Advertisement

Diverse Localization of Cyclic Nucleotide Gated Channels in the Outer Segments of Rods and Cones

  • Marion S. Eckmiller

Abstract

The spatial distribution of cyclic nucleotide gated (CNG) channel molecules in photoreceptor outer segments (OS) dissociated from amphibian retinas was investigated by performing immunofluorescent localization of spectrin and using the known spectrin immunoreactivity of the beta subunit of the channel in rods to infer the location of CNG channels. In the OS of rods and cones, anti-spectrin immunoreactivity occurred as a bright streak of fluorescence at the ciliary axoneme. Rod OS displayed an additional pattern of staining not present in cone OS, namely a series of thin, discrete, longitudinal lines of fluorescence that extended the entire length of the OS and coincided with incisures. Thus, the location of immunoreactivity to spectrin in the OS of both photoreceptor cell types coincided with locations known to contain arrays of longitudinally-oriented microtubules. These findings provide strong evidence that CNG channel molecules are confined within OS membranes to specific restricted locations in the immediate vicinity of microtubules, eg., CNG channel molecules may be tethered to microtubules via the spectrin-like portion of their beta subunits. Because the localization of CNG channels within photoreceptor OS is expected to influence the spatiotemporal dynamics of phototransduction and adaptation, the diverse localization of channels within the OS could contribute to the different functional properties of rods and cones. Because evidence suggests that the OS of human and amphibian photoreceptors have similar microtubule-containing cytoskeletal systems at similar locations, the spatial distribution of CNG channel molecules described here for amphibian photoreceptor OS is also expected to occur in human photoreceptor OS. A disturbance in the localization of CNG channels, or in their associations with other molecules or microtubules, within photoreceptor OS is expected to disturb OS structure and function, which may be relevant for some human retinal degenerations.

Keywords

Retinitis Pigmentosa Outer Segment Photoreceptor Outer Segment Diverse Localization Usher Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Borwein, 1981, The retinal receptor: A description, in: Vertebrate Photoreceptor Optics (J.M. Enoch and F.L. Tobey, eds.), pp. 11–81, Springer Verlag, Berlin.Google Scholar
  2. 2.
    J.M. Corless and D.R. McCaslin, 1984, Vertebrate visual photoreceptors, in: The Receptors (P.M. Conn. ed.), Vol. 1, pp. 315–376, Academic Press, New York.Google Scholar
  3. 3.
    M.S. Eckmiller, 1997, Morphogenesis and renewal of cone outer segments, Prog. Ret. Eye Res. 16:401–441.CrossRefGoogle Scholar
  4. 4.
    J.C. Besharse and C.J. Horst, 1990, The photoreceptor connecting cilium, in: Ciliary and Flagellar Membranes (R. Bloodgood, ed.), pp. 389–417, Plenum Press, New York.Google Scholar
  5. 5.
    D. Roof, M. Adamian, D. Jacobs, and A. Hayes, 1991, Cytoskeletal specializations at the rod photoreceptor distal tip, J. Camp. Neural. 305:289–303.CrossRefGoogle Scholar
  6. 6.
    M.S. Eckmiller, 1996, Renewal of the ciliary axoneme in cone outer segments of the retina of Xenopus laevis, Cell Tissue Res. 285:165–169.PubMedCrossRefGoogle Scholar
  7. 7.
    R.W. Young, 1971, Shedding of discs from rod outer segments in the rhesus monkey, J. Ultrastruct. Res. 34:190–203.PubMedCrossRefGoogle Scholar
  8. 8.
    M.S. Eckmiller, 1993, A cytoskeletal system at incisures of rod outer segments and its implications for renewal and retinal degeneration, Invest. Ophthalmol. Vis. Sci. (Suppl.) 34:1359.Google Scholar
  9. 9.
    M.S. Eckmiller, 1995, Renewal of incisural microtubule cytoskeleton in rod outer segments of a mphibian and primate retinas, Invest. Ophthalmol. Vis. Sci. (Suppl.) 36:514.Google Scholar
  10. 10.
    M.S. Eckmiller and A. Toman, 1998, Association of kinesin with microtubules in diverse cytoskeletal systems in the outer segments of rods and cones, Ada Anatomica (in press).Google Scholar
  11. 11.
    T.D. Lamb and E.N. Pugh, 1990, Physiology of transduction and adaptation in rod and cone photoreceptors, in: The Neurosciences, pp. 3–13.Google Scholar
  12. 12.
    J.L. Miller and J.I. Korenbrot, 1994, Differences in calcium homeostasis between retinal rod and cone photoreceptors revealed by the effects of voltage on the cGMP-gated conductance in intact cells, J. Gen. Physiol. 104:909–940.PubMedCrossRefGoogle Scholar
  13. 13.
    Y. Koutalos and K.W. Yau, 1996, Regulation of sensitivity in vertebrate rod photoreceptors by calcium, Trends Neurosci. 19:73–81.PubMedCrossRefGoogle Scholar
  14. 14.
    R.W. Rodieck, 1998, The First Steps in Seeing, Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  15. 15.
    W.N. Zagotta and S.A. Siegelbaum, 1996, Structure and function of cyclic nucleotide-gated channels, Annu. Rev. Neurosci. 19:235–263.PubMedCrossRefGoogle Scholar
  16. 16.
    R.S. Molday and L.L. Molday, 1998, Molecular properties of the cGMP-gated channel of rod photoreceptors, Vision Research 38:1315–1323.PubMedCrossRefGoogle Scholar
  17. 17.
    L.L. Molday, N.J. Cook, U.B. Kaupp, and R.S. Molday, 1990, The cGMP-gated cation channel of bovine rod photoreceptor cells is associated with a 240-kDa protein exhibiting immunochemical cross-reactivity with spectrin, J. Biol. Chem. 265:18690–18695.PubMedGoogle Scholar
  18. 18.
    R.S. Molday, L.L. Molday, A. Dosé, I. Clark-Lewis, M. Illing, N.J. Cook, E. Eismann, and U.B. Kaupp, 1991, The cGMP-gated channel of the rod photoreceptor cell characterization and orientation of the amino terminus, J. Biol. Chem. 266:21917–21922.PubMedGoogle Scholar
  19. 19.
    T.-Y. Chen, Y.-W. Peng, R.S. Dhallan, B. Ahamed, R.R. Reed, and K.-W. Yau, 1993, A new subunit of the cyclic nucleotide-gated cation channel in retinal rods, Nature 362:764–767.PubMedCrossRefGoogle Scholar
  20. 20.
    M.E. Grunwald, W.-P. Yu, H.-H. Yu, and K.-W. Yau, 1998, Identification of a domain on the beta-subunit of the rod cGMP-gated cation channel that mediates inhibition by calcium-calmodulin. J. Biol. Chem. 273:9148–9157.PubMedCrossRefGoogle Scholar
  21. 21.
    D. Weitz, M. Zoche, F. Müller, M. Beyermann, H.G. Körschen, U.B. Kaupp, and K.-W. Koch, 1998, Calmodulin controls the rod photoreceptor CNG channel through an unconventional binding site in the N-terminus of the beta-subunit, EMBO J. 17:2273–2284.PubMedCrossRefGoogle Scholar
  22. 22.
    K.-W. Yau and D.A. Baylor, 1989, Cyclic GMP-activated conductance of retinal photoreceptor cells, Ann. Rev. Neurosci. 12:289–327.PubMedCrossRefGoogle Scholar
  23. 23.
    J.W. Karpen, D.A. Loney, and D.A. Baylor, 1992, Cyclic GMP-activated channels of salamander retinal rods: spatial distribution and variation of responsiveness, J. Physiol. 448:257–274.PubMedGoogle Scholar
  24. 24.
    B.W. Nagle and B. Burnside, 1984, Calmodulin-binding proteins in teleost retina, rod inner and outer segments, and rod cytoskeletons, Europ. J. Cell Biol. 33:248–257.PubMedGoogle Scholar
  25. 25.
    D. Roof, M. Applebury, and J. Kirsch, 1984, Localization of calmodulin and characterization of calmodulin binding proteins in the vertebrate rod outer segment, Biophys. J. 45:1a.CrossRefGoogle Scholar
  26. 26.
    M.H. Chaitin and D. Bok, 1986, Immunoferritin localization of actin in retinal photoreceptors, Invest. Ophthalmol. Vis. Sci., 27:1764–1767.PubMedGoogle Scholar
  27. 27.
    D.S. Williams, M.A. Hallett, and K. Arikawa, 1992, Association of myosin with the connecting cilium of rod photoreceptors, J. Cell Science 103:183–190.PubMedGoogle Scholar
  28. 28.
    L.A. Amos and W.B. Amos, 1991, Molecules of the Cytoskeleton, Macmillan Education Ltd, London.Google Scholar
  29. 29.
    T. Kreis and R. Vale, 1993, Guidebook to the Cytoskeletal and Motor Proteins, Oxford University Press, New York.Google Scholar
  30. 30.
    Y. Srinivasan, L. Elmer, J. Davis, V. Bennett, and K. Angelides, 1988, Ankyrin and spectrin associate with voltage-dependent sodium channels in brain, Nature 333:177–180.PubMedCrossRefGoogle Scholar
  31. 31.
    S.J. Wood and C.R. Slater, 1998, Beta-spectrin is colocalized with both voltage-gated sodium channels and ankyrinG at the adult rat neuromuscular junction, J. Cell Biol. 140:675–684.PubMedCrossRefGoogle Scholar
  32. 32.
    S. Wong and R.S. Molday, 1986, A spectrin-like protein in retinal rod outer segments, Biochemistry 25:6294–6300.PubMedCrossRefGoogle Scholar
  33. 33.
    H.G. Körschen, M. Illing, R. Seifert, F. Sesti, A. Williams, S. Gotzes, C. Colville, F. Müller, A. Dosé, M. Godde, L. Molday, U.B. Kaupp, and R.S. Molday, 1995, A 240kDa protein represents the complete beta subunit of the cyclic nucleotide-gated channel from rod photoreceptor, Neuron 15:627–636.PubMedCrossRefGoogle Scholar
  34. 34.
    D. Weil, S. Blanchard, J. Kaplan, P. Guilford, F. Gibson, J. Walsh, P. Mburu, A. Varela, J. Levilliers, M.D. Weston, P.M. Kelley, W.J. Kimberling, M. Wagenaar, F. Levi-Acobas, D. Larget-Piet, A. Munnich, K.P. Steel, S.D.M. Brown, and G Petit, 1995, Defective myosin VIIA gene responsible for Usher syndrome type 1B, Nature 374:60–61.PubMedCrossRefGoogle Scholar
  35. 35.
    X. Liu, G. Vasant, I.P. Udovichenko, U. Wolfram, and D.S. Williams, 1997, Myosin VIIa, the product of the Usher 1B syndrome gene, is concentrated in the connecting cilia of photoreceptor cells, Cell Motil. Cytoskeleton 37:240–252.PubMedCrossRefGoogle Scholar
  36. 36.
    M.S. Eckmiller, 1998, Diverse localization of cyclic nucleotide gated channels in rods and cones inferred from spectrin immunolocalization, Invest. Ophthalmol. Vis. Sci. (Suppl.) 39:678.Google Scholar
  37. 37.
    A. Caretta and H. Saibil, 1989, Visualization of cyclic nucleotide binding sites in the vertebrate retina by fluorescence microscopy, J. Cell Biol. 108:1517–1522.PubMedCrossRefGoogle Scholar
  38. 38.
    R.D. Fetter and J.M. Corless, 1987, Morphological components associated with frog cone outer segment disc margins, Invest. Ophthalmol. Vis. Sci. 28:646–657.PubMedGoogle Scholar
  39. 39.
    R.S. Molday, 1988, Monoclonal antibodies to rhodopsin and other proteins of rod outer segments. Prog. Ret. Res. 8:173–209.CrossRefGoogle Scholar
  40. 40.
    R.S. Molday, 1994, Peripherin/rds and rom-1: Molecular properties and role in photoreceptor cell degeneration, Prog. Ret. Eye Res. 13:271–299.CrossRefGoogle Scholar
  41. 41.
    R. Rizzuto, M. Brini, M. Murgia, and T. Pozzan, 1993, Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria, Science 262:744–747.PubMedCrossRefGoogle Scholar
  42. 42.
    D.H. Anderson, S.K. Fisher, and R.H. Steinberg, 1978, Mammalian cones: Disc shedding, phagocytosis, and renewal, Invest. Ophthalmol. Vis. Sci. 17:117–133.PubMedGoogle Scholar
  43. 43.
    R. Allikmets, N.F. Shroyer, N. Singh, J.M. Seddon, R.A. Lewis, P.S. Bernstein, A. Peiffer, N.A. Zabriskie, Y. Li, A. Hutchinson, M. Dean, J.R. Lupski, and M. Leppert, 1997, Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration, Science 277:1805–1807.PubMedCrossRefGoogle Scholar
  44. 44.
    R. Allikmets, N. Singh, H. Sun, N.F. Shroyer, A. Hutchinson, A. Chidambaram, B. Gerrard, L. Baird, D. Stauffer, A. Peiffer, A. Rattner, P. Smallwood, Y. Li, K.L. Anderson, R.A. Lewis, J. Nathans, M. Leppert, M. Dean, and J.R. Lupski, 1997, A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy, Nature Genetics 15:236–246.PubMedCrossRefGoogle Scholar
  45. 45.
    S.M. Azarian and G.H. Travis, 1997, The photoreceptor rim protein is an ABC transporter encoded by the gene for recessive Stargardt’s disease (ABCR), Fed. Europ. Biochem. Soc. Letters 409:247–252.Google Scholar
  46. 46.
    H. Sun and J. Nathans, 1997, Stargardt’s ABCR is localized to the disc membrane of retinal rod outer segments, Nature Genetics 17:15–16.PubMedCrossRefGoogle Scholar
  47. 47.
    A. Martinez-Mir, E. Paloma, R. Allikmets, C. Ayuso, T. del Rio, M. Dean, L. Vilageliu, R. Gonzàlez-Duarte, and S. Balcells, 1998, Retinitis pigmentosa caused by a homozygous mutation in the Stargardt disease gene ABCR, Nature Genetics 18:11–12.PubMedCrossRefGoogle Scholar
  48. 48.
    T.L. McGee, D. Lin, E.L. Berson, and T.P. Dryja, 1994, Defects in the rod cGMP-gated channel gene in patients with retinitis pigmentosa, Invest. Ophthalmol. Vis. Sci. (Suppl.) 35:1716.Google Scholar
  49. 49.
    T.P. Dryja, J.T. Finn, Y.W. Peng, T.L. McGee, E.L. Berson, and K.W. Yau, 1995, Mutations in the gene encoding the alpha subunit of the rod cGMP-gated channel in autosomal recessive retinitis pigmentosa, Proc. Natl. Acad. Sci. USA. 92:10177–10181.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic / Plenum Publishers 1999

Authors and Affiliations

  • Marion S. Eckmiller
    • 1
  1. 1.C. and O. Vogt Brain Research InstituteHeinrich Heine University of Düsseldorf School of MedicineDüsseldorfGermany

Personalised recommendations