Advertisement

Are Subretinal Microphotodiodes Suitable as a Replacement For Degenerated Photoreceptors?

  • E. Zrenner
  • S. Weiss
  • A. Stett
  • B. Brunner
  • V. R. Gabel
  • M. Graf
  • H. G. Graf
  • H. Haemmerle
  • B. Hoefflinger
  • K. Kobuch
  • K. -D. Miliczek
  • W. Nisch
  • H. Sachs
  • M. Stelzle

Abstract

The feasibility of a retinal prosthesis for the blind has been discussed since the 1950s. Early attempts to realize a subretinal implantable prosthesis suffered from technical and microsurgical limitations at that time. Nowadays these problems can be solved because of the amazing progress that has been made in the fields of intraocular surgery, silicon microfabrication and our knowledge of the silicon/neuron junction. Therefore, a new attempt to develop a retinal prosthesis seems justified. While other research groups1, 2, 3 have concentrated their efforts on the development of an epiretinal visual prosthesis, which receives energy and preprocessed visual information via a relatively complex telemetric system, Chow and coworkers4, 5, 6, 7 published the concept of a retinal implant consisting of thousands of microphotodiodes. The principle of this concept is based on an implant that is placed in subretinal space and stimulates the underlying retinal cells with the photocurrents generated solely from the incident light (Fig. 1).

Keywords

Ganglion Cell Current Pulse Kynurenic Acid Subretinal Space Retinal Prosthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.F. Rizzo and J. Wyatt, 1997, Prospects for a visual prosthesis, The Neuroscientist, 3:251–262.CrossRefGoogle Scholar
  2. 2.
    M.S. Humayun, E. de Juan Jr., G. Dagnelie, R.J. Greenberg, R.H. Propst, D.H. Phillips, 1996. Visual perception elicited by electrical stimulation of retina in blind humans, Arch. Ophthalmol. 114:40–46.PubMedGoogle Scholar
  3. 3.
    R. Eckmiller, 1997, Learning retina implants with epiretinal contacts, Ophtalmic Res., 29:281–289.Google Scholar
  4. 4.
    A.Y. Chow, 1993, Electrical stimulation of the rabbit retina with subretinal electrodes and high density microphotodiode array implants, Invest. Ophthalmol. Vis. Sei, 34:835 (Abstract).Google Scholar
  5. 5.
    A.Y. Chow and V.Y. Chow, 1997, Subretinal electrical stimulation of the rabbit retina, Neurosci. Lett., 225:13–16.PubMedCrossRefGoogle Scholar
  6. 6.
    A.Y. Chow, V.Y. Chow, M.T. Pardue, J.I. Perlman, and N.S. Peachey, 1998, Retinal and cortical potentials induced by subretinally implanted microphotodiode arrays, Invest. Ophthalmol. Vis. Sci., 39:565 (Abstract).Google Scholar
  7. 7.
    G. Peyman, A.Y. Chow, C. Liang, V.Y. Chow, J.I. Perlman, and N.S. Peachey, 1998, Subretinal semiconductor microphotodiode array, Ophthalmic Surg. Lasers, 29:234–241.PubMedGoogle Scholar
  8. 8.
    E. Zrenner, K.-D. Miliczek, V.P. Gabel, H.G. Graf, E. Guenther, H. Haemmerle, B. Hoefflinger, K. Kohler, W. Nisch, M. Schubert, A. Stett, and S. Weiss, 1997, The development of subretinal microphotodiodes for replacement of degenerated photoreceptors, Ophthalmic Res., 29:269–280.PubMedCrossRefGoogle Scholar
  9. 9.
    M. Janders, U. Egert, M. Stelzle, and W. Nisch, 1996, Novel thin film micro-electrodes with excellent charge transfer capability for cell stimulation and sensing applications, Proc. 18th Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., #364.Google Scholar
  10. 10.
    K. Kohler, E. Guenther, and E. Zrenner, 1997, Tiermodelle in der Retinitis-pigmentosa-Forschung, Klin. Monatsbl. Augenheilkd., 211:84–93.PubMedCrossRefGoogle Scholar
  11. 11.
    H.J. Sheedlo, V. Gauer, L.X. Li, A.D. Seaton, and J.E. Turner, 1991, Transplantation to the diseased and damaged retina, TINS, 14:347–350.PubMedGoogle Scholar
  12. 12.
    A. Stett, K. Kohler, S. Weiss, H. Haemmerle, and E. Zrenner, 1998, Electrical stimulation of degenerated retina of RCS rats by distally applied spatial voltage patterns, Invest. Ophthalmol. Vis. Sci., 39:162 (Abstract).Google Scholar
  13. 13.
    S. Weiss, T. Herrmann, K. Kohler, A. Stett, and H. Haemmerle, 1998, Spontaneous and electrically evoked spatio-temporal firing patterns in the RCS rat retina, Invest. Ophthalmol. Vis. Sci., 39:991 (Abstract).Google Scholar
  14. 14.
    M.M. Slaughter and R.F. Miller, 1981, 2-amino-4-phosphonobutyric acid: A new pharmacological tool for retina research, Science, 211:182–184.PubMedCrossRefGoogle Scholar
  15. 15.
    P.A. Coleman, S.C. Massey, and R.F. Miller, 1986, Kynurenic acid distinguishes kainate and quisqualate receptors in the vertebrate retina, Brain Res., 381:172–175.PubMedCrossRefGoogle Scholar
  16. 16.
    K.-D. Miliczek, S. Scholz, R.B. Aramant, M.J. Seiler, R.P. Tornow, K. Kohler, and E. Zrenner. 1998, Subretinal microphotodiodes in rat eyes: Biocompatibility, electroretinography and implantation technique, Invest. Ophthalmol. Vis. Sci., 39:565 (Abstract).Google Scholar

Copyright information

© Kluwer Academic / Plenum Publishers 1999

Authors and Affiliations

  • E. Zrenner
    • 1
  • S. Weiss
    • 1
    • 2
  • A. Stett
    • 1
    • 2
  • B. Brunner
    • 2
  • V. R. Gabel
    • 4
  • M. Graf
    • 3
  • H. G. Graf
    • 3
  • H. Haemmerle
    • 2
  • B. Hoefflinger
    • 3
  • K. Kobuch
    • 4
  • K. -D. Miliczek
    • 1
  • W. Nisch
    • 2
  • H. Sachs
    • 4
  • M. Stelzle
    • 2
  1. 1.Dept. IIUniversity Eye HospitalTübingenGermany
  2. 2.Natural and Medical Sciences InstituteReutlingenGermany
  3. 3.Institute for MicroelectronicsStuttgartGermany
  4. 4.University Eye HospitalRegensburgGermany

Personalised recommendations