Analysis of Field Potentials and Spike Patterns Evoked by Local Electrical Stimulation of the Chicken Retina

  • S. Weiss
  • T. Herrmann
  • A. Stett
  • E. Zrenner
  • H. Haemmerle


It is well known that the retina can be stimulated in vitro and in vivo with monopolar transretinal or local bipolar applied electric current.1-4 These results indi- cate that it might be possible to develop a retina implant that electrically stimulates the remaining cells of the retinal network electrically, even if the photoreceptors are completely degenerated. Current research focuses on two different approaches for the development of an intraocular prosthesis for patients suffering from photoreceptor degeneration. Several groups favour direct electrical stimulation of retinal ganglion cell5-7 from the epiretinal side while Tassiker and Chow proposed in patents to stim- ulate neurons of the inner nuclear layer8-10 from the subretinal side (see also Zrenner et al. in this volume).


Ganglion Cell Current Pulse Inner Nuclear Layer Microelectrode Array Slow Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Barnes and F. Werblin, 1987, Direct excitatory and lateral inhibitory synaptic inputs to amacrine cells in the tiger salamander retina, Brain Res., 406:233–237.PubMedCrossRefGoogle Scholar
  2. 2.
    W.W. Dawson and N.D. Radtke, 1977, The electrical stimulation of the retina by indwelling electrodes. Invest. Ophthalmol. Vis. Sci, 16:249–252.PubMedGoogle Scholar
  3. 3.
    R.W. Knighton, 1975, An electrically evoked slow potential of the frog’s retina. I. Properties of response, J. Neurophysiol, 38:185–197.PubMedGoogle Scholar
  4. 4.
    M. Humayun, R. Probst, E. de Juan, K. McCormick, and D. Hickingbotham, 1994, Bipolar surface electrical stimulation of the vertebrate retina, Arch. Ophthalmol, 112:110–116.PubMedGoogle Scholar
  5. 5.
    R. Eckmiller, 1997, Learning retina implants with epiretinal contacts, Ophthalmic Res., 29:269–280.Google Scholar
  6. 6.
    M.S. Humayun, E. de Juan Jr., G. Dagnelie, R.J. Greenberg, R.H. Propst, D.H. Phillips, 1996, Visual perception elicited by electrical stimulation of retina in blind humans, Arch. Ophthalmol. 114:40–46.PubMedGoogle Scholar
  7. 7.
    J. Wyatt and J. Rizzo, 1996, Ocular implants for the blind, IEEE Spectrum, 33:47–53.CrossRefGoogle Scholar
  8. 8.
    A.Y. Chow, 1993, Electrical stimulation of the rabbit retina with subretinal electrodes and high density microphotodiode array implants, Invest. Ophthalmol. Vis. Sci., 34:835 (Abstract).Google Scholar
  9. 9.
    A.Y. Chow and V.Y. Chow, 1997, Subretinal electrical stimulation of the rabbit retina, Neurosci. Lett., 225:13–16.PubMedCrossRefGoogle Scholar
  10. 10.
    E. Zrenner, K.D. Miliczek, V.P. Gabel, H.G. Graf, E. Guenther, H. Haemmerle, B. Hoefflinger, K. Kohler, W. Nisch, M. Schubert, A. Stett, and S. Weiss, 1997, The development of subretinal microphotodiodes for replacement of degenerated photoreceptors, Ophthalmic Res., 29:269–280.PubMedCrossRefGoogle Scholar
  11. 11.
    D.R. Crapper and W.K. Noell, 1963, Retinal excitation and inhibition from direct electrical stimulation, J. Neurophysiol., 26:924–947.PubMedGoogle Scholar
  12. 12.
    A. Kaneko and T. Saito, 1983, Ionic mechanisms underlying the responses of off-center bipolar cells in the carp retina, J. Gen. Physiol., 81:603–612.PubMedCrossRefGoogle Scholar
  13. 13.
    J.-I. Toyoda and M. Fujimoto, 1984, Application of transretinal current stimulation for the study of bipolar-amacrine transmission, J. Gen. Physiol., 84:915–925.PubMedCrossRefGoogle Scholar
  14. 14.
    W. Nisch, J. Böck, H. Haemmerle, and A. Mohr, 1994, A thin film microelectrode array for monitoring extracellular neuronal activity in vitro, Biosensors & Bioelectronics, 9:737–741.CrossRefGoogle Scholar
  15. 15.
    R.P. Gallemore, E.R. Griff, and R.H. Steinberg, 1988, Evidence in support of a photoreceptoral origin for the “light-peak substance”, Invest. Ophthalmol. Vis. Sci., 29:566–571.PubMedGoogle Scholar
  16. 16.
    V. Porciatti, P. Bagnoli, and R. Alesci, 1987, On and off activity in the retinal and tectal responses to focal stimulation with uniform or patterned stimulation, Clin. Vision Sci., 2:93–102.Google Scholar
  17. 17.
    P.A. Sieving, K. Murayama, and F. Naarendorp, 1994, Push-pull model of the primate photopic electroretinogram: A role for hyperpolarizing neurons in shaping the b-wave, Vis. Neurosci., 11:519–532.PubMedCrossRefGoogle Scholar
  18. 18.
    R.W. Knighton, 1975, An electrically evoked slow potential of the frog’s retina. II. Identification with PII component of electroretinogram, J. Neurophysiol., 38:198–209.PubMedGoogle Scholar
  19. 19.
    P.D. Lukasiewicz and F.S. Werblin, 1990, The spatial distribution of excitatory and inhibitory inputs to ganglion cell dendrites int the tiger salamander retina, J. Neurosci., 10:210–221.PubMedGoogle Scholar

Copyright information

© Kluwer Academic / Plenum Publishers 1999

Authors and Affiliations

  • S. Weiss
    • 1
    • 2
  • T. Herrmann
    • 1
  • A. Stett
    • 1
    • 2
  • E. Zrenner
    • 2
  • H. Haemmerle
    • 1
  1. 1.Natural and Medical Sciences InstituteReutlingenGermany
  2. 2.Dept. IIUniversity Eye HospitalTübingenGermany

Personalised recommendations