Antisense Inactivation of Rds/Peripherin in Xenopus Laevis Embryonic Retinal Cultures

  • Vikas Kancherla
  • Wojciech Kedzierski
  • Gabriel H. Travis
  • Monica M. Jablonski


To investigate the role of rds/J.peripherin in photoreceptor outer segment membrane assembly, we have transfected embryonic Xenopus laevis retinas with phosphorothioated antisense or sense RNA complementary to specific regions of the three Xenopus rds/peripherin homologs. We have demonstrated that using antisense oligonucleotides complementary to the three homologs of rds/peripherin, we can significantly alter the structure of photoreceptor outer and inner segments. In addition, the immunolocalization patterns using xrds35 and -38 anti-peptide sera and an anti-opsin monoclonal antibody were significantly reduced, suggestive of aberrant outer segment membrane assembly. We have successfully generated a model upon which to study the functional role of rds/peripherin, the product of the rds gene, by down-regulating the expression of this protein in developing photoreceptors. A better understanding of rds/peripherin gene expression will shed light on the role of this molecule in rod and cone photoreceptor outer segment development, structure, function and survival. This will also provide additional insights into the mechanisms of, and possibly open new therapeutic avenues for, the retinal degenerative processes taking place in the heterogeneous clinical patterns so far described in association with peripherinJ.RDS human gene mutations in association with autosomal dominant retinitis pigmentosa.


Xenopus Laevis Antisense Oligonucleotide Outer Segment Retinal Degeneration Cone Photoreceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.H. Travis, J.G. Sutcliffe, and D. Bok, 1991, The retinal degeneration slow (rds) gene product is a photoreceptor disc membrane-associated glycoprotein, Neuron 6:61–70.PubMedCrossRefGoogle Scholar
  2. 2.
    R.A. Bascom, S. Manara, L. Collins, R.S. Molday, V.I. Kalnins, and R.R. McInnes, 1992, Cloning of the cDNA for a novel photoreceptor membrane protein (rom-1) identifies a disk rim protein family implicated in human retinopathies, Neuron 8:1171–1184.PubMedCrossRefGoogle Scholar
  3. 3.
    P.K. Bhatia and G.H. Travis, 1994, Rds/peripherin and rom-1: A new class of adhesion molecules, Invest. Ophthalmol. Vis. Sci 35(Suppl.):2675.Google Scholar
  4. 4.
    R.S. Molday, D. Hicks, and L. Molday, 1987, Peripherin. A rim-specific membrane protein of rod outer segment discs., Invest. Ophthalmol. Vis. Sci. 28:50–61.PubMedGoogle Scholar
  5. 5.
    G. Connell, R. Boscom, L. Molday, D. Reid, R. McInnes, and R.S. Molday, 1991, Photoreceptor peripherin is the normal product of the gene responsible for retinal degeneration in the rds mouse., Proc. Natl. Acad. Sci. USA 88:723–726.PubMedCrossRefGoogle Scholar
  6. 6.
    K. Arikawa, L.L. Molday, R.S. Molday, and D.S. Williams, 1992, Localization of peripherin/rds in the disk membranes of cone and rod photoreceptors: Relationship to disk membrane morphogenesis and retinal degeneration., J. Cell Biol. 116:659–667.PubMedCrossRefGoogle Scholar
  7. 7.
    W. Kedzierski, W.N. Moghrabi, A.C. Allen, M.M. Jablonski-Stiemke, S. Azarian, D. Bok, and G.H. Travis, 1996, Three homologs of rdsJ.peripherin in Xenopus laevis photoreceptors that exhibit covalent and non-covalent interactions., J. Cell Sci. 109:2551–2560.PubMedGoogle Scholar
  8. 8.
    O.L. Moritz and R.S. Molday, 1996, Molecular cloning, membrane topology, and localization of bovine rom-1 in rod and cone photoreceptor cells., Invest. Ophthalmol. Vis. Sci. 37:352–365.PubMedGoogle Scholar
  9. 9.
    S. Sanyal, G. Chader, and G. Aguirre, 1985, Expression of retinal degeneration slow (rds) gene in the retina of the mouse, in: p. 239–256. Alan R. Liss Inc., New York, 1985.Google Scholar
  10. 10.
    J. Ma, J.C. Norton, A.C. Allen, J.B. Burns, K.W. Hasel, J.L. Burns, J.G. Sutcliffe, and G.H. Travis, 1995, Retinal degeneration slow (rds) in mouse results from simple insertion of a haplotype-specific element into a protein-coding exon II., Genomics 28:212–219.PubMedCrossRefGoogle Scholar
  11. 11.
    R.K. Hawkins, H.G. Jansen, and S. Sanyal, 1985, Development and degeneration of retina in rds mutant mice: photoreceptorabnormalities in the heterozygotes, Exp. Eye Res. 41:701–720.PubMedCrossRefGoogle Scholar
  12. 12.
    G.H. Travis, K.R. Groshan, M. Lloyd, and D. Bok, 1992, Complete rescue of photoreceptor dysplasia and degeneration in transgeneic retinal degeneration slow (rds) mice., Neuron 9:113–119.PubMedCrossRefGoogle Scholar
  13. 13.
    R.G. Weleber, R.E. Carr, W.H. Murphey, V.C. Sheffield, and E.M. Stone, 1993, Phenotypic variation including retinitis pigmentosa, Pattern dystrophy, and fundus flavimaculatus in a single family with a deletion of codon 153 or 154 of the peripherin/RDS gene, Arch. Ophthalmol. 111:1531–1542.PubMedGoogle Scholar
  14. 14.
    C.M. Kemp, S.G. Jacobson, A.V. Cideciyan, A.E. Kimura, V.C. Sheffield, and E.M. Stone, 1994, RDS gene mutations causing retinitis pigmentosa or macular degeneration lead to the same abnormality in photoreceptor function, Invest. Ophthalmol. Vis. Sci. 35:3154–3162.PubMedGoogle Scholar
  15. 15.
    M.B. Gorin, K.E. Jackson, R.E. Ferrell, V.C.Sheffield, S.G. Jacobson, J.D. Gass, E. Mitchell, and E.M. Stone, 1995, A peripherin/retinal degeneration slow mutation (Pro-210-Arg) associated with macular and peripheral retinal degeneration, Ophthalmology 102:246–255.PubMedGoogle Scholar
  16. 16.
    M. Nakazawa, E. Kikawa, Y. Chida, Y. Wada, T. Shiono, and M. Tamai, 1996, Autosomal dominant cone-rod dystrophy associated with mutations in codon 244 (Asn244His) and codon 184 (Tyr184Ser) of the peripherin/RDS gene., Arch. Ophthalmol. 114:72–78.PubMedGoogle Scholar
  17. 17.
    K. Kajiwara, L.B. Hahn, S. Mukai, G.H. Travis, E.L. Berson, and T.P. Dryja, 1991, Mutations in the human retinal degeneration slow gene in sutosomal dominant retinitis pigmentosa., Nature 354:480–483.Google Scholar
  18. 18.
    J.D.M. Gass, 1974, A clinicalpathologic study of a peculiar foveo-macular dystrophy., Trans. Am. Ophthalmol. Soc. 72:139–156.PubMedGoogle Scholar
  19. 19.
    J.G. Flannery, D.B. Farber, A.C. Bird, and D. Bok, 1989, Degenerative changes in a retina affected with autosomal dominant retinitis pigmentosa, Invest. Ophthalmol. Vis. Sci. 30:191–211.PubMedGoogle Scholar
  20. 20.
    R.N. Lolley, D.B. Farber, M.E. Rayborn, and J.G. Hollyfield, 1977, Cyclic GMP accumulation causes degeneration of photoreceptor cells: simulation of an inherited disease, Science 196:664–666.PubMedCrossRefGoogle Scholar
  21. 21.
    J.G. Hollyfield and P. Witkovsky, 1974, Pigmented retinal epithelium involvement in photoreceptor development and function, J. Exp. Zool. 189:357–378.PubMedCrossRefGoogle Scholar
  22. 22.
    J.G. Hollyfield, 1976, In vitro elimination of oocyte melanosornes from the retinal rudiment of Rana pipiens, Exp. Eye Res. 22:126–140.Google Scholar
  23. 23.
    J. Hollyfield, M. Rayborn, D. Farber, and R. Lolley, 1982, in: The Structure of the Eye (J. Hollyfield, ed.), pp. 97–114. Elsevier Biomedical, Inc., New York.Google Scholar
  24. 24.
    M.M. Stiemke, R.A. Landers, M.R. Al-Ubaidi, and J.G. Hollyfield, 1994, Photoreceptor outer segment development in Xenopus laevis: Influence of the pigment epithelium, Dev. Biol. 162:169–180.PubMedCrossRefGoogle Scholar
  25. 25.
    M.M. Stiemke and J.G. Hollyfield, 1994, Outer segment disc membrane assembly in the absence of the pigment epithelium: The effect of exogenous sugars, Dev. Brain Res. 80:285–289.CrossRefGoogle Scholar
  26. 26.
    M.M. Stiemke and J.G. Hollyfield, 1995, in: Degenerative Diseases of the Retina. (R.E. Anderson, J.G. Hollyfleld, and M.M. LaVail, eds.), pp. 129–137, Plenum Publishing Corp., New York.Google Scholar
  27. 27.
    P.D. Nieuwkoop and J. Faber, 1956, Normal Table of Xenopus laevis (Daudin). North Holland Publishing Co., Amsterdam.Google Scholar
  28. 28.
    J.G. Hollyfleld and M.E. Rayborn, 1979, Photoreceptor outer segment development: Light and dark regulate the rate of membrane addition and loss, Invest. Ophthalmol. Vis. Sci. 18:117–133.Google Scholar
  29. 29.
    M.M. Stiemke, R.A. Landers, M.R. Al-Ubaidi, and J.G. Hollyfield, 1992, Rod photoreceptor development in the Xenopus laevis embryo, Invest. Ophthalmol. Vis. Sci. (Suppl.) 33.Google Scholar
  30. 30.
    R.H. Steinberg, S.K. Fisher, and D.H. Anderson, 1980, Disc morphogenesis in vertebrate photoreceptors, J. Comp. Neurol. 190:501–518.PubMedCrossRefGoogle Scholar
  31. 31.
    N. Agarwal, I. Nir, and D.S. Papermaster, 1990, Opsin synthesis and mRNA levels in dystrophic retinas devoid of outer segments in retinal degeneration slow (rds) mice., J. Neurosci. 10:3275–3285.PubMedGoogle Scholar
  32. 32.
    J. Usukura and D. Bok, 1987, Changes in the localization and content of opsin during retinal development in the rds mutant mouse: Immunocytochemistry and immunoassay, Exp. Eye Res. 45:501–515.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic / Plenum Publishers 1999

Authors and Affiliations

  • Vikas Kancherla
    • 1
  • Wojciech Kedzierski
    • 2
  • Gabriel H. Travis
    • 2
  • Monica M. Jablonski
    • 3
  1. 1.Department of Ophthalmology and Visual ScienceUniversity of Texas Health Science Center at HoustonHouston
  2. 2.Department of PsychiatryUniversity of Texas Southwestern Medical CenterDallas
  3. 3.Department of OphthalmologyUniversity of Tennessee MemphisMemphis

Personalised recommendations