Advertisement

Targeting Müller Cells for Gene Therapy

Gene Regulation Studies
  • Vijay Sarthy

Abstract

Retinal support cells such as Müller cells and RPE are excellent candidates for targeting gene therapy vectors. However, the lack of knowledge of gene regulatory mechanisms in Müller cells has limited their use for designing cell type-specific expression vectors for gene therapy. As a first step in this direction, our recent research has focused on the identification of genetic regulatory elements for two Müller cell-specific genes—the glial intermediate filament protein (GFAP) gene and the cellular retinaldehyde-binding protein (CRALBP) gene. Experimental evidence from transfection assays suggest that promoter-proximal sequences are sufficient to drive expression of GFAP and CRALBP genes in Müller cells. However, studies with GFAP-transgenic mice suggest that GFAP gene transcription in Müller cells is complex, and that an inducible, Müller cell-specific enhancer is likely to control GFAP expression. Identification of the enhancer should provide a inducible, promoter system for expressing foreign proteins in the retina.

Keywords

Glial Fibrillary Acidic Protein Retinal Degeneration Mouse Retina Glial Fibrillary Acidic Protein Expression Gene Regulatory Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Chen and D.J. Zack, 1996, Ret 4, A positive-acting rhodopsin regulatory element identified using a bovine retina in vitro transcription system, J. Biol. Chem. 271:28549–28577.PubMedCrossRefGoogle Scholar
  2. 2.
    A.P. Dipolo, C.B. Rickman, and D.B. Farber, 1996, Isolation and initial characterization of the 5’ flanking region of the human and murine cyclic guanosine monophosphate-phosphodiesterase beta-subunit genes, Invest. Ophthalmol. Vis. Sci. 37:551–560.Google Scholar
  3. 3.
    I. Ahmad, X. Yu, and C.J. Barnstable, 1994, A cis-acting element, T alpha-1, in the upstream region of rod alpha-transducin gene that binds a developmentally regulated retina-specific nuclear factor. J. Neurochem. 62:396–399.PubMedCrossRefGoogle Scholar
  4. 4.
    A.T. Morris, W.B. Fong, M.J. Ward, H. Hu, and S.L. Fong, 1997, Localization of upstream silencer elements involved in the expression of cone transducin α-subunit (GNAT2), Invest. Ophthalmol. Vis. Sci. 38:196–206.PubMedGoogle Scholar
  5. 5.
    G.I. Liou, S. Matragoon, J. Yang, L. Geng, P.A. Overbeek, and D.P. Ma, 1991, Retina-specific expression from the IRBP promoter in transgenic mice conferred by 212bp of the 5’-flanking region, Biochem. Biophys. Res. Comm. 181:159–165.PubMedCrossRefGoogle Scholar
  6. 6.
    P. Linser and A.A. Moscona, 1983, Induction of glutamine synthetase in the embryonic neural retina: localization in Müller fibers and dependence on cell interactions, Proc. Natl. Acad. Sci. 76:6476–6480.CrossRefGoogle Scholar
  7. 7.
    P.V. Sarthy, 1990, Reactive gliosis in retinal degenerations, in: Retinal Degenerations (R.E. Anderson, J.G. Hollyfield, and M.M. LaVail, eds.), pp. 109–115, CRC Press Inc., Boca Raton, FL.Google Scholar
  8. 8.
    W. Hartig, J. Gorsche, C. Distler, D. Grimm, E. El-Hifnawi, and A. Reichenbach, 1995, Alterations of Müller (glial) cells in dystrophic retinae of RCS rats, J. Neurocytol. 24:507–517.PubMedCrossRefGoogle Scholar
  9. 9.
    R. Wen, Y. Song, T. Cheng, M.T. Matthes, D. Yasumura, M.M. LaVail, and R.H. Steinberg, 1995, Injury-induced upregulation of bFGF and CNTF mRNAs in the rat retina, J. Neurosci. 15:7377–7385.PubMedGoogle Scholar
  10. 10.
    G.E. Korte, G.S. Hageman, D.V. Pratt, S. Glusman, M. Marko, and A. Ophir, 1992, Changes in Müller cell plasma membrane specializations during subretinal scar formation in the rabbit, Exp. Eye Res. 55:155–162.PubMedCrossRefGoogle Scholar
  11. 11.
    M.D. Norenberg, 1996, Reactive astrocytosis, in: The role of glia in neurotoxicity (M. Ascher and H.K. Kimelberg, eds.), pp. 93–106, CRC Press Inc, Boca Raton, FL.Google Scholar
  12. 12.
    J.L. Ridet, S.K. Malhotra, A. Privat, and F.H. Gage, 1997, Reactive astrocytes: cellular and molecular cues to biological function, Trends in Neurosci. 20:570–577.CrossRefGoogle Scholar
  13. 13.
    B.N. Kennedy, S. Goldflam, M.A. Chang, P.A. Campochiaro, A.A. Davis, D.J. Zack, and J.W. Crabb, 1998, Transcriptinoal regulation of the human gene encoding cellular retinaldehyde-binding protein, J. Biol. Chem. 273:5591–5598.PubMedCrossRefGoogle Scholar
  14. 14.
    S.J. Brodjian, B.N. Kennedy, J.W. Crabb, and V. Sarthy, 1997, Regulation of cellular retinaldehydebinding protein (CRALBP) gene in Müller cells, Invest. Ophthalmol. Vis. Sci. 37:S336.Google Scholar
  15. 15.
    M.A. Maw, B. Kennedy, A. Knight, R. Bridges, K.E. Roth, E.J. Mani, J.K. Mukkadan, D. Nancarrow, J.W. Crabb, and M.J. Denton, 1997, R150Q mutation of cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa, Nature Genetics, 17:198–200.PubMedCrossRefGoogle Scholar
  16. 16.
    A.J. Eisenfeld, A.H. Bunt-Milam, and P.V. Sarthy, 1984, Müller cell expression of glial flbrillary acidic protein after genetic and experimental photoreceptor degeneration in the rat retina, Invest. Ophthalmol. Vis. Sci. 25:1321–1328.PubMedGoogle Scholar
  17. 17.
    P.V. Sarthy and M. Fu, 1989, Transcriptional activation of an intermediate filament protein gene in mice with retinal dystrophy. DNA, 8:437–446.PubMedGoogle Scholar
  18. 18.
    M.E. Greenberg and E.B. Ziff, 1985, Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene, Nature 311:433–438.CrossRefGoogle Scholar
  19. 19.
    V.P. Sarthy, S.J. Brodjian, K. Dutt, B.N. Kennedy, P.P. French, and J.W. Crabb, 1998, Establishment and characterization of a retinal Müller cell line, Invest. Ophthalmol. Vis. Sci. 39:212–216.PubMedGoogle Scholar
  20. 20.
    A. Bignami and D. Dahl, 1995, Gliosis, in: Neuroglia, (H. Kettenmann and B.R. Ransom, eds.), pp. 843–858, Oxford University Press, New York, NY.Google Scholar
  21. 21.
    P. Ekstrom, S. Sanyal, K. Norfstrom, G.J. Chader, and T. van Veen, 1988, Accumulation of glial fibrillary acidic proterin in Müller radial glia during retinal degeneration, Invest. Ophthalmol. Vis. Sci. 29:1363–1371.PubMedGoogle Scholar
  22. 22.
    S.B. Smith, S. Brodjina, S. Desai, and V. Sarthy, 1997, Glial fibrillary acidic protein (GFAP) is synthesized in the early stages of the photoreceptor cell degeneration of the mivit/mivit(vitilago) mouse, Exp. Eye Res. 64:645–650.PubMedCrossRefGoogle Scholar
  23. 23.
    Z-Y. Li, S.G. Jacobson, and A.H. Milam, 1984, Autosomal dominant retinitis pigmentosa caused by the threonine-17-methionine rhodopsin mutation: retinal histopathology and immunocytochemistry, Exp. Eye Res. 58:397–408.CrossRefGoogle Scholar
  24. 24.
    Z-Y. Li, I.J. Kljavin, and A.H. Milam, 1995, Rod photoreceptor neurite sprouting in retinitis pigmentosa, J. Neurosci. 15:5429–5438.PubMedGoogle Scholar
  25. 25.
    M.C. Madigan, P.L. Penfold, J.M. Provis, T.K. Balind, and F.A. Billson, 1994, Intermediate filament expression in human retinal macroglia. Histopathologic changes associated with age-related macular degeneration, Retina 14:65–74.PubMedCrossRefGoogle Scholar
  26. 26.
    C.D. Birnbach, M., Jarvelainen, D.E. Possin, and Milam A.H., 1994, Histopathology and immunocytochemistry of the neurosensory retina in fundus flavimaculatus, Ophthalmology 101:1211–1219.PubMedGoogle Scholar
  27. 27.
    M. Brenner, 1994, Structure and transcriptional regulation of the GFAP gene, Brain Pathology 4:245–257.PubMedGoogle Scholar
  28. 28.
    P.V. Sarthy, 1985, Establishment of Müller cell cultures from adult rat retina, Brain. Res. 337:138–147.PubMedCrossRefGoogle Scholar
  29. 29.
    L.C. Verderber, L.C., W. Johnson, L. Mucke, and V. Sarthy, 1995, Differential regulation of a GFAP-lacZ transgene in retinal astrocytes and Müller cells, Invest. Ophthalmol. Vis. Sci. 36:1137–1143.PubMedGoogle Scholar
  30. 30.
    J.C. Saari, 1994, Retinoids in photosensitive systems, in: the Retinoids: Biology, Chemistry and Medicine (M.B. Sporn, A.B. Roberts, and D.S. Goodman, eds.), pp. 351–385, Raven press, NY.Google Scholar
  31. 31.
    L.W. Lai, R.P. Erickson, P.J. Venta, R.E. Tashian, and Y.H. Lien, 1998, Promoter acitivty of carbonic anhydrase II regulatory regions in cultured renal proximal tubular cells, Life Sci. 63:121–126.PubMedCrossRefGoogle Scholar
  32. 32.
    Y-C. Li, D. Beard, S. Hayes, and A.P. Young, 1996, A transcriptional enhancer of the glutamine synthetase gene that is selective for retinal Müller glial cell, J. Mol. Neurosci. 6:169–183.Google Scholar
  33. 33.
    V. Sarthy and H. Egal, 1994, Transient induction of the glial intermediate filament protein in Müller cells in the mouse retina, DNA and Cell Biol. 14:313–320.CrossRefGoogle Scholar
  34. 34.
    K. Yoshida, Y. Kuraki, K. Ohki, T. Harada, T. Ohashi, H. Matsuda, and J. Imaki, 1995. C-fos gene expression in rat retinal cells after focal retinal injury, Invest. Ophthalmol. Vis Sci. 36:251–254.PubMedGoogle Scholar
  35. 35.
    Y. Otori, S. Shimada, K. Tanaka, I. Ishimoto, Y.T. Tano, and M. Tohyama, 1994, Marked increase in glutamate-aspartate transporter (GLAST/GluT-1) mRNA following transient retinal ischemia, Mol. Brain Res. 27:310–314.PubMedCrossRefGoogle Scholar
  36. 36.
    K. Clarke and E.E. Geisert, Jr, 1998, The target of the antiproliferative antibody (TAPA) in the normal and injured rat retina, Mol. Vision 4:3.Google Scholar
  37. 37.
    M. Fukuhara, A. Suzuki, Y. Fukuda, and J. Kosaka, 1998, Adenovirus vector-mediated gene transfer into rat retinal neurons and Müller cells in vitro and in vivo, Neurosci. Lett 242:93–96.PubMedCrossRefGoogle Scholar
  38. 38.
    W.F. Blakemore, A.J. Crang, and R.J.M. Franklin, 1995, Transplantation of glial cells, in: Neuroglia (H. Kettenmann and B.R. Ransom, eds.), pp. 869–882, Oxford University Press, New York, NY.Google Scholar
  39. 39.
    M.M. LaVail, K. Unoki, D. Yasumura, M.T. Matines, G.D. Yancopoulos, and R.H. Steinberg, 1992, Multiple growth factors, cytokines and neurotrophins rescue photoreceptors from the damaging effects of constant light, Proc. Natl. Acad. Sci. 89:11249–11253.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic / Plenum Publishers 1999

Authors and Affiliations

  • Vijay Sarthy
    • 1
  1. 1.Department of Ophthalmology NorthwesternUniversity Medical SchoolChicago

Personalised recommendations