Ribozymes Directed Against Messenger RNAs Associated With Autosomal Dominant Retinitis Pigmentosa

  • Lynn C. Shaw
  • Patrick O. Whalen
  • Kimberly A. Drenser
  • Wei-Ming Yan
  • William W. Hauswirth
  • Alfred S. Lewin


Ribozymes are RNA enzymes that can be modified to cleave almost any target RNA. Because of this versatility, they are useful in digesting transcripts of dominant mutant genes leading to retinal disease, including ADRP. One approach to gene therapy for this disease would be to reduce the expression of the mutant opsin that interferes with the accumulation of active rhodopsin and is responsible for a substantial fraction of ADRP. We have developed ribozymes designed to cleave mutant mRNA molecules leading to several opsin missense and nonsense mutations that cause retinal degeneration in human and in animal models. These include the P23H, G90D, S334 termination, and the P347S mutations. Both hairpin and hammerhead ribozymes have been tested. The efficiency of cleavage depends on the nucleotide triplet at the cleavage site and its context in the mRNA. All ribozymes tested are capable of cleaving short synthetic targets, longer cloned targets and full length opsin mRNA containing the mutant target sequence. In no case has cleavage of the wild-type opsin been detected. For these reasons, ribozymes hold promise as sequence-specific tools for gene therapy for ADRP. Animal tests of these ribozymes are underway using Adeno-Associated Virus vectors to deliver DNA copies of the ribozymes to affected transgenic animals.


Retinitis Pigmentosa Retinal Degeneration Hammerhead Ribozyme Mutant mRNA Autosomal Dominant Retinitis Pigmentosa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Daiger, S.P., L.S. Sullivan, and J.A. Rodriguez, 1995, Correlation of phenotype and genotype in inherited retinal degeneration. Behav. Brain Sci. 18:452–467.CrossRefGoogle Scholar
  2. 2.
    Heckenlively, J.R. 1988. Retinitis Pigmentosa. J.B. Lippencott, Philadelphia.Google Scholar
  3. 3.
    Sung, C.H., C.M. Davenport, J.C. Hennessey, I.H. Maumensee, S.G. Jacobson, J.R. Heckenlively, R. Nowakowski, R. Fishman, P. Gouras, and J. Nathans, 1991, Rhodopsin mutations in autosomal dominant retinitis pigmentosa. Proc. Natl. Acad. Sci. 88:6481–6485.PubMedCrossRefGoogle Scholar
  4. 4.
    Berson, E, 1993, Retinitis pigmentosa. Inv. Ophth. Vis. Sci. 34:1659–1676.Google Scholar
  5. 5.
    Naash, M.I., J.G. Hollyfield, M.R. Al-Ubaidi, and W. Baehr, 1993, Simulation of human autosomal dominant retinitis pigmentosa in transgenic mice expressing a mutated murine opsin gene. Proc. Natl. Acad. Sci. 90:5499–5503.PubMedCrossRefGoogle Scholar
  6. 6.
    Steinberg, R.H., J.G. Flannery, M.I. Naash, P. Oh, M.T. Matthes, D. Yasumura, C. Lau-Villacorta, J. Chen, and M.M. LaVail, 1996, Transgenic rat models of inherited retinal degeneration caused by mutant opsin genes. Inv. Ophth. Vis. Sci.. 37:S698.Google Scholar
  7. 7.
    Li, Z.Y., F. Wong, J.H. Chang, D.E. Possin, Y. Hao, R.M. Petters, and A.H. Milam, 1998, Rhodopsin transgenic pigs as a model for human retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 39:808–819.PubMedGoogle Scholar
  8. 8.
    Petters, R.M., C.A. Alexander, K.D. Wells, E.B. Collins, J.R. Sommer, M.R. Blanton, G. Rojas, Y. Hao, W.L. Flowers, E. Banin, A.V. Cideciyan, S.G. Jacobson, and F. Wong, 1997, Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa [see comments]. Nat. Biotechnol. 15:965–970.PubMedCrossRefGoogle Scholar
  9. 9.
    Akhmedov, N.B., N.I. Piriev, S. Pearce-Kelling, G.M. Acland, G.D. Aguirre, and D.B. Farber, 1998, Canine cone transducin-gamma gene and cone degeneration in the cd dog [In Process Citation]. Invest. Ophthalmol. Vis. Sci. 39:1775–1781.PubMedGoogle Scholar
  10. 10.
    Zhang, Q., G.M. Acland, C.J. Parshall, J. Haskell, K. Ray, and G.D. Aguirre, 1998, Characterization of canine photoreceptor phosducin cDNA and identification of a sequence variant in dogs with photoreceptor dysplasia. Gene 215:231–239.PubMedCrossRefGoogle Scholar
  11. 11.
    Flannery, J.G., S. Zolotukhin, M.I. Vaquero, M.M. LaVail, N. Muzyczka, and W.W. Hauswirth, 1997, Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus. Proc. Natl. Acad. Sci. USA 94:6916–6921.PubMedCrossRefGoogle Scholar
  12. 12.
    Miyoshi, H., M. Takahashi, F.H. Gage, and I.M. Verma, 1997, Stable and efficient gene transfer into retina using an HIV-based lentiviral vector. Proc. Natl. Acad. Sci. 94:10319–10323.PubMedCrossRefGoogle Scholar
  13. 13.
    Birikh, K.R., P.A. Heaton, and F. Eckstein, 1997 The structure, function, and application of the hammerhead ribozyme. Eur. J. Biochem. 245:1–16.PubMedCrossRefGoogle Scholar
  14. 14.
    Butcher, S.E., J.E. Heckman, and J.M. Burke, 1995, Reconstitution of hairpin ribozyme activity following separation of functional domains. J. Biol. Chem. 270:29648–29651.PubMedCrossRefGoogle Scholar
  15. 15.
    Vaish, N.K., P.A. Heaton, O. Fedorova, and F. Eckstein, 1998, In vitro selection of a purine nucleotide-specific hammerhead-like ribozyme. Proceedings Of The National Academy Of Sciences Of The United States Of America 95:2158–2162.PubMedCrossRefGoogle Scholar
  16. 16.
    Berzal-Herranz, A., S. Joseph, and J.M. Burke, 1992, In vitro selection of active hairpin ribozymes by sequential RNA-catalyzed cleavage and ligation reactions. Genes. Dev. 6:129–134.PubMedCrossRefGoogle Scholar
  17. 17.
    Drenser, K.A., A.M. Timmers, W.W. Hauswirth, and A.S. Lewin, 1998, Ribozyme-targeted destruction of RNAs associated with ADRP. Inv. Ophth. Vis. Sci. 39:in press.Google Scholar
  18. 18.
    Birikh, K.R., Y.A. Berlin, H. Soreq, and F. Eckstein, 1997, Probing accessible sites for ribozymes on human acetylcholinesterase RNA. UNA. 3:429–437.Google Scholar
  19. 19.
    Heidenreich, O., S.H. Kang, D.A. Brown, X. Xu, P. Swiderski, J.J. Rossi, F. Eckstein, and M. Nerenberg, 1995. Ribozyme-mediated RNA degradation in nuclei suspension. Nucleic. Acids. Res. 23:2223–2228.PubMedCrossRefGoogle Scholar
  20. 20.
    Fedor, M.J. and O.C. Uhlenbeck, 1992, Kinetics of intermolecular cleavage by hammerhead ribozymes. Biochemistry. 31:12042–12054.PubMedCrossRefGoogle Scholar
  21. 21.
    Nesbitt, S., L.A. Hegg, and M.J. Fedor, 1997, An unusual pH-independent and metal-ion-independent mechanism for hairpin ribozyme catalysis. Chemistry & Biology 4:619–630.CrossRefGoogle Scholar
  22. 22.
    Goto, Y., N.S. Peachey, H. Ripps, and M.I. Naash, 1995, Functional abnormalities in transgenic mice expressing a mutant rhodopsin gene. Invest. Ophthalmol. Vis. Sci. 36:62–70.PubMedGoogle Scholar

Copyright information

© Kluwer Academic / Plenum Publishers 1999

Authors and Affiliations

  • Lynn C. Shaw
    • 1
  • Patrick O. Whalen
    • 1
  • Kimberly A. Drenser
    • 1
  • Wei-Ming Yan
    • 1
  • William W. Hauswirth
    • 1
  • Alfred S. Lewin
    • 1
  1. 1.Department of Molecular Genetics and Microbiology and Gene Therapy CenterFlorida

Personalised recommendations