Skip to main content

Diverse Localization of Cyclic Nucleotide Gated Channels in the Outer Segments of Rods and Cones

  • Chapter
Retinal Degenerative Diseases and Experimental Therapy

Abstract

The spatial distribution of cyclic nucleotide gated (CNG) channel molecules in photoreceptor outer segments (OS) dissociated from amphibian retinas was investigated by performing immunofluorescent localization of spectrin and using the known spectrin immunoreactivity of the beta subunit of the channel in rods to infer the location of CNG channels. In the OS of rods and cones, anti-spectrin immunoreactivity occurred as a bright streak of fluorescence at the ciliary axoneme. Rod OS displayed an additional pattern of staining not present in cone OS, namely a series of thin, discrete, longitudinal lines of fluorescence that extended the entire length of the OS and coincided with incisures. Thus, the location of immunoreactivity to spectrin in the OS of both photoreceptor cell types coincided with locations known to contain arrays of longitudinally-oriented microtubules. These findings provide strong evidence that CNG channel molecules are confined within OS membranes to specific restricted locations in the immediate vicinity of microtubules, eg., CNG channel molecules may be tethered to microtubules via the spectrin-like portion of their beta subunits. Because the localization of CNG channels within photoreceptor OS is expected to influence the spatiotemporal dynamics of phototransduction and adaptation, the diverse localization of channels within the OS could contribute to the different functional properties of rods and cones. Because evidence suggests that the OS of human and amphibian photoreceptors have similar microtubule-containing cytoskeletal systems at similar locations, the spatial distribution of CNG channel molecules described here for amphibian photoreceptor OS is also expected to occur in human photoreceptor OS. A disturbance in the localization of CNG channels, or in their associations with other molecules or microtubules, within photoreceptor OS is expected to disturb OS structure and function, which may be relevant for some human retinal degenerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Borwein, 1981, The retinal receptor: A description, in: Vertebrate Photoreceptor Optics (J.M. Enoch and F.L. Tobey, eds.), pp. 11–81, Springer Verlag, Berlin.

    Google Scholar 

  2. J.M. Corless and D.R. McCaslin, 1984, Vertebrate visual photoreceptors, in: The Receptors (P.M. Conn. ed.), Vol. 1, pp. 315–376, Academic Press, New York.

    Google Scholar 

  3. M.S. Eckmiller, 1997, Morphogenesis and renewal of cone outer segments, Prog. Ret. Eye Res. 16:401–441.

    Article  Google Scholar 

  4. J.C. Besharse and C.J. Horst, 1990, The photoreceptor connecting cilium, in: Ciliary and Flagellar Membranes (R. Bloodgood, ed.), pp. 389–417, Plenum Press, New York.

    Google Scholar 

  5. D. Roof, M. Adamian, D. Jacobs, and A. Hayes, 1991, Cytoskeletal specializations at the rod photoreceptor distal tip, J. Camp. Neural. 305:289–303.

    Article  CAS  Google Scholar 

  6. M.S. Eckmiller, 1996, Renewal of the ciliary axoneme in cone outer segments of the retina of Xenopus laevis, Cell Tissue Res. 285:165–169.

    Article  PubMed  CAS  Google Scholar 

  7. R.W. Young, 1971, Shedding of discs from rod outer segments in the rhesus monkey, J. Ultrastruct. Res. 34:190–203.

    Article  PubMed  CAS  Google Scholar 

  8. M.S. Eckmiller, 1993, A cytoskeletal system at incisures of rod outer segments and its implications for renewal and retinal degeneration, Invest. Ophthalmol. Vis. Sci. (Suppl.) 34:1359.

    Google Scholar 

  9. M.S. Eckmiller, 1995, Renewal of incisural microtubule cytoskeleton in rod outer segments of a mphibian and primate retinas, Invest. Ophthalmol. Vis. Sci. (Suppl.) 36:514.

    Google Scholar 

  10. M.S. Eckmiller and A. Toman, 1998, Association of kinesin with microtubules in diverse cytoskeletal systems in the outer segments of rods and cones, Ada Anatomica (in press).

    Google Scholar 

  11. T.D. Lamb and E.N. Pugh, 1990, Physiology of transduction and adaptation in rod and cone photoreceptors, in: The Neurosciences, pp. 3–13.

    Google Scholar 

  12. J.L. Miller and J.I. Korenbrot, 1994, Differences in calcium homeostasis between retinal rod and cone photoreceptors revealed by the effects of voltage on the cGMP-gated conductance in intact cells, J. Gen. Physiol. 104:909–940.

    Article  PubMed  CAS  Google Scholar 

  13. Y. Koutalos and K.W. Yau, 1996, Regulation of sensitivity in vertebrate rod photoreceptors by calcium, Trends Neurosci. 19:73–81.

    Article  PubMed  CAS  Google Scholar 

  14. R.W. Rodieck, 1998, The First Steps in Seeing, Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  15. W.N. Zagotta and S.A. Siegelbaum, 1996, Structure and function of cyclic nucleotide-gated channels, Annu. Rev. Neurosci. 19:235–263.

    Article  PubMed  CAS  Google Scholar 

  16. R.S. Molday and L.L. Molday, 1998, Molecular properties of the cGMP-gated channel of rod photoreceptors, Vision Research 38:1315–1323.

    Article  PubMed  CAS  Google Scholar 

  17. L.L. Molday, N.J. Cook, U.B. Kaupp, and R.S. Molday, 1990, The cGMP-gated cation channel of bovine rod photoreceptor cells is associated with a 240-kDa protein exhibiting immunochemical cross-reactivity with spectrin, J. Biol. Chem. 265:18690–18695.

    PubMed  CAS  Google Scholar 

  18. R.S. Molday, L.L. Molday, A. Dosé, I. Clark-Lewis, M. Illing, N.J. Cook, E. Eismann, and U.B. Kaupp, 1991, The cGMP-gated channel of the rod photoreceptor cell characterization and orientation of the amino terminus, J. Biol. Chem. 266:21917–21922.

    PubMed  CAS  Google Scholar 

  19. T.-Y. Chen, Y.-W. Peng, R.S. Dhallan, B. Ahamed, R.R. Reed, and K.-W. Yau, 1993, A new subunit of the cyclic nucleotide-gated cation channel in retinal rods, Nature 362:764–767.

    Article  PubMed  CAS  Google Scholar 

  20. M.E. Grunwald, W.-P. Yu, H.-H. Yu, and K.-W. Yau, 1998, Identification of a domain on the beta-subunit of the rod cGMP-gated cation channel that mediates inhibition by calcium-calmodulin. J. Biol. Chem. 273:9148–9157.

    Article  PubMed  CAS  Google Scholar 

  21. D. Weitz, M. Zoche, F. Müller, M. Beyermann, H.G. Körschen, U.B. Kaupp, and K.-W. Koch, 1998, Calmodulin controls the rod photoreceptor CNG channel through an unconventional binding site in the N-terminus of the beta-subunit, EMBO J. 17:2273–2284.

    Article  PubMed  CAS  Google Scholar 

  22. K.-W. Yau and D.A. Baylor, 1989, Cyclic GMP-activated conductance of retinal photoreceptor cells, Ann. Rev. Neurosci. 12:289–327.

    Article  PubMed  CAS  Google Scholar 

  23. J.W. Karpen, D.A. Loney, and D.A. Baylor, 1992, Cyclic GMP-activated channels of salamander retinal rods: spatial distribution and variation of responsiveness, J. Physiol. 448:257–274.

    PubMed  CAS  Google Scholar 

  24. B.W. Nagle and B. Burnside, 1984, Calmodulin-binding proteins in teleost retina, rod inner and outer segments, and rod cytoskeletons, Europ. J. Cell Biol. 33:248–257.

    PubMed  CAS  Google Scholar 

  25. D. Roof, M. Applebury, and J. Kirsch, 1984, Localization of calmodulin and characterization of calmodulin binding proteins in the vertebrate rod outer segment, Biophys. J. 45:1a.

    Article  Google Scholar 

  26. M.H. Chaitin and D. Bok, 1986, Immunoferritin localization of actin in retinal photoreceptors, Invest. Ophthalmol. Vis. Sci., 27:1764–1767.

    PubMed  CAS  Google Scholar 

  27. D.S. Williams, M.A. Hallett, and K. Arikawa, 1992, Association of myosin with the connecting cilium of rod photoreceptors, J. Cell Science 103:183–190.

    PubMed  CAS  Google Scholar 

  28. L.A. Amos and W.B. Amos, 1991, Molecules of the Cytoskeleton, Macmillan Education Ltd, London.

    Google Scholar 

  29. T. Kreis and R. Vale, 1993, Guidebook to the Cytoskeletal and Motor Proteins, Oxford University Press, New York.

    Google Scholar 

  30. Y. Srinivasan, L. Elmer, J. Davis, V. Bennett, and K. Angelides, 1988, Ankyrin and spectrin associate with voltage-dependent sodium channels in brain, Nature 333:177–180.

    Article  PubMed  CAS  Google Scholar 

  31. S.J. Wood and C.R. Slater, 1998, Beta-spectrin is colocalized with both voltage-gated sodium channels and ankyrinG at the adult rat neuromuscular junction, J. Cell Biol. 140:675–684.

    Article  PubMed  CAS  Google Scholar 

  32. S. Wong and R.S. Molday, 1986, A spectrin-like protein in retinal rod outer segments, Biochemistry 25:6294–6300.

    Article  PubMed  CAS  Google Scholar 

  33. H.G. Körschen, M. Illing, R. Seifert, F. Sesti, A. Williams, S. Gotzes, C. Colville, F. Müller, A. Dosé, M. Godde, L. Molday, U.B. Kaupp, and R.S. Molday, 1995, A 240kDa protein represents the complete beta subunit of the cyclic nucleotide-gated channel from rod photoreceptor, Neuron 15:627–636.

    Article  PubMed  Google Scholar 

  34. D. Weil, S. Blanchard, J. Kaplan, P. Guilford, F. Gibson, J. Walsh, P. Mburu, A. Varela, J. Levilliers, M.D. Weston, P.M. Kelley, W.J. Kimberling, M. Wagenaar, F. Levi-Acobas, D. Larget-Piet, A. Munnich, K.P. Steel, S.D.M. Brown, and G Petit, 1995, Defective myosin VIIA gene responsible for Usher syndrome type 1B, Nature 374:60–61.

    Article  PubMed  CAS  Google Scholar 

  35. X. Liu, G. Vasant, I.P. Udovichenko, U. Wolfram, and D.S. Williams, 1997, Myosin VIIa, the product of the Usher 1B syndrome gene, is concentrated in the connecting cilia of photoreceptor cells, Cell Motil. Cytoskeleton 37:240–252.

    Article  PubMed  CAS  Google Scholar 

  36. M.S. Eckmiller, 1998, Diverse localization of cyclic nucleotide gated channels in rods and cones inferred from spectrin immunolocalization, Invest. Ophthalmol. Vis. Sci. (Suppl.) 39:678.

    Google Scholar 

  37. A. Caretta and H. Saibil, 1989, Visualization of cyclic nucleotide binding sites in the vertebrate retina by fluorescence microscopy, J. Cell Biol. 108:1517–1522.

    Article  PubMed  CAS  Google Scholar 

  38. R.D. Fetter and J.M. Corless, 1987, Morphological components associated with frog cone outer segment disc margins, Invest. Ophthalmol. Vis. Sci. 28:646–657.

    PubMed  CAS  Google Scholar 

  39. R.S. Molday, 1988, Monoclonal antibodies to rhodopsin and other proteins of rod outer segments. Prog. Ret. Res. 8:173–209.

    Article  CAS  Google Scholar 

  40. R.S. Molday, 1994, Peripherin/rds and rom-1: Molecular properties and role in photoreceptor cell degeneration, Prog. Ret. Eye Res. 13:271–299.

    Article  CAS  Google Scholar 

  41. R. Rizzuto, M. Brini, M. Murgia, and T. Pozzan, 1993, Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria, Science 262:744–747.

    Article  PubMed  CAS  Google Scholar 

  42. D.H. Anderson, S.K. Fisher, and R.H. Steinberg, 1978, Mammalian cones: Disc shedding, phagocytosis, and renewal, Invest. Ophthalmol. Vis. Sci. 17:117–133.

    PubMed  CAS  Google Scholar 

  43. R. Allikmets, N.F. Shroyer, N. Singh, J.M. Seddon, R.A. Lewis, P.S. Bernstein, A. Peiffer, N.A. Zabriskie, Y. Li, A. Hutchinson, M. Dean, J.R. Lupski, and M. Leppert, 1997, Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration, Science 277:1805–1807.

    Article  PubMed  CAS  Google Scholar 

  44. R. Allikmets, N. Singh, H. Sun, N.F. Shroyer, A. Hutchinson, A. Chidambaram, B. Gerrard, L. Baird, D. Stauffer, A. Peiffer, A. Rattner, P. Smallwood, Y. Li, K.L. Anderson, R.A. Lewis, J. Nathans, M. Leppert, M. Dean, and J.R. Lupski, 1997, A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy, Nature Genetics 15:236–246.

    Article  PubMed  CAS  Google Scholar 

  45. S.M. Azarian and G.H. Travis, 1997, The photoreceptor rim protein is an ABC transporter encoded by the gene for recessive Stargardt’s disease (ABCR), Fed. Europ. Biochem. Soc. Letters 409:247–252.

    CAS  Google Scholar 

  46. H. Sun and J. Nathans, 1997, Stargardt’s ABCR is localized to the disc membrane of retinal rod outer segments, Nature Genetics 17:15–16.

    Article  PubMed  Google Scholar 

  47. A. Martinez-Mir, E. Paloma, R. Allikmets, C. Ayuso, T. del Rio, M. Dean, L. Vilageliu, R. Gonzàlez-Duarte, and S. Balcells, 1998, Retinitis pigmentosa caused by a homozygous mutation in the Stargardt disease gene ABCR, Nature Genetics 18:11–12.

    Article  PubMed  CAS  Google Scholar 

  48. T.L. McGee, D. Lin, E.L. Berson, and T.P. Dryja, 1994, Defects in the rod cGMP-gated channel gene in patients with retinitis pigmentosa, Invest. Ophthalmol. Vis. Sci. (Suppl.) 35:1716.

    Google Scholar 

  49. T.P. Dryja, J.T. Finn, Y.W. Peng, T.L. McGee, E.L. Berson, and K.W. Yau, 1995, Mutations in the gene encoding the alpha subunit of the rod cGMP-gated channel in autosomal recessive retinitis pigmentosa, Proc. Natl. Acad. Sci. USA. 92:10177–10181.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Eckmiller, M.S. (1999). Diverse Localization of Cyclic Nucleotide Gated Channels in the Outer Segments of Rods and Cones. In: Hollyfield, J.G., Anderson, R.E., LaVail, M.M. (eds) Retinal Degenerative Diseases and Experimental Therapy. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-33172-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-33172-0_42

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46193-4

  • Online ISBN: 978-0-585-33172-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics