Goals,Concepts,and Current State of the Retina Implant Project

  • Rolf Eckmiller


For blind subjects with retina degenerative diseases (especially: retinitis pigmentosa and macular degeneration) to regain visual perception, a team of 14 expert groups develops a partially implantable, learning visual prosthesis (retina implant). This team with experts from several biological, medical, and technological areas is supported by the German research ministry (BMBF) and is coordinated by the author. Retina implants consist of a learning retina encoder (RE)—to be mounted on a frame of glasses or embedded in a contact lens—for the approximate simulation of parts of the retina by transforming light patterns into impulse trains similar to the receptive field properties of ganglion cells, a microcontact foil as retina stimulator (RS) to be implanted adjacent to the ganglion cell layer, and a wireless signal- and energy transmission between RE and RS. The function of the various spatiotemporal filters of the RE, which is being implemented by learning neural nets, will be tuned individually in a dialog with the implant-carrying subject for optimal visual perception.

The development and successful test of retina implant prototypes in animals is expected at the end of the first 4-years research phase in 1999. In a subsequent research phase with participation from industry, the next step for adaptation of the retina implant system for application in humans and first trial tests with a small number of volunteers will follow. It is expected that implant-carrying subjects will be able to recognize position and ‘gestalt’ of larger objects (e.g. window, door, chair, table) based on RE and RS with about 500 microcontacts in connexion with retinal ganglion cells, and that they will be able to walk and orient themselves without help in most unknown environments. This hope is partly based on recent findings that simple gestalt perceptions could already be elicited in several blind subjects by temporary microstimulation of retinal ganglion cells. Furthermore, anatomical studies have recently shown that a significant portion of the ganglion cells and the optic nerve in this group of blind subjects remain intact, even though the layer of photoreceptors is degenerated.


Ganglion Cell Receptive Field Retinal Ganglion Cell Spike Train Retinitis Pigmentosa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DJ. D’Amico, 1994, Diseases of the retina, New England J. Med. 331:95–106.CrossRefGoogle Scholar
  2. 2.
    T.P. Dryja and E.L. Berson, 1995, Retinitis pigmentosa and allied diseases, Invest. Ophthal. & Vis. Sci. 36:1197–1200.Google Scholar
  3. 3.
    R.W. Massof and D. Finkelstein, 1987, A two-stage hypothesis for the natural course of retinitis pigmentosa”, in: Adv. in the Biosciences, Volume 62, pp. 29–58, Pergamon Press.Google Scholar
  4. 4.
    J.L. Stone, W.E. Barlow, M.S. Humayun, E. de Juan, A.H. Milam, and 1992, Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch. Ophthalmol. 110:1634–1639.PubMedGoogle Scholar
  5. 5.
    M.S. Humayun, R.H. Propst, E. de Juan, K. McCormick, and D. Hickingbotham, 1994. Bipolar surface electrical stimulation of the vertebrate retina, Arch. Ophthal. 112:110–116.PubMedGoogle Scholar
  6. 6.
    M.S. Humayun, E. de Juan, G. Dagnelie, R. Greenberg, and R. Propst, 1996, Artificial vision. Invest. Ophthal. & Vis. Sci. 37:S451.Google Scholar
  7. 7.
    J.F. Rizzo, S. Miller, T. Denison, T. Herndon, J.L. Wyatt, 1996, Electrically evoked cortical potentials from stimulation of rabbit retina with a microfabricated electrode array. Invest. Ophthal. & Vis. Sci. 37:S707.Google Scholar
  8. 8.
    M. Becker, M. Braun, and R. Eckmiller, 1998, Retina Implant adjustment with reinforcement learning, in: IEEE Int. Conf. Acustics, Speech, Signal Processing, ICASSP’ 98, Seattle, Volume 2, pp. 1181–1184.Google Scholar
  9. 9.
    R. Eckmiller, 1996, Concerning the development of retina implants with neural nets, in: Proc. Int. Conf. Neural Inf. Proc, ICONIPV6, Hong Kong, Vol. 1, pp. 21–28.Google Scholar
  10. 10.
    R. Eckmiller, 1997, Learning Retina Implants with epiretinal contacts. Ophthalmic Res. 29:281–289.PubMedCrossRefGoogle Scholar
  11. 11.
    R. Hünermann, M. Becker, and R. Eckmiller, 1997, Towards real time implementation of a learning retina encoder, Invest. Ophthal. & Vis. Sci. 38(Suppl.):191.Google Scholar
  12. 12.
    H. Gerding, C. Uhlig, and U. Thelen, 1998, The retina implant project: development of techniques for implantation and epiretinal fixation of stimulators, Invest Ophthal. & Vis. Sci. 39(Suppl.):991.Google Scholar
  13. 13.
    W. Mokwa, H.K. Trieu, and L. Ewe, 1998, Implantable retina stimulator for a retina implant, in: EUF1T’ 98, Aachen, pp. 1788–1792.Google Scholar
  14. 14.
    N. Peixoto, S. Straburger, R. Hornig, P. Walter, P. Szurmann, and R. Eckmiller, 1998, Evaluation of implanted epiretinal microcontacts in the mammalian retina, Invest. Ophthal. & Vis. Sci. 39(Suppl.):902.Google Scholar
  15. 15.
    M. Schwarz, B.J. Hosticka, R. Hauschild, W. Mokwa, M. Scholles, and H.K. Trieu. 1996. Hardware architecture of a neural net based retina implant for patients suffering from retinitis pigmentosa. in: Proc. IEEE ICNN’96, Washington, pp. 653–658.Google Scholar
  16. 16.
    P. Walter, P. Szurmann, N. Peixoto, S. Stra burger, H.K. Trieu, L. Ewe, T. Stiglitz, J.U. Meyer, and K. Heimann, 1998, Evoked cortical potentials after electrical surface stimulation of the rabbits retina, Invest. Ophthal. & Vis. Sci. 39(Suppl.):990.Google Scholar
  17. 17.
    B.B. Lee, J. Pokorny, V.C. Smith, and J. Kremers, 1994, Responses to pulses and sinusoids in macaque ganglion cells. Vision Res. 34:3081–3096.PubMedCrossRefGoogle Scholar
  18. 18.
    R.W. Rodieck, and M. Watanabe, 1993, Survey of the morphology of macaque retinal ganglion cells that project to the pretectum, superior colliculus, and parvicellular laminae of the lateral geniculate nucleus, J. Comp. Neurol. 338:289–303.PubMedCrossRefGoogle Scholar
  19. 19.
    M. Watanabe and R.W. Rodieck, 1989, Parasol and midget ganglion cells of the primate retina, J. Comp. Neurol. 289:434–454.PubMedCrossRefGoogle Scholar
  20. 20.
    T. Yeh, B.B. Lee and J. Kremers, 1996, The time course of adaptation in macaque retinal ganglion cells, Vision. Res. 36:913–931.PubMedCrossRefGoogle Scholar
  21. 21.
    C.A. Curcio, K.R. Sloan, R.E. Kalina, A.E. Hendrickson, 1990, Human photoreceptor topography, J. Comp. Neurol. 292:497–523.PubMedCrossRefGoogle Scholar
  22. 22.
    D.M. Dacey and M.R. Peterson, 1992, Dendritic field size and morphology of midget and parasol ganglion cells of the human retina, Proc. Natl. Acad. Sci. 89:9666–9670.PubMedCrossRefGoogle Scholar
  23. 23.
    J.B. Jonas, U. Schneider, and O.H. Naumann, 1992, Count and density of human retinal photoreceptors, Graefes Arch. Clin. Exp. Ophthal. 230:505–510.Google Scholar
  24. 24.
    H. Kolb, 1994, The architecture of functional neural circuits in the vertebrate retina. Invest. Ophthal. & Vis. Sci. 35:2385–2404.Google Scholar
  25. 25.
    R. Eckmiller, 1975, Electronic simulation of the vertebrate retina. IEEE Trans. Biomed. Eng. BME-22:305–311.CrossRefGoogle Scholar
  26. 26.
    P. Gaudiano, 1992, Toward a unified theory of spatiotemporal processing in the retina, in: Neural Networks for Vision and Image Processing (G. Carpenter, S. Grossberg, eds.), pp. 195–220, MIT Press, Cambridge MA.Google Scholar
  27. 27.
    J. Bullier and L.G. Nowak, 1995, Parallel versus serial processing: New vistas on the distributed organization of the visual system, Curr. Opin. Neurobiol. 5:497–503.PubMedCrossRefGoogle Scholar
  28. 28.
    R. Eckmiller, 1998, Lernfähiger sensomotorischer Encoder für Sehund Hörprothesen, International Patent Application with 28 claims, PCT/EP98/00968, 1998.Google Scholar
  29. 29.
    M. Meister, L. Lagnado, and D.A. Baylor, 1995, Concerted signaling by retinal ganglion cells, Science 270:1207–1210.PubMedCrossRefGoogle Scholar
  30. 30.
    S. Neuenschwander, W. Singer, 1996, Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus, Nature 379:728–733.PubMedCrossRefGoogle Scholar
  31. 31.
    R. Eckmiller and S. Suchert, in press, Strategy for the foundation of a neurotechnology complany, in: Int. Conf. Neural Inf. Proc., ICONIP’ 98, Kitakyushu, November 1998, 8 pages.Google Scholar

Copyright information

© Kluwer Academic / Plenum Publishers 1999

Authors and Affiliations

  • Rolf Eckmiller
    • 1
  1. 1.Department of Computer Science VIUniversity of BonnBonnGermany

Personalised recommendations