Skip to main content

Imaging Spectrqmetry - Its Present And Future RÔLe In Environmental Research

  • Chapter
Imaging Spectrometry — a Tool for Environmental Observations

Part of the book series: Eurocourses: Remote Sensing ((EURS,volume 4))

Abstract

A basic aim of remote sensing is to identify and characterise objects on the Earth’s surface by means of radiation that has interacted with that surface. In the optical region of the spectrum this could best be achieved using an imaging spectrometer that records a finely-sampled and continuous spectrum of radiation over the entire 400 run to 2400 nm wavelength range.

This chapter outlines the airborne imaging spectrometers of today and the space borne imaging spectrometers of tommorow, the techniques for processing data from imaging spectrometers and the roles that imaging spectrometry is finding in geological, aquatic, ecological and atmospheric research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  • Abrams, M.J., Ashley, R.P., Rowan, L.C., Goetz, A.F.H. and A.B. Kahle (1977) ‘Mapping of hydrothermal alteration in the Cuprite Mining District, Nevada, using aircraft scanner images for the spectral region 0.46–2.36 µm’, Geology 5, 713–718.

    Google Scholar 

  • Ardanuy, P.E., Han, D. and V.V. Salomonson (1991) ‘The Moderate Resolution Imaging Spectrometer (MODIS) Science and data system requirements’, IEEE Transactions on Geoscience and Remote Sensing 29, 75–88.

    Google Scholar 

  • ASD (1992) The ASD Imaging Spectrometer, ISPRS XVII Congress New Product Announcement, Analytical Spectral Devices, Boulder, Co.

    Google Scholar 

  • Banwell, C.N. (1972) Fundamentals of Molecular Spectroscopy, McGraw Hill, London.

    Google Scholar 

  • Barale, V., Curran, P.J., Deschamps, P.Y., Fischer, J., Grassl, H., Malingreau, J.P., Morel, A. and Verstraete, M. (1994) The Medium Resolution Imaging Spectrometer (MERIS), European Space Agency, Paris (in press).

    Google Scholar 

  • Baret, F. and S. Jacquemoud (1994) ‘Modeling canopy spectral properties to retrieve biophysical and biochemical characteristics’, in J. Hill and J. Mégier (eds.) Imaging Spectrometry-a Tool for Environmental Observations, Kluwer Academic Publishers, Dordrecht (this volume).

    Google Scholar 

  • Berendes, T.A., Feind, R.E., Kuo, K.S. and Welch, R.M. (1991) ‘Cloud base height and optical thickness retrievals using AVIRIS data’, in R.O. Green (ed.) Proceedings, Third AirborneVisible/Infrared Imaging Spectrometer (AVIRIS) Workshop, National Aeronautics and Space Administration, Jet Propulsion Laboratory Publication, Pasadena, Ca., pp. 232-247.

    Google Scholar 

  • Boardman, J.W. and Goetz, A.F.H. (1991) ‘Sedimentary facies analysis using AVIRIS data: a geographysical inverse problem’, in R.O. Green (ed.) Proceedings, Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, National Aeronautics and Space Administration, Jet Propulsion Laboratory Publication, Pasadena, Ca., pp. 4–13.

    Google Scholar 

  • Boxall, S.R. and Matthews, A. (1990) ‘Results of the CASI campaign in the West Solent’, Proceedings, NERC Workshop on Airborne Remote Sensing, Natural Environment Research Council, Swindon, pp. 255–257.

    Google Scholar 

  • Boxall, S.R. and Reilly, J.E. (1989) ‘Results of the fluorescence line imager marine campaign in the West Solent’, Proceedings, NERC Workshop on Airborne Remote Sensing, Natural Environment Research Council, Swindon, pp. 93–108.

    Google Scholar 

  • Buxton, R.A.H. (1988) ‘The FLI airborne imaging spectrometer: a highly versatile sensor for many applications’, Proceedings, ESA Workshop on Imaging Spectrometry, ESA SP-1101, European Space Agency, Noordwijk, pp. 11–16.

    Google Scholar 

  • Card, D.H., Peterson, D.L., Matson, P.A. and Aber, J.D. (1988) ‘Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy’, Remote Sensing of Environment 26, 123–147.

    Google Scholar 

  • Carder, K.L., Reinersman, P., Chen, R. and Muller-Karger, F. (1993) ‘AVIRIS calibration and application in coastal oceanic environments’, Remote Sensing of Environment, 44, 205–216.

    Google Scholar 

  • CEOS (1992) The Relevance of Satellite Missions to the Study of the Global Environment, Committee on Earth Observation Satellites, London.

    Google Scholar 

  • Chen, Z., Curran, P.J. and Hansom, J.D. (1992) ‘Derivative reflectance spectroscopy to estimate suspended sediment concentration’, Remote Sensing of Environment 40, 67–77.

    Google Scholar 

  • Clevers, J. (1994) Imaging spectrometry in agriculture-plant vitality and yield indicators, in J. Hill and J. Mégier (eds.) Imaging Spectrometry-a Tool for Environmental Observations, Kluwer Academic Publishers, Dordrecht (this volume).

    Google Scholar 

  • Conel, J.E., Green, R.O., Carrere, V., Margolis, J.J., Vane, G., Breugge, C. and Alley, R. (1989) ‘Spectroscopic measurements of atmospheric water vapour and schemes for determination of evaporation from land and water surfaces using AVIRIS’, Proceedings, IGARSS’ 89, IEEE, New York, pp. 2658–2663.

    Google Scholar 

  • Curran, P.J. (1987) ‘Remote sensing methodologies and geography’, International Journal of Remote Sensing 8, 1255–1275.

    Google Scholar 

  • Curran, P.J. (1989) ‘Remote sensing of foliar chemistry’, Remote Sensing of Environment, 29, 271–178.

    Google Scholar 

  • Curran, P.J. (1992) ‘Estimating foliar chemical concentrations with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)’, International Archives of Photogrammetry and Remote Sensing, Commission VII, ISPRS, Washington DC, pp. 705–708.

    Google Scholar 

  • Curran, P.J. (1994) ‘Attempts to drive ecosystem simulation models at local to regional scales’, in G.M. Foody and P.J. Curran (eds.) Environmental Remote Sensing from Regional to Global Scales, Wiley and Sons, Chichester, 149–166.

    Google Scholar 

  • Curran, P.J. and Dungan, J.L. (1989) ‘Estimation of signal-to-noise: a new procedure applied to AVIRIS data’, IEEE Transactions on Geoscience and Remote Sensing 27, 620–628.

    Google Scholar 

  • Curran, P.J. and Dungan, J.L. (1990) ‘An image recorded by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)’, International Journal of Remote Sensing 11, 929–931.

    Google Scholar 

  • Curran, P.J., Dungan, J.L. and Gholz, H.L. (1990) ‘Exploring the relationship between reflectance red edge and chlorophyll content in slash pine’, Tree Physiology 7, 33–48.

    Google Scholar 

  • Curran, P.J., Dungan, J.L. and Smith, G.M. (1991a) ‘Increasing the signal-to-noise ratio of AVIRIS imagery through repeated sampling’, in R.O. Green (ed.) Proceedings of the Airborne Geoscience Workshop, National Aeronautics and Space Administration, Jet Propulsion Laboratory Publication, Pasadena, Ca., pp. 164–167.

    Google Scholar 

  • Curran, P.J., Dungan, J.L., Macler, B.A. and Plummer, S.E. (1991b) ‘The effect of a red leaf pigment on the relationship between red edge and chlorophyll concentration’, Remote Sensing of Environment 35, 69–76.

    Google Scholar 

  • Curran, P.J., Dungan, J.L., Macler, B.A., Plummer, S.E. and Peterson, D.L. (1992) ‘Reflectance spectroscopy of fresh whole leaves for the estimation of chemical composition’, Remote Sensing of Environment 39, 153–166.

    Google Scholar 

  • Daedalus Enterprises Inc. (1990) The Daedalus MIVIS: Multispectral Infrared and Visible Infrared Imaging Spectrometer, Daedalus Enterprises Inc., Ann Arbor, Michigan.

    Google Scholar 

  • Dekker, A.G. and Donze, M. (1994) ‘Imaging spectrometry as a research tool for inland water resources analysis’, in J. Hill and J. Mégier (eds.) Imaging Spectrometry-a Tool for Environmental Observations, Kluwer Academic Publishers, Dordrecht (this volume).

    Google Scholar 

  • Dekker, A.G., Malthus, T.J. and Seyhan, E. (1991) ‘Quantitative modelling of inland water quality for high-resolution MSS systems’, IEEE Transactions on Geoscience and Remote Sensing 29, 89–95.

    Google Scholar 

  • Dixit, L. and Ram, S. (1985) ‘Quantitative analysis by derivative electronic spectroscopy’, Applied Spectroscopy Reviews 21, 311–418.

    Google Scholar 

  • Donoghue, D.N.M. and Robinson, D.R. (1990) ‘A flexible data analysis system for high spectral resolution data for MS-DOS computers’, in S.E. Plummer (ed.) Applications and Developments in Imaging Spectrometry, Remote Sensing Society, Nottingham, pp. 54–60.

    Google Scholar 

  • Drake, N.A. (1990) ‘Mapping rocks, soils and vegetation communities with the GERIS using linear mixture modelling and post-processing techniques’, in S.E. Plummer (ed.) Applications and Developments in Imaging Spectrometry, Remote Sensing Society, Nottingham, pp. 61–69.

    Google Scholar 

  • Elvidge, CD. (1990) ‘Visible and infrared reflectance characteristics of dry, plant materials’, International Journal of Remote Sensing 11, 1775–1796.

    Google Scholar 

  • Elvidge, CD., Chen, Z., Portigal, F.P. and Groeneveld, D.P. (1991) ‘Detection of trace quantities of green vegetation in AVIRIS data’, in R.O. Green (ed.) Proceedings, Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, National Aeronautics and Space Administration, Jet Propulsion Laboratory Publication, Pasadena, Ca., pp. 183–189.

    Google Scholar 

  • ESA (1991) Report of the Earth Observation User Consultation Meeting, European Space Agency, Noordwijk.

    Google Scholar 

  • ESA (1992) MERIS: Medium Resolution Imaging Spectrometer, European Space Agency, Noordwijk.

    Google Scholar 

  • Escadafal, R. (1994) ‘Soil spectral properties and their relationship with environmental parameters-examples from arid regions’, in J. Hill and J. Mégier (eds.) Imaging Spectrometry-a Tool for Environmental Observations, Kluwer Academic Publishers, Dordrecht (this volume).

    Google Scholar 

  • Farrand W.H. and Singer, R.B. (1991) ‘Analysis of altered volcanic pyroclasts using AVIRIS data’, in R.O. Green (ed.) Proceedings, Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, National Aeronautics and Space Administration, Jet Propulsion Laboratory Publication, Pasadena, Ca., pp. 248–257.

    Google Scholar 

  • Feind, R.E., Christopher, S.A. and Welch, R.M. (1992) ‘Spatial resolution and cloud optical thickness retrievals’, in R.O. Green (ed.) Third JPL Airborne Geoscience Workshop, National Aeronautics and Space Administration, Jet Propulsion Laboratory Publication, Pasadena, Ca., 1, pp. 14–16.

    Google Scholar 

  • Fitzgerald, M. and Ustin, S. (1992) ‘Measuring dry plant residues in grasslands: a case study using AVIRIS’, in R.O. Green (ed.) Third Airborne Geoscience Workshop, National Aeronautics and Space Administration, Jet Propulsion Laboratory Publication, Pasadena, Ca., 1, pp. 91–93.

    Google Scholar 

  • Gao, B.C. and Goetz, A.F.H. (1989) ‘Column atmospheric water vapour, retrievals for airborne imaging spectrometer data’, Proceedings, IGARSS’ 90/12th Canadian Symposium on Remote Sensing, IEEE, New York, 4, pp. 2664–2668.

    Google Scholar 

  • Gao, B.C. and Goetz, A.F.H. (1991) ‘Cloud area determination from AVIRIS data using water vapour channels near 1 µm’. Journal of Geophysical Research 96, 2857–2864.

    Google Scholar 

  • Gao, B.C. and Goetz, A.F.H. (1992) ‘Separation of cirrus cloud from clear surface from AVIRIS data using the 1.38 µm water vapour band’, in R.O. Green (ed.) Third Airborne Geoscience Workshop, National Aeronautics and Space Administration, Jet Propulsion Laboratory Publication, Pasadena, Ca., 1, pp. 98–100.

    Google Scholar 

  • George, D.G. (1990) ‘Results of the 1989 imaging spectroscopy surveys of Windermere and Esthwaite Water’, Proceedings, NERC Workshop on Airborne Remote Sensing, Natural Environment Research Council, Swindon, pp. 297–302.

    Google Scholar 

  • GER (1992) GER Corporation’s Digital Airborne Imaging Spectrometer DAIS-7915, Geophysical and Environmental Research Corporation, New York.

    Google Scholar 

  • Goetz, A.F.H. ed. (1987) HIRIS High Resolution Imaging Spectrometer: Science Opportunities for the 1990s, National Aeronautics and Space Administration, Washington, DC.

    Google Scholar 

  • Goetz, A.F.H. (1991) ‘Imaging spectrometry for studying Earth, air, fire and water’, EARSeL Advances in Remote Sensing 1, 3–15.

    Google Scholar 

  • Goetz, A.F.H. and Calvin, W.M. (1987) ‘Imaging spectrometry: spectral resolution and analytical identification of spectral features’, Proceedings, Society of Photo-Optical Instrumentation Engineers, 834, SPIE, Bellingham, Wa., pp. 158–165.

    Google Scholar 

  • Goetz, A.F.H. and Herring, M. (1989) ‘The High Resolution Imaging Spectrometer (H1RJS) for EOS’, IEEE Transactions on Geoscience and Remote Sensing 27, 137–144.

    Google Scholar 

  • Goetz, A.F.H., Vane, G., Solomon, J.E. and Rock, B.N. (1985) ‘Imaging spectrometry for Earth remote sensing’, Science 228, 1147–1153.

    Google Scholar 

  • Gower, J.F.R. (1990) ‘New results in coastal remote sensing with imaging spectroscopy’, in S.E. Plummer (ed.) Applications and Developments in Imaging Spectrometry, Remote Sensing Society, Nottingham, pp. 1–10.

    Google Scholar 

  • Gower, J.F.R. and Borstad, G.A. (1981) ‘Use of the in vivo fluorescence line imager at 865 nm for remote sensing of surface chlorophyll a’, in J.F.R. Gower (ed.) Oceanography from Space, Plenum Press, New York, pp. 329–338.

    Google Scholar 

  • Gower, J.F.R. and Borstad, G.A. (1990) ‘Mapping of phytoplankton by solar-stimulated fluorescence using an imaging spectrometer’, International Journal of Remote Sensing 11, 313–320.

    Google Scholar 

  • Green, R.O., Conel, J.E., Margolis, J.S., Bruegge, C.J. and Hoover, G.C. (1991) ‘An inversion algorithm for retrieval of atmospheric and leaf water absorption from AVIRIS radiance with compensation for atmospheric scattering’, in R.O. Green (ed.) Proceedings, Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, National Aeronautics and Space Administration, Jet Propulsion Laboratory Publication, Pasadena, Ca., pp. 51–61.

    Google Scholar 

  • Hickman, G.D. and Duggin, M.J. (1992) ‘Hyperspectral modeling for extracting aerosols from aircraft/satellite data’, in R.O. Green (ed.) Third JPL Airborne Geoscience Workshop, National Aeronautics and Space Administration, Jet Propulsion Laboratory Publication, Pasadena, Ca., 1, pp. 20–22.

    Google Scholar 

  • Hill, J., Mehl, W., and Altherr, M. (1994) ‘Land degradation and soil erosion mapping in a Mediterranean ecosystem’, in J. Hill and J. Mégier (eds.) Imaging Spectrometry-a Tool for Environmental Observations, Kluwer Academic Publishers, Dordrecht (this volume).

    Google Scholar 

  • Hollinger, A.B., Gray, L.H., Gower, J.F.R. and Edel, H.R. (1987) ‘The fluorescence line imager: an imaging spectrometer for ocean and land remote sensing’, Proceedings, Society of Photo Optical Instrumentation Engineers, 834, SPIE, Bellingham, pp. 2–11.

    Google Scholar 

  • Huegel, F.G. (1987) ‘Advanced Solidstate Array Spectroradiometer: sensor and calibration improvements’, Proceedings, Society of Photo-Optical Instrumentation Engineers, 834, SPIE, Bellingham, Wa., pp. 12–15.

    Google Scholar 

  • Hunt, G.R. (1980) ‘Electromagnetic radiation: the communication link in remote sensing’, in B. Siegal and A. Gillespie (eds), Remote Sensing in Geology, Wiley, New York, pp. 5–45.

    Google Scholar 

  • Hunt, G.R. and Salisbury, J.W. (1970) ‘Visible and near-infrared spectra of minerals and rocks-I: Silicate minerals’, Modern Geology 1, 238–300.

    Google Scholar 

  • Hunt, G.R. and Salisbury, J.W. (1971) ‘Visible and near infrared spectra of minerals and rocks-II: Carbonates’, Modern Geology 2, 23–30.

    Google Scholar 

  • Hunt, G.R., Salisbury, J.W. and Lenhoff, C.J. (1971) ‘Visible and near-infrared spectra of minerals and rocks-II: Oxides and hydroxides’, Modern Geology 2, 195–205.

    Google Scholar 

  • Huntspiller, A. and Taranik, J.V. (1986) ‘Detection of hydrothermal alteration at Virginia City, Nevada, using Airborne Imaging Spectrometry AIS’, in G. Vane and A.F.H. Goetz (eds) Proceedings, Second Airborne Imaging Spectrometer Data Analysis Workshop National Aeronautics and Space Administration, Jet Propulsion Laboratory Publication, Pasadena, Ca., pp. 102–108.

    Google Scholar 

  • Irons, J.R., Ranson, K.J., Williams, D.L., Irish, R.R. and Huegel, F.G. (1991) ‘An off-nadir pointing imaging spectroradiometer for terrestrial ecosystem studies’, IEEE Transactions on Geoscience and Remote Sensing 29, 66–74.

    Google Scholar 

  • Janetos, A.C., Aber, J.D. and Wickland, D.E. (1992) Workshop Report: Measuring Canopy Chemistry with High Spectral Resolution Remote Sensing Data, NASA White Paper, National Aeronautics and Space Administration, Headquarters, Washington, DC.

    Google Scholar 

  • Johnson, W.B. and Melfi, S.H. (1989) Airborne Geoscience: The Next Decade, National Aeronautics and Space Administration, Washington, DC.

    Google Scholar 

  • Johnson, L.F. and Peterson, D.L. (1991) ‘AVIRIS observation of forest ecosystems along the Oregon transect’, in R.O. Green (ed.) Proceeding, Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, National Aeronautics and Space Administration Jet Propulsion Laboratory Publication, Pasadena, Ca., pp. 190–199.

    Google Scholar 

  • Kerekes, J.P. and Landgrebe, D.A. (1991) ‘Parameter trade-offs for imaging spectrometer systems’, IEEE Transactions on Geoscience and Remote Sensing 29, 57–65.

    Google Scholar 

  • King, M.D., Kaufman, Y.J., Menzel, W.P. and Tanré D. (1992) ‘Remote sensing of cloud, aerosol and water vapour properties from the Moderate Resolution Imaging Spectrometer (MODIS)’, IEEE Transactions on Geoscience and Remote Sensing 30, 2–27.

    Google Scholar 

  • Kruse, F.A. (1988) ‘Use of Airborne Imaging Spectrometer data to map minerals associated with hydrothermally altered rocks in the Northern Grapevine Mountains, Nevada and California’, Remote Sensing of Environment 24, 31–51.

    Google Scholar 

  • Kruse, F.A. (1990) ‘Thematic mapping with an expert system and imaging spectrometers’, Proceedings, International Workshop on Advances in Spatial Information Extraction and Analysis for Remote Sensing, American Society for Photogrammetry and Remote Sensing, Bethesda, Ma., pp. 59–68.

    Google Scholar 

  • Kruse, F.A. and Hauff, P.L. (1991) ‘Identification of illite polytype zoning in disseminated gold deposits using reflectance spectroscopy and X-ray diffraction-potential for mapping with imaging spectrometers’, IEEE Transactions on Geoscience and Remote Sensing 29, 101–104.

    Google Scholar 

  • Kruse, F.A., Taranik, D.L. and Kierein-Young, K.S. (1988) ‘Preliminary analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) for mineralogic mapping at sites in Nevada and Colorado’, in G. Vane (ed.) Proceedings, Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop, National Aeronautics and Space Administration, Jet Propulsion Laboratory Publication, Pasadena, Ca., pp. 76–87.

    Google Scholar 

  • Kunkel, B., Blechinger, F., Viehmann, D., Van der Piepen, H. and Doerffer, R. (1991) ‘ROSIS imaging spectrometer and its potential for ocean parameter measurements (airborne and space-borne)’, International Journal of Remote Sensing 12, 753–761.

    Google Scholar 

  • Lyon, R.J.P. (1987) ‘Evaluation of AIS-2 (1986) data over hydrothermally altered granitoid rocks of the Singatse Range (Yerington) Nevada and comparison with 1985 AIS-1 data’, in G. Vane (ed.) Proceedings, Third Airborne Imaging Spectrometer Data Analysis Workshop, National Aeronautics and Space Administration, Jet Propulsion Laboratory Publication, Pasadena, Ca., pp. 107–119.

    Google Scholar 

  • McDonald, A.J.W., Wadge, G. and Murphy, R.J. (1989) ‘Imaging spectroscopy for geobotanical mapping: porphyry copper mineralisation covered by pasture in Dyfed’, Proceedings, NERC Workshop on Airborne Remote Sensing, Natural Environment Research Council, Swindon, pp. 59–75.

    Google Scholar 

  • McLellan, T.M., Martin, M.E., Aber, J.D., Melillo, J.M., Nadelhoffer, K.J. and Dewey, B. (1991) ‘Comparison of wet chemistry and near infrared reflectance measurements of carbon-fraction chemistry and nitrogen concentration of forest foliage’, Canadian Journal of Forest Research 21, 1689–1693.

    Google Scholar 

  • Meer, Van der F.D. (1992) ‘A comparison of conventional classification methods and a new indicator kriging based method using high-spectral resolution images (AVIRIS)’, International Archives of Photogrammetry and Remote Sensing, Commission VII, Washington, D.C., 11, 72–79.

    Google Scholar 

  • Mehl, W. (1994) ‘Imaging spectrometry data analysis-processing requirements and available software tools’, in J. Hill and J. Mégier (eds.) Imaging Spectrometry-a Tool for Environmental Observations, Kluwer Academic Publishers, Dordrecht (this volume).

    Google Scholar 

  • Melack, J.M. and Gastil, M. (1990) ‘Reflectance spectra from eutrophic Mono Lake, California measured with the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS)’, Society for Photo-Optical Instrumentation Engineers, SPIE 1298, Bellingham, Wa, pp. 202–212.

    Google Scholar 

  • Melack, J.M. and Gastil, M. (1992) ‘Seasonal and spatial variations in phytoplanktonic chlorophyll in eutroptric Mono Lake, California, measured with the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS)’, in R.O. Green (ed.) Third JPL Airborne Geoscience Workshop, National Aeronautics and Space Administration, Jet Propulsion Laboratory Publication, Pasadena, Ca, 1, pp. 53–55.

    Google Scholar 

  • Miller, J.R. and Hare, E.W. (1989) ‘Imaging spectrometry as a tool for botanical mapping’, Proceedings, Society of Photo-Optical Instrumentation Engineers, 834, SPIE, Bellingham, Wa., pp. 108–113.

    Google Scholar 

  • Moore, G. and Aiken, J. (1990) ‘Aircraft multispectral remote sensing of water colour off Helgoland’ in S.E. Plummer (ed.) Applications and Developments in Imaging Spectrometry, Remote Sensing Society, Nottingham, pp. 18–31.

    Google Scholar 

  • Mouchot, M.C., Sharp, G. and Lambert, E. (1988) ‘L’utilisation du ‘Fluorescence Line Imager’ (FLI) pour la cartographie thematique des vegetaux marins submerges’, Proceedings, 11th Canadian Symposium on Remote Sensing, CRSS, Waterloo, pp. 699–708.

    Google Scholar 

  • Mustard, J.F. and Pieters, C.M. (1986) ‘Abundance and distribution of mineral components associated with Moses Rock (Kimberlite) diatreme’, in G. Vane and A.F.H. Goetz (eds) Proceedings, Second Airborne Imaging Spectrometer Data Analysis Workshop, National Aeronautics and Space Administration, Jet Propulsion Laboratory Publication, Pasadena, Ca., pp. 81–85.

    Google Scholar 

  • Mustard, J.F., Hurtrez, S., Pinet, P. and Scotin, C. (1992) ‘First results from coordinated AVIRIS, TIMS and ISM (French) data for the Ronda (Spain) and Ben Bousera (Morocco) Peridotites’, in R.O. Green (ed.) Third JPL Airborne Geosciences Workshop, National Aeronautics and Space Administration, Jet Propulsion Laboratory Publication, Pasadena, Ca., 1, pp. 26–28.

    Google Scholar 

  • Nakashima, B.S., Borstad, G.A., Hill, D.A. and Kerr, R.C. (1989) ‘Remote sensing offish schools: early results from a ditigal imaging spectrometer’, Proceedings 1GARSS’ 89/12th Canadian Symposium on Remote Sensing, IEEE, New York, 4, pp. 2044–2047.

    Google Scholar 

  • Oppenheimer, C., Pieri, D., Carrere, V., Abrams, M., Rothery, D. and Francis, P. (1992) ‘Volcanic thermal features observed by AVIRIS’, in R.O. Green (ed.) Third JPL Airborne Geoscience Workshop, National Aeronautics and Space Administration, Jet Propulsion Laboratory Publication, Pasadena, Ca., 1, pp. 41–43.

    Google Scholar 

  • Peterson, D.L. (1991) Report on the Workshop Remote Sensing of Plant Biochemical Content: Theoretical and Empirical Studies, NASA White Paper, NASA Ames Research Center, Ca.

    Google Scholar 

  • Peterson, D.L., Aber, J.D., Matson, P.A., Card, D.H., Swanberg, N., Wessman, C. and Spanner, M. (1988) ‘Remote sensing of forest canopy and leaf biochemical contents’, Remote Sensing of Environment 34, 85–108.

    Google Scholar 

  • Pettersson, L.H. (1990) ‘Norwegian remote sensing spectrometry for mapping and monitoring of algal blooms and pollution-NORSMAP ‘89’, in S.E. Plummer (ed.) Applications and Developments in Imaging Spectrometry, Remote Sensing Society, Nottingham, pp. 11–17.

    Google Scholar 

  • Pieters, CM. and Mustard, J.F. (1988) ‘Exploration of crustal/mantal material for the Earth and Moon using reflectance spectroscopy’, Remote Sensing of Environment 24, 151–178.

    Google Scholar 

  • Porter, W.M. and Enmark, H.T. (1987) ‘A system overview of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)’, Proceedings, Society of Photo-Optical Instrumentation Engineers, 834, SPIE, Bellingham, Wa., pp. 22–31.

    Google Scholar 

  • Precision Visuals (1992) PV WAVE, Precision Visuals Inc., Boulder, Co.

    Google Scholar 

  • Rast, M. (1991) Imaging Spectroscopy and its Application in Spaceborne Systems, ESA SP-1144, European Space Agency, Noordwijk.

    Google Scholar 

  • Rast, M., Hook, S.J., Elvidge, C.D. and Alley, R.E. (1991) ‘An evaluation of techniques for the extraction of mineral absorption features from high spectral resolution remote sensing data’, Photogrammetric Engineering and Remote Sensing 57, 1303–1309.

    Google Scholar 

  • Ridd, M.K., Ritter, N.D., Bryant, N.A. and Green, R.O. (1992) ‘AVIRIS data and neural networks applied to an urban ecosystem’, in R.O. Green (ed.) Third Airborne Geoscience Workshop, National Aeronautics and Space Administration, Jet Propulsion Laboratory, Pasadena, Ca., 1, pp. 129–131.

    Google Scholar 

  • Riggs, G.A. and Running, S.W. (1991) ‘Detection of canopy water stress in conifers using the airborne imaging spectrometer’, Remote Sensing of Environment 35, 51–68.

    Google Scholar 

  • Rivard, B. and Arvidson, R.E. (1992) ‘Utility of imaging spectrometry for lithologic mapping in Greenland’, Photogrammetric Engineering and Remote Sensing 58, 945–949.

    Google Scholar 

  • Roberts, D.A., Smith, M.O. and Adams, J.B. (1993) ‘Green vegetation, non-photosynthetic vegetation and soils in AVIRIS data’, Remote Sensing of Environment, 44, 255–269.

    Google Scholar 

  • Rock, B.N., Hoshizaki, T. and Miller, J.R. (1988) ‘Comparison of in situ and airborne spectral measurements of the blue shift associated with forest decline’, Remote Sensing of Environment 24, 109–127.

    Google Scholar 

  • Rothery, D.A. and Oppenheimer, C.M.M. (1990) ‘The potential of imaging spectrometry for measuring surface temperatures and energy budgets of volcanoes’, in S.E. Plummer (ed.) Applications and Developments in Imaging Spectrometry, Remote Sensing Society, Nottingham, pp. 70–74.

    Google Scholar 

  • Salomonson, V.V., Barnes, W.L., Maymon, P.W., Montgomery, H.E. and Ostrow, H. (1989) ‘MODIS: Advanced Facility Instrument for studies of the Earth as a system’, IEEE Transactions on Geoscience and Remote Sensing 22, 145–153.

    Google Scholar 

  • Schanzer, D. and Staenz, K. (1992) ‘Discussion of band selection and methodologies for the estimation of precipitable water vapour from AVIRIS data’, in R.O. Green (ed.) Third Airborne Geoscience Workshop, National Aeronautics and Space Administration, Jet Propulsion Laboratory Publication, Pasadena, Ca., 1, pp. 135–137.

    Google Scholar 

  • Slater, P.N. (1985) ‘Survey of multispectral imaging systems for Earth observation’, Remote Sensing of Environment 17, 85–102.

    Google Scholar 

  • Smith, M.O., Adams, J.B., and Sabol, D.E. (1994a) ‘Spectral mixture analysis-new strategies for the analysis of multispectral data’, in J. Hill and J. Mégier (eds.) Imaging Spectrometry-a Tool for Environmental Observations, Kluwer Academic Publishers, Dordrecht (this volume).

    Google Scholar 

  • Smith, M.O., Adams, J.B., and Sabol, D.E. (1994b) ‘Mapping sparse vegetation canopies’, in J. Hill and J. Mégier (eds.) Imaging Spectrometry-a Tool for Environmental Observations, Kluwer Academic Publishers, Dordrecht (this volume).

    Google Scholar 

  • Ustin, S.L., Smith, M.O., Roberts, D., Gammon, J.A. and Field, C.B. (1992) ‘Using AVIRIS images to measure temporal trends in abundance of photosynthetic and non-photosynthetic canopy components’, in R.O. Green (ed.) Proceedings, Third JPL Airborne Geoscience Workshop, National Aeronautics and Space Administration, Jet Propulsion Laboratory Publication, Pasadena, Ca., 1, pp. 5–10.

    Google Scholar 

  • Vane, G. ed. (1987) Proceedings, Third Airborne Imaging Spectrometer Data Analysis Workshop, National Aeronautics and Space Administration, Jet Propulsion Publication, Pasadena, Ca.

    Google Scholar 

  • Vane, G. ed. (1988) Proceedings, Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop, National Aeronautics and Space Administration, Jet Propulsion Laboratory Publication, Pasadena, Ca.

    Google Scholar 

  • Vane, G. and Goetz, A.F.H. eds (1985) Proceedings, Airborne Imaging Spectrometer Data Analysis Workshop, National Aeronautics and Space Administration, Jet Propulsion Laboratory Publication, Pasadena, Ca.

    Google Scholar 

  • Vane, G. and Goetz, A.F.H. eds (1986) Proceedings, Second Airborne Imaging Spectrometer Data Analysis Workshop, National Aeronautics and Space Administration, Jet Propulsion Laboratory Publication, Pasadena, Ca.

    Google Scholar 

  • Vane, G. and Goetz, A.F.H. (1988) ‘Terrestrial imaging spectrometry’, Remote Sensing of Environment 24, 1–29.

    Google Scholar 

  • Verstraete, M.M. and Pinty, B. (1992) ‘Extracting surface properties from satellite data in the visible and near-infrared wavelengths’, in P.M. Mather (ed.) TERRA-I Understanding the Terrestrial Environment, Taylor and Francis, London, pp. 203–209.

    Google Scholar 

  • Wessman, C.A. (1994a) ‘Remote sensing and the estimation of ecosystem parameters and functions’, in J. Hill and J. Mégier (eds.) Imaging Spectrometry-a Tool for Environmental Observations, Kluwer Academic Publishers, Dordrecht (this volume).

    Google Scholar 

  • Wessman, C.A. (1994b) ‘Estimating canopy biochemistry through imaging spectrometry’, in J. Hill and J. Mégier (eds.) Imaging Spectrometry-a Tool for Environmental Observations, Kluwer Academic Publishers, Dordrecht (this volume).

    Google Scholar 

  • Wessman, C.A., Aber, J.D., Peterson, D.L. and Melillo, J.M. (1988a) ‘Foliar analysis using near infrared reflectance spectroscopy’, Canadian Journal of Forest Research 18, 6–11.

    Google Scholar 

  • Wessman, C.A., Aber, J.D., Peterson, D.L. and Melillo, J.M. (1988b) ‘Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems’, Nature 335, 154–156.

    Google Scholar 

  • Wilson, A.K. (1990) ‘The NERC 1989 Compact Airborne Spectrographic Imager (CASI) Campaign’, Proceedings, NERC Workshop on Airborne Remote Sensing, Natural Environment Research Council, Swindon, pp. 259–283.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 ECSC, EEC, EAEC, Brussels and Luxembourg

About this chapter

Cite this chapter

Curran, P.J. (1994). Imaging Spectrqmetry - Its Present And Future RÔLe In Environmental Research. In: Hill, J., Mégier, J. (eds) Imaging Spectrometry — a Tool for Environmental Observations. Eurocourses: Remote Sensing, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-0-585-33173-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-33173-7_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-2965-7

  • Online ISBN: 978-0-585-33173-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics