Dark Adaptation is Impaired in Diabetics before Photopic Visual Losses Can be Seen

Can Hypoxia of Rods Contribute to Diabetic Retinopathy?
  • G. B. Arden
  • J. E. Wolf
  • J. Collier
  • C. Wolff
  • M. Rosenberg


The main theme of this volume is the inherited retinal degenerations, but the most important causes of blindness have a different aetiology, not directly related to genetic defects. Diabetes is the greatest cause of blindness in younger people, and even con sidering all age groups is as common a cause of blindness as Glaucoma and Age Related Maculopathy. Diabetes causes a retinopathy (DR) which is basically a vasculopathy1,2 and the cellular biology of DR has been recently linked to cytokines.3 Starting from this fact, it has been proposed that techniques of molecular biology which might be of use in the treatment of inherited degenerative diseases could also be applicable to DR. This paper is however concerned with a far simpler method of controlling DR, which is based on the physiology of the eye, the particular features of which have been known for half a century but not exploited in this connection. The basic idea is that anoxia early in DR will only develop during dark adaptation, occuring in long periods every night in sleep.


Diabetic Retinopathy Dark Adaptation Green Background Increment Threshold Dark Adaptation Curve 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Frank, 1986, Diabetic retinopathy: current concepts of evaluation and treatment. Clinics in Endocrinology and Metabolism, 15:933–969.PubMedCrossRefGoogle Scholar
  2. 2.
    N. Frank, 1995, Diabetic Retinopathy, In: Progress in Retinal and Eye Research, 14:361–392.CrossRefGoogle Scholar
  3. 3.
    L.P. Aiello, 1997, Vascular Endothelial Growth Factors. 20th-century mechanisms, 21st-century therapies, Invest. Ophthalmol. Vis. Sci. 38:1847–1652.Google Scholar
  4. 4.
    T.S. Kern and R.L. Engerman, 1996, Capillary lesions develop in retina rather than cerebral cortex in diabetes and experimental galactosemia, Arch. Ophthalmol. 114:306–310.PubMedGoogle Scholar
  5. 5.
    W.A. Hagins, P.D. Ross, R.L. Tate, and S. Yoshikami, 1989, Transduction heats in retinal rods: Tests of the role of cGMP by pyroelectric calorimetry, Proc. Nat. Acad. Sci. USA. 86:1224–1228.PubMedCrossRefGoogle Scholar
  6. 6.
    K.-W. Yau and D.A. Baylor, 1989, Visual Transduction, Annual Rev. Neurosci. 12:289–327.CrossRefGoogle Scholar
  7. 7.
    V.A. Alder, E.S.J. Cringle, and I.J. Constable, 1983, The retinal oxygen profile in Cats, Invest. Ophthalmol. Vis. Sci. 24:30–36.PubMedGoogle Scholar
  8. 8.
    R.A. Linsenmeier, 1986, The effects of light and darkness on oxygen distribution and consumption in the cat retina, J. Gen. Physiol. 88:521–542.PubMedCrossRefGoogle Scholar
  9. 9.
    R.A. Linsenmeier and R.D. Braun, 1992, Oxygen distribution and consumption in the cat retina during normotension and hypoxaemia. J. Gen. Physiol. 99:177–197.PubMedCrossRefGoogle Scholar
  10. 10.
    L.M. Haugh, R.A. Linsenmeier, and T.K. Goldstick, 1990, Mathematical Models of the spatial distribution of retinal oxygen tension and consumption, including changes on illumination, Ann. Biomed. Eng. 18:10–36.CrossRefGoogle Scholar
  11. 11.
    J. Ahmed, R.D. Braun, R. Dunn Jr., and R.A. Linsenmeier, 1993, Oxygen distribution in the macaque retina. Invest. Ophthalmol. Vis. Sci. 34:516–521.PubMedGoogle Scholar
  12. 12.
    R.D. Braun and R.A. Linsenmeier, 1995, Oxygen consumption in the inner and outer retina of the cat, Invest. Ophthalmol. Vis. Sci. 36:542–554.PubMedGoogle Scholar
  13. 13.
    L.M. Haugh, L.A. Scheidt, E.R. Griff, and R.A. Linsenmeier, 1995, Light evoked oxygen responses in isolated Toad retina, Exp. Eye Res., 61:73–81.CrossRefGoogle Scholar
  14. 14.
    L.J. Frishman, F. Yamamoto, J. Bogucka, and R.H. Steinberg, 1992, Light-evoked changes in [K(+)]0 in proximal portion of light-adapted cat retina, J. Neurophysiol. 67:1201–1212.PubMedGoogle Scholar
  15. 15.
    R.F. Miller and J.E. Dowling, 1970, Intracellular responses of the Muller (glial) cells of the mudpuppy retina: their relationship to the b-wave of the electroretinogram, J. Neurophysiol. 33:323–341.PubMedGoogle Scholar
  16. 16.
    E.A. Newman, 1985, Regulation of extracellular potassium by glial cells in the retina, Trends in Neuroscience 8:156–159.CrossRefGoogle Scholar
  17. 17.
    R.A. McFarland, J.N. Evans, and M.H. Halperin, 1941, Ophthalmic aspects of acute oxygen deficiency, Arch Ophthalmol NY. 26:886–913.Google Scholar
  18. 18.
    J. Mandlebaum, 1941, Dark adaptation; physiologic and clinical considerations Arch. Ophthalmol. 26:203–239.Google Scholar
  19. 19.
    A.M.P. Hamilton, M.W. Ulbig, and P.J. Polkinghorne, 1996, Management of Diabetic Retinopathy. BMJ press London pp 136.Google Scholar
  20. 20.
    Diabetic Retinopathy Research Group. Second Report, 1978, Amer. J. Ophthalmol. 85:82–106.Google Scholar
  21. 21.
    S.E. Simonsen, 1965, Electroretinographic study of diabetics; Preliminary Report, Acta Ophthalmologica, 43:841–843.CrossRefGoogle Scholar
  22. 22.
    T. Amemiya, 1977, Dark adaptation in diabetics. Ophthalmologica, 174:322–326.PubMedCrossRefGoogle Scholar
  23. 23.
    D.B. Henson, and R.V. North, 1979. Dark adaptation in diabetes mellitus, Brit J. Ophthalmol. 63:539–541.Google Scholar
  24. 24.
    M.O. Scase, D.H. Foster, W.P. Honan, J.R. Heron, M.C. Guilliford, and J.H.B. Scarpello, 1990, Abnormalities in hue discrimination with very brief stimuli in diabetic patients, Clin. Vis. Sci. 6:49–57.Google Scholar
  25. 25.
    K. Frost-Larsen, H.W. Larsen, and S.E. Simonsen, 1981, The value of dark adaptation as a prognostic tool in diabetic retinopathy, Metabolic and Pediatric Ophthalmology, 5:39–44.PubMedGoogle Scholar
  26. 26.
    E.B. Roeker, E. Pulos, G.H. Bresnick, and M. Severns, 1992, Characterisation of the electroretinographic scotopic b-wave amplitude in diabetic and normal subjects, Invest. Ophthalmol. Vis. Sci. 33:1575–1583.Google Scholar
  27. 27.
    D.V. De Alwys, J.P. Reffin, S.J. Tregear, L.G. Ripley, and A.G. Caswell, 1993, Should the management of diabetic retinopathy be based on the measurement of visual function rather than observations of retinal morphology? Invest. Ophthalmol. Vis. Sci. 34: ARVO Absts. #80 pg. 719.Google Scholar
  28. 28.
    V.C. Greenstein, S.R. Thomas, H. Blaustein, K. Koenig, and R.E. Carr, 1993, Effects of early diabetic retinopathy on rod system sensitivity, Optom. Vis. Sci. 70:18–23.PubMedCrossRefGoogle Scholar
  29. 29.
    J.V. Lovasik and H. Kergoat, 1993, Electroretinographic results and ocular vascular perfusion in type 1 diabetes, Invest. Ophthalmol. Vis. Sci. 34:1731–1743.PubMedGoogle Scholar
  30. 31.
    S.D. Tregear, P.J. Knowles, D.V. De Alwys, J.P. Reffin, L.G. Ripley, and A.G. Caswell, 1994, Colour vision deficits predict the development of sight-threatening disease in diabetic subjects with background retinopathy. Invest. Ophthalmol. Vis. Sci. 34;ARVO Absts. =81 pg. 719.Google Scholar
  31. 32.
    V.C. Greenstein, D.C. Hood, R. Ritch, D. Steinberger, and R.E. Carr, 1989, S(Blue) cone pathway vunerability in Retinitis pigmentosa, Diabetes, and Glaucoma. Invest. Ophthalmol. Vis. Sci. 30:1732–1737.PubMedGoogle Scholar
  32. 33.
    A. Harris, O. Arend, R.P. Danis, D. Evans, S. Wolf, and B.J. Martin, 1996, Hyperoxia improves contrast sensitivity in early diabetic retinopathy, Brit, J. Ophthalmol. 80:209–213.Google Scholar
  33. 34.
    F. Dean, A. Dornhorst, and G.B. Arden, 1997. Partial reversal of protan and tritan colour defects with inhaled oxygen in insulin dependent diabetic subjects, Brit. J. Ophthalmol. 81:27–30.Google Scholar
  34. 35.
    R.A. Linsenmeier, R.D. Braun, M.A. McRipley, L.B. Padnick, and D.L. Tatchell, 1997. Retinal hypoxia in long term diabetic cats. Invest. Ophthalmol. Vis. Sci. 38: ARVO Abs. S77 #3569.Google Scholar
  35. 36.
    J.S. Tiedman, S.E. Kirk, and J.M. Beach, Inner retinal oxygen consumption increases during hyperglycaemia in diabetic patients, Invest. Ophthalmol. Vis. Sci. 38: ARVO Abs. S714.Google Scholar
  36. 37.
    S. Konno, G.T. Feke, A. Yashida, N. Fujio, D.G. Goger, and S.M. Buzney, 1996, Retinal blood flow changes in Type I Diabetes, Invest. Ophthalmol. Vis. Sci. 37:1140–1148.PubMedGoogle Scholar
  37. 38.
    M.K. v.d. Enden, J.R. Nyengaard, E. Ostrow, J.H. Burgan, and J.R. Williamson, 1995, Elevated glucose levels increase retinal glycolysis and sorbitol pathway metabolism, Invest. Ophthalmol. Vis. Sci. 36:1675–1685.PubMedGoogle Scholar
  38. 39.
    G.T. Feke and S.M. Buzney, 1994, Retinal circulatory abnormalities in type 1 diabetes. Invest. Ophthalmol. Vis. Sci. 35:2968–2975.PubMedGoogle Scholar
  39. 40.
    J. Ditzel, 1979, Changes in red cell oxygen release capacity in diabetes mellitus. Fed. Proc. 38:2484–2488.PubMedGoogle Scholar
  40. 41.
    W.G. Robison, J.L. Jacot, J.P. Glover, M.D. Basso, and T.C. Hohman, 1997, Aldose reductase Inhibitor intervention after significant diabetic-like capillary basement membrane thickening. Invest. Ophthalmol. Vis. Sci. 38:ARVO Abs S715 #3305.Google Scholar
  41. 42.
    K.M. Reiser, 1990, Non-enzymatic glycation of collagen in ageing and diabetes, Proc. Soc. Exp. Biol. Med. 196. 17–29.Google Scholar
  42. 43.
    W.D. Robison, N.M. Laver, and M.F. Lou, 1995, The role of aldose reductase in diabetic retinopathy: prevention and intervention studies, Progress in Retinal and Eye Research, 14:593–641.CrossRefGoogle Scholar
  43. 44.
    G.B. Arden, J.E. Wolf, and Y. Tsang, 1998, Does dark adaptation exacerbate diabetic retinopathy? Evidence and a linking hypothesis, Vision Res. 38:1723–1729.PubMedCrossRefGoogle Scholar
  44. 45.
    W.A.H. Rushton, 1963, Increment threshold and dark adaptation, J. Opt. Soc. Amer. 3:104–109.Google Scholar
  45. 46.
    J. Stone and J. Maslim, 1997, Mechanisms of retinal angiogenesis. Progress in Retinal and Eye Research, 16. 157–181.CrossRefGoogle Scholar
  46. 47.
    H. Tanihara, M. Inatani, and Y. Honda, 1997, Growth factors and their receptors in the retina and pigment epithelium. In Progress in Retinal and Eye Research. 16:271–301.CrossRefGoogle Scholar
  47. 48.
    M.K. Mathews, C. Merges, D.S. McLeod, and G.A. Lutty, 1997, VEGFand vascular permeability changes in human DR, Invest. Ophthalmol. Vis. Sci. 38:2729–2741.PubMedGoogle Scholar
  48. 49.
    T. Murata, K. Nakagawa, A. Khalil, T. Ishibashi, H. Inomata, and K. Sueshi, 1996, The relation between the expression of VEGF and the breakdown of BRB in diabetic rat retinas, Lab. Invest. 74:819–825.PubMedGoogle Scholar
  49. 50.
    H. Sone, Y. Kawakami, Y. Okuday, Y. Sekine, S. Honmura, K. Matsuo, T. Seyawa, H. Suzuki, and K. Yamashita, 1997, Ocular VEGF levels in diabetic rats are elevated before observable retinal proliferative changes, Diabetologia, 40:726–730.PubMedCrossRefGoogle Scholar
  50. 51.
    R.H. Amin, R.N. Frank, A. Kennedy, D. Eliott, J.E. Puklin, and G.W. Abrams, 1997, VEGF is present in glial cells of the retina and optic nerve of human subjects with non-proliferative diabetic retinopathy, Invest. Ophthalmol. Vis. Sci. 38:38.Google Scholar
  51. 52.
    J. Ambati. K.V. Chalan, D.K. Chawla, C.T. D’Angio, E.G. Guillet, S.S. Rose, R.E. Vanderlinde, and B.K. Ambati, 1997, Elevated gamma-aminobutyric acid, glutamate and VEGF levels in the vitreous of patients with PDR, Arch. Ophthalmoi. 115:1161–624.Google Scholar
  52. 53.
    A. Khalik, D. Jarvis, D. McLeod, and D. Boulton, 1996, Oxygen modulates the response of the retinal pigment epithelium to Basic Fibroblast Growth Factor and Epidermal factor by receptor regulation. Invest. Ophthalmol. Vis. Sci. 37:436–443.Google Scholar
  53. 54.
    V.A. Alder, E.S.J. Cringle, and M. Brown, 1987, The effect of regional retinal photocoagulation on vitreal oxygen tension. Invest. Ophthalmol. Vis. Sci. 28:1078–1085.PubMedGoogle Scholar
  54. 55.
    C.J. Pournara, M. Tsacopoulos, K. Strommer, N. Gilodi, and P. Leuenberger, 1990, Scatter photocoagulation restores tissue hypoxia in experimental vasoproliferative microangiography in miniature pigs. Ophthalmology 97:1329–1333.Google Scholar
  55. 56.
    M.J. Mosely, S.C. Bayliss, and A.R. Fielder, 1988, Light transmission through the human eyelid: in vivo measurement, Ophthal. Physiol. Opt. 4:229–230.Google Scholar
  56. 57.
    K. Ando and D.F. Kripke, 1996, Light attenuation by the human eyelid. Biol. Psychiatry, 39:22–25.PubMedCrossRefGoogle Scholar
  57. 58.
    J. Robinson, S.C. Bayliss, and A.R. Fielder, 1991, Transmission of light across the adult and neonatal eyelid in vivo, Vision Res. 31:1837–1840.PubMedCrossRefGoogle Scholar
  58. 59.
    M.L. Crawford and R.E. Marc, 1976, Light transmission of cat and monkey eyelids, Vision Res. 16:323–324.PubMedCrossRefGoogle Scholar
  59. 60.
    J.F. Cooper, 1996, A psychophysical method of measuring the attenuation of retinal illumination in humans caused by closing the eyelids, and the relationship of this to skin albedo. Project report submitted for B.Sc. City University, London,U.K.Google Scholar
  60. 61.
    W. Spileers, F. Falcao-Reis, C. Hogg, and G.B. Arden, 1993, A new Ganzfeld electroretinographic stimulator powered by red and green LEDs. Clin. Vis. Sci. 8:21–39.Google Scholar
  61. 62.
    G.B. Arden, J.E. Wolf, T. Berninger, C.R. Hogg, R. Tzekov, and G.E. Holder, 1998, S-cone ERGs elicited by a simple technique in normals and in tritanopes Vision Res. in the pressGoogle Scholar
  62. 63.
    W.S. Stiles, 1959, Color vision: The approach through increment threshold sensitivity. Proc. Nat. Acad. Sci. 45:100–128.CrossRefGoogle Scholar
  63. 64.
    L. Adams, G.B. Arden, and Joan Behrman, 1969, Responses of human visual cortex following excitation of peripheral rods. Brit. J. Ophthalmol. 53:439–452.Google Scholar
  64. 65.
    D. Regan, 1972, Evoked Potentials in sensory physiology and clinical medicine, Chapman and Hall, Lond.Google Scholar
  65. 66.
    G.B. Arden and M. Hall, 1995, Does occupational exposure to Argon laser radiation decrease colour contrast sensitivity in UK Ophthalmologists? Eye, 9:686–696.PubMedGoogle Scholar

Copyright information

© Kluwer Academic / Plenum Publishers 1999

Authors and Affiliations

  • G. B. Arden
    • 1
  • J. E. Wolf
    • 1
  • J. Collier
    • 2
  • C. Wolff
    • 2
  • M. Rosenberg
    • 2
  1. 1.City UniversityLondon
  2. 2.Queen Mary CollegeLondon

Personalised recommendations