spectrum of liquid water’, J. Opt. Soc. Am., 41(5), 302–304.Google Scholar
  17. Curran, P.J. (1989) ‘Remote sensing of foliar chemistry’, Remote Sens. Environ., 30, 271–278.CrossRefGoogle Scholar
  18. Curran, P.J., Dungan, J.L., Macler, B.A., Plummer, S.E. and Peterson, D.L. (1992) ‘Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration’, Remote Sens. Environ., 39, 153–166.CrossRefGoogle Scholar
  19. Elvidge, C.D. (1990) Visible and near infrared reflectance characteristics of dry plant materials’, Int. J. Remote Sens., 11(10), 1775–1795.CrossRefGoogle Scholar
  20. Gates, D.M., Keegan, H.J., Schleter, H.R. and Weidner, V.R. (1965) ‘Spectral properties of plants’, Appl. Opt., 4(l), ll–20.Google Scholar
  21. Gausman, H.W., Allen, W.A., Cardenas, R. and Richardson, A.J. (1970) ‘Relation of light reflectance to histological and physical evaluation of cotton leaf, Appl. Opt., 9(3), 545–552.Google Scholar
  22. Gausman, H.W., Allen, W.A. and Escobar, D.E. (1974) ‘Refractive index of plant cell walls’, Appl. Opt., 13(1), 109–111.Google Scholar
  23. Goetz, A.F.H., Gao, B.C., Wessman, C.A. and Bowman, W.D. (1990) ‘Estimation of biochemical constituents from fresh, green leaves by spectrum matching techniques’, in Proc. Int. Geosci. and Remote Sens. Symp. (IGARSS’90), Washington DC, 20–24 May 1990, 971–974.Google Scholar
  24. Goetz, A.F.H. (1992) ‘Imaging spectrometry for earth remote sensing’, in F. Toselli and J. Bodechtel (eds.) Imaging spectroscopy: fundamentals and prospective applications, ECS, EEC, EAEC, Brussels and Luxembourg, 1–19.Google Scholar
  25. Grant, L. (1987) ‘Diffuse and specular characteristics of leaf reflectance’, Remote Sens. Environ., 22, 309–322.CrossRefGoogle Scholar
  26. Grant, L., Daughtry, C.S.T. and Vanderbilt, V.C. (1987) ‘Variations in the polarised leaf reflectance of sorghum bicolor’, Remote Sens. Environ., 21, 333–339.CrossRefGoogle Scholar
  27. Grant, L., Daughtry, C.S.T. and Vanderbilt, V.C. (1992) Polarised and specular reflectance variation with leaf surface features’, Physiol. Plant, (submitted).Google Scholar
  28. Guyot, G. and Baret, F. (1989) ‘La haute résolution spectrale. Déterminisme des déformations spectrales entre le rouge et le proche infrarouge’, in Bernier, Bonn and Gagnon (eds.) Télédétection et Gestion des Ressources, Vol VI, 197–209.Google Scholar
  29. Horler, D.N.H., Dockray, M. and Barber, J. (1983) ‘The red edge of plant leaf reflectance’, Int. J. Remote Sens., 4(2), 273–288.CrossRefGoogle Scholar
  30. Hunt, E.R., Rock, B.N. and Nobel, P.S. (1987) ‘Measurement of leaf relative water content by infrared reflectance’, Remote Sens. Environ., 22, 429–435.CrossRefGoogle Scholar
  31. Hunt, E.R. and Rock, B.N. (1989) ‘Detection of changes in leaf water content using near and middle-infrared reflectances’, Remote Sens. Environ., 30, 43–54.CrossRefGoogle Scholar
  32. Jacquemoud, S. and Baret, F. (1990) ‘PROSPECT: a model of leaf optical properties spectra’, Remote sens. Environ., 34, 75–91.CrossRefGoogle Scholar
  33. Jacquemoud, S. (1992) ‘Utilisation de la haute résolution spectrale pour 1’érude des couverts végétaux: développement d’un modèle de réflectance spectrale’, Thèse de doctorat de l’université Paris 7 (INRA/CNES).Google Scholar
  34. Jacquemoud, S. and Baret, F. (1992) ‘Estimating vegetation biophysical parameters by inversion of a reflectance model on high spectral resolution data’, in Proc. Coll. “Structure du couvert végétal et climat lumineux: méthodes de caracterisation et applications”, Saumane (France), 23–27 September 1991 (in press).Google Scholar
  35. Jacquemoud, S. (1993) ‘Inversion of the PROSPECT+SA1L canopy reflectance model from AVIRIS equivalent spectra. 1. Theoretical study’, Remote Sens. Environ, (under press).Google Scholar
  36. Knipling, E.B. (1970) ‘Physical and physiological basis for the reflectance of visible and near infrared radiation from vegetation’, Remote Sens. Environ., 1, 155–159.CrossRefGoogle Scholar
  37. Kumar, R. and Silva, L. (1973) ‘Light ray tracing through a leaf cross section’, Appl. Opt., 12(12), 2950–2954.CrossRefGoogle Scholar
  38. Lichtenthaler, H.K. (1987) ‘Chlorophylls and carotenoids: pigments of photosynthetic biomembranes’, Methods Enzymol., 148, 350–382.Google Scholar
  39. Ma, Q., Ishimaru, A., Phu, P. and Kuga, Y. (1990) ‘Transmission, reflection, and depolarisation of an optical wave for a single leaf’, IEEE Trans. Geosci. Remote Sens., 28(5), 865–872.CrossRefGoogle Scholar
  40. Malthus, T.J., (1989) ‘Anglo-French collaborative reflectance experiment, July 1989’, Brooms Barn Experimental Station internal reportGoogle Scholar
  41. Maracci, G., Schmuck, G., Hosgood, B. and Andreoli, G. (1991) ‘Interpretation of reflectance spectra by plant physiological parameters’, in Int. Geosci. and Remote Sens. Symp. (IGARSS’91), Espoo (Finland), 3–6 June 1991, 2303–2306.Google Scholar
  42. Martin, G., Josserand, S.A., Bornman, J.F. and Volgemann, J. (1989) ‘Epidermal focusing and the light microenvironment within leaves of Medicago sativa’, Physiol. Plant., 76, 485–492.CrossRefGoogle Scholar
  43. Melamed, N.T. (1963) ‘Optical properties of powders. Part I. Optical absorption coefficients and the absolute value of the diffuse reflectance. Part II. properties of luminescent powders’, J. Appl. Phys., 34, 560–570.CrossRefGoogle Scholar
  44. Palmer, K.F. and Williams, D. (1974) ‘Optical properties of water in the near infrared’, J. Opt. Soc. Am., 64(8), 1107–1110.CrossRefGoogle Scholar
  45. Peterson, D.L., Aber, J.D., Matson, P.A., Card, D.H., Swanberg, N., Wessman, C. and Spanner, M. (1988) Remote Sensing of Forest canopy and leaf biochemical contents’, Remote Sens. Environ., 24, 85–108.CrossRefGoogle Scholar
  46. Peterson, D.L. (1992) ‘Report on the workshop Remote sensing of plant biochemical content: theoretical and empirical studies’, Marshall (CA), 18–20 March 1991.Google Scholar
  47. Ripple, W.J. (1986), ‘Spectral reflectance relationships to leaf water stress’, Photogramm. Eng. Remote Sens., 52(10), 1669–1675.Google Scholar
  48. Rock, B.N., Hoshizaki, T. and Miller, J.R. (1983) ‘Comparison of in situ and airborne spectral measurements of the blue shift associated with forest decline’, Remote Sens. Environ., 24, 109–127.CrossRefGoogle Scholar
  49. Sanger, J.E. (1971) ‘Quantitative investigation of leaf pigments from their inception in buds through autumn coloration to decomposition in falling leaves’, Ecology, 52(6), 1075–1089.CrossRefGoogle Scholar
  50. Schanda, E. (1986) Physical fundamentals of remote sensing, Springer-Verlag, Berlin.Google Scholar
  51. Sestak, Z. (1985) ‘Chlorophylls and carotenoids during leaf ontogeny’ (Z. Sestak, ed), Academia Praha.Google Scholar
  52. Sinclair, T.R., Hoffer, R.M. and Schreiber, M.M. (1971) “Reflectance and internal structure of leaves from several crops during a growing season’, Agron. J., 63, 864–867.CrossRefGoogle Scholar
  53. Sinclair, T.R., Schreiber, M.M. and Hoffer, R.M. (1973) Diffuse reflectance hypothesis for the pathway of solar radiation through leaves’, Agron. J., 65, 276–283.CrossRefGoogle Scholar
  54. Thomas, J.R., Namken, L.N., Oerther, G.F. and Brown, R.G. (1971) ‘Estimating leaf water content by reflectance measurements’, Agron. J., 63, 845–847.CrossRefGoogle Scholar
  55. Thomas, J.R. and Gausman, H.W. (1977) “Leaf reflectance versus leaf chlorophyll and carotenoids concentration for eight crops’, Agron. J., 63, 845–847.CrossRefGoogle Scholar
  56. Tucker, C.J. and Garratt, M.W. (1977) “Leaf optical properties as a stochastic process’, Appl. Opt., 16(3), 635–642.CrossRefGoogle Scholar
  57. Tucker, C.J. (1980) ‘Remote sensing of leaf water content in the near infrared’, Remote Sens. Environ., 10, 23–32.CrossRefGoogle Scholar
  58. Ustin, S.L., Wessman, C.A., Curtiss, B., Kasischke, F., Way, J. and Vanderbilt, V.C. (1991) ‘Opportunities for using the EOS imaging spectrometers and synthetic aperture radar in ecological models’, Ecology, 72(6), 1934–46.Google Scholar
  59. Verhoef, W. (1984) ‘Light scattering by leaf layers with application to canopy reflectance modelling: the SAIL model’, Remote Sens. Environ., 16, 125–141.CrossRefGoogle Scholar
  60. Vogelmann, T.C. and Björn, L.O. (1986) ‘Plants as light traps’, Physiol. Plant., 68, 704–708.CrossRefGoogle Scholar
  61. Vogelmann, T.C, Bornman, F.J. and Josserand, S. (1989) ‘Photosynthesis gradients and spectral regime within leaves of Medicago sativa’, Phil. Trans. R. Soc. Lond. B, 323, 411–421.CrossRefGoogle Scholar
  62. Walter-Shea, E.A., Norman, J.M. and Blad, B.L. (1989) ‘Leaf bi-directional reflectance and transmittance in corn and soybean’, Remote Sens. Environ., 29, 161–174.CrossRefGoogle Scholar
  63. Wessman, C.A., Aber, J.D., Peterson D.L. and Melillo, J.M. (1988) ‘Foliar analysis using near infrared reflectance spectroscopy’, Can. J. For. Res., 18, 6–11.CrossRefGoogle Scholar
  64. Wessman, C.A., Aber J.D. and Peterson, D.L. (1989) ‘An evaluation of imaging spectroscopy for estimating forest canopy chemistry’, Int. J. Remote Sens., 10(8), 1293–1316.CrossRefGoogle Scholar
  65. Willstätter, R. and Stoll, A. (1918) ‘Untersuchungen uber die Assimilation der Kohlensäure’, Springer, Berlin.Google Scholar
  66. Woolley, J.T. (1975) ‘Refractive index of soybean leaf cell walls’, Plant Physiol, 55, 172–174.Google Scholar
  67. Yamada, N. and Fujimura, S. (1988) ‘A mathematical model of reflectance and transmittance of plant leaves as a function of chlorophyll pigment content’, in Int. Geosci. and Remote Sens. Symp. (IGARSS’88), Edinburgh (Scotland), 13–16 Sept 1988, 833–834.Google Scholar
  68. Yamada, N. and Fujimura, S. (1992) ‘Non destructive measurement of chlorophyll pigment content in plant leaves from three-color reflectance and transmittance’, Appl. Opt. (submitted).Google Scholar

Copyright information

© ECSC, EEC, EAEC, Brussels and Luxembourg 1994

Authors and Affiliations

  • Jean Verdebout
    • 1
  • Stephane Jacquemoud
    • 1
  • Guido Schmuck
    • 1
  1. 1.Institute for Remote Sensing ApplicationsCommission of the European Communities Joint Research CentreIspra (Va)Italy

Personalised recommendations