Skip to main content

The Cytoplasmic Tail of Rhodopsin Acts as a Sorting Signal in Polarized Photoreceptors and MDCK Cells

  • Chapter
Retinal Degenerative Diseases and Experimental Therapy
  • 428 Accesses

Abstract

In this report, we demonstrate that wild-type rhodopsin is targeted to the apical plasma membrane via the trans- Golgi network (TGN) upon expression in polarized epithelial Madin-Darby canine kidney (MDCK) cells. Truncated rhodopsin with a deletion of 32 C-terminal residues shows a non-polar steady-state distribution. Addition of the C-terminal 39 residues of rhodopsin redirects the basolateral membrane protein CD7 to the apical membrane. Fusion of rhodopsin’s cytoplasmic tail to a cytosolic protein glutathione 5-transferase (GST) also targets this fusion protein (GST-Rho39Tr) to the apical membrane. We conclude that the carboxy-terminal tail of rhodopsin contains a novel cytoplasmic apical sorting determinant. This result is in agreement with previous studies showing that the cytoplasmic tail of rhodopsin mediates its vectorial transport from its site of synthesis in the rod photoreceptor cell body to the rod outer segment, where phototransduction occurs. Several mutant rhodopsins, found in patients with autosomal dominant retinitis pigmentosa (ADRP), have an amino acid change at the carboxy-terminus and these mutants are defective in their outer segment localization. It will be of interest to examine the relationship between the defects in rhodopsin’s targetingJ.transport and the pathogenesis of retinal degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Bok, M.O. Hall, and P. O’Brien, 1977, International Cell Biology, (B.R. Brinkley and K.R. Porter, eds.), p. 608, Rockefeller University Press, New York.

    Google Scholar 

  2. R. Schmied, and E. Holtzman, 1989, Involvement of the Golgi apparatus in sorting of materials to opposite ends of frog rod retinal photoreceptors, J. Neurobiol. 20:115–138.

    Article  PubMed  CAS  Google Scholar 

  3. D.S. Papermaster, B.G. Schneider, D. Defoe, and J.C. Besharse, 1986, Biosynthesis and vectorial transport of opsin on vesicles in retinal rod photoreceptors, J. Histochem. Cytochem. 34:5–16.

    PubMed  CAS  Google Scholar 

  4. C.-H. Sung, C. Makino, D. Baylor, and J. Nathans, 1994, A rhodopsin gene mutation responsible for autosomal dominant retinitis pigmentosa results in a protein that is defective in localization to the photoreceptor outer segment, J. Neurosci. 14:5818–5833.

    PubMed  CAS  Google Scholar 

  5. C.-H. Sung, C.M. Davenport, J.C. Hennessey, I.H. Maumenee, S.G. Jacobson, J.R. Heckenlively, R. Nowakowski, G. Fishman, P. Gouras, and J. Nathans, 1991, Rhodopsin mutations in autosomal dominant retinitis pigmentosa, Proc. Natl. Acad. Sci. USA 88:6481–6485.

    Article  PubMed  CAS  Google Scholar 

  6. T. Li, W.K. Snyder, J.E. Olsson, and T.P. Dryja, 1996, Transgenic mice carrying the dominant rhodopsin mutation P347S: evidence for defective vectorial transport of rhodopsin to the outer segments, Proc. Natl. Acad. Sci. USA 93:14176–14181.

    Article  PubMed  CAS  Google Scholar 

  7. Z.Y. Li, F. Wong, J.H. Chang, D.E. Possin, Y. Hao, R.M. Petters, and A.H. Milam, 1998, Rhodopsin transgenic pigs as a model for human retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 39:808–819.

    PubMed  CAS  Google Scholar 

  8. C.-H. Sung, B.G. Schneider, N. Agarwal, D.S. Papermaster, and J. Nathans, 1991, Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa, Proc. Natl. Acad. Sci. USA 88:8840–8844.

    Article  PubMed  CAS  Google Scholar 

  9. C.-H. Sung, C.M. Davenport, and J. Nathans, 1993, Rhodopsin mutations responsible for autosomal dominant retinitis pigmentosa. Clustering of functional classes along the polypeptide chain, J Biol. Chem. 268:26645–26649.

    PubMed  CAS  Google Scholar 

  10. S. Kaushal, and H. Khorana, 1994, Structure and function in rhodopsin. 7. Point mutations associated with autosomal dominant retinitis pigmentosa, Biochemistry 33:6121–6128.

    Article  PubMed  CAS  Google Scholar 

  11. D. Deretic, L. Huber, N. Ransom, M. Mancini, K. Simons, and D.S. Papermaster, 1995, rab8 in retinal photoreceptors may participate in rhodopsin transport and in rod outer segment disk morphogenesis, J Cell Sci. 108:215–224.

    PubMed  CAS  Google Scholar 

  12. A. Wandinger-Ness, M.K. Bennett, C. Antony, and K. Simons, 1990, Distinct transport vesicles mediate the delivery of plasma membrane proteins to the apical and basolateral domains of MDCK cells, J. Cell Biol. 111:987–1000.

    Article  PubMed  CAS  Google Scholar 

  13. W. Hunziker, C. Harter, K. Matter, and I. Mellman, 1991, Basolateral sorting in MDCK cells requires a distinct cytoplasmic domain determinant, Cell 66:907–920.

    Article  PubMed  CAS  Google Scholar 

  14. J.E. Casanova, G. Apodaca, and K.E. Mostov, 1991, An autonomous signal for basolateral sorting in the cytoplasmic domain of the polymeric immunoglobulin receptor, Cell 66:65–75.

    Article  PubMed  CAS  Google Scholar 

  15. A. Le Bivic, Y. Sambuy, A. Patzak, N. Patil, M. Chao, and E. Rodriguez-Boulan, 1991, An internal deletion in the cytoplasmic tail reverses the apical localization of human NGF receptor in transfected MDCK cells, J. Cell Biol. 115:607–618.

    Article  PubMed  Google Scholar 

  16. K. Matter, W. Hunziker, and I. Mellman, 1992, Basolateral sorting of LDL receptor in MDCK cells: the cytoplasmic domain contains two tyrosine-dependent targeting determents, Cell 71:741–753.

    Article  PubMed  CAS  Google Scholar 

  17. W.J. Nelson, 1992, Regulation of cell surface polarity from bacteria to mammals, Science 258:948–955.

    Article  PubMed  CAS  Google Scholar 

  18. D.A. Brown, B. Crise, and J.K. Rose, 1989, Mechanism of membrane anchoring affects polarized expression of two proteins in MDCK cells, Science 245:1499–1501.

    Article  PubMed  CAS  Google Scholar 

  19. M.P. Lisanti, I.W. Caras, M.A. Davitz, and E. Rodriguez-Boulan, 1989, A glycophospholipid membrane anchor acts as an apical targeting signal in polarized epithelial cells, J. Cell Biol. 109:2145–2156.

    Article  PubMed  CAS  Google Scholar 

  20. L. Fiedler and K. Simons, 1995, The role of N-glycans in the secretory pathway, Cell 81:309–312.

    Article  PubMed  CAS  Google Scholar 

  21. C. Yeaman, A.H. Le Gall, A.N. Baldwin, L. Monlauzeur, A. Le Bivic, and E. Rodriguez-Boulan, 1997, The O-glycosylated “stalk” domain is required for apical sorting of neurotrophin receptors in polarized MDCK cells, J. Cell Biol. 139:929–940.

    Article  PubMed  CAS  Google Scholar 

  22. B. Chatton, A. Bahr, J. Acker, and C. Kedinger, 1995, Eukaryotic GST fusion vector for the study of protein-protein associations in vivo: application to interaction of ATFa with Jun and Fos, BioTechniques 18:142–145.

    PubMed  CAS  Google Scholar 

  23. J.-Z. Chuang and C.-H. Sung, 1998, The carboxy-terminus of rhodopsin functions as an apical sorting signal in MDCK cells, J. Cell Biol. 142:1–12.

    Article  Google Scholar 

  24. G. Adamus, A. Arendt, Z.S. Zam, J.H. McDowell, and P.A. Hargrave, 1988, Use of peptides to select for anti-rhodopsin antibodies with desired amino acid sequence specificities, Pept. Res. 1:42–47.

    PubMed  CAS  Google Scholar 

  25. M.P. Lisanti, A.L. Bivic, M. Sargiacomo, and E. Rodriguez-Boulan, 1989, Steady-state distribution and biogenesis of endogenous Madin-Darby canine kidney glycoproteins: evidence for intracellular sorting and polarized cell surface delivery, J. Cell Biol. 109:2117–2127.

    Article  PubMed  CAS  Google Scholar 

  26. A. LeBivic, F.S. Real, and E. Rodriguez-Boulan, 1989, Vectorial targeting of apical and basolateral plasma membrane proteins in a human adenocarcinoma epithelial cell line, Proc. Natl. Acad. Sci. USA 86:9313–9317.

    Article  PubMed  Google Scholar 

  27. C.O. Van Hooff, J.C. Holthuis, A.B. Oestreicher, J. Boonstra, P.N. De Graan, and W.H. Gispen, 1989, Nerve growth factor-induced changes in the intracellular localization of the protein kinase C substrate B-50 in pheochromocytoma PC12 cells, J. Cell Biol. 108:1115–1125.

    Article  PubMed  Google Scholar 

  28. C. Haller and S.L. Alper, 1993, Nonpolarized surface distribution and delivery of human CD7 in polarized MDCK cells, Am. J. Physiol. 265:1069–1079.

    Google Scholar 

  29. G.K. Ojakian, R.E. Romain, and R.E. Herz, 1987, A distal nephron glycoprotein that has different cell surface distributions on MDCK cell sublines, Am. J. Physiol. 253:C433–C443.

    PubMed  CAS  Google Scholar 

  30. R. Mays, K.A. Siemers, B.A. Fritz, A.W. Lowe, G. van Meer, and W.J. Nelson, 1995, Hierarchy of mechanisms involved in generating NaJ.K-ATPase polarity in MDCK epithelial cells, J. Cell Biol. 130:1105–1115.

    Article  PubMed  CAS  Google Scholar 

  31. Y. Liu, D.A. Fisher, and D.R. Storm, 1994, Intracellular sorting of neuromodulin (GAP-43) mutants modified in the membrane targeting domain, J. Neurosci. 14:5807–5817.

    PubMed  CAS  Google Scholar 

  32. A.M. Shenoy-Scaria, D.J. Dietzen, J. Kwong, D.C. Link, and D.M. Lublin, 1994, Cysteine 3 of Src family protein tyrosine kinase determines palmitoylation and localization in caveolae, J. Cell Biol. 126:353–363.

    Article  PubMed  CAS  Google Scholar 

  33. G. Garcia-Cardena, P. Oh, J. Liu, J.E. Schnitzer, and W.C. Sessa, 1996, Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling, Proc. Natl. Acad. Sci. USA 93:6448–6453.

    Article  PubMed  CAS  Google Scholar 

  34. P.W. Shaul, E.J. Smart, L.J. Robinson, A. German, I.S. Yuhanna, Y. Ying, R.G. Anderson, and T. Michel, 1996, Acylation targets endothelial nitric-oxide synthase to plasmalemmal caveolae, J. Biol. Chem. 271:6518–6522.

    Article  PubMed  CAS  Google Scholar 

  35. M.L. Applebury and P.A. Hargrave, 1986, Molecular biology of the visual pigments. Vision Res. 26:1881–1895.

    Article  PubMed  CAS  Google Scholar 

  36. D.I. Papac, K.R. Thornburg, E.E. Bullesbach, R.K. Crouch, and D.R. Knapp, 1992, Palmitylation of a G-protein coupled receptor. Direct analysis by tandem mass spectrometry, J. Biol. Chem. 267:16889–16894.

    PubMed  CAS  Google Scholar 

  37. S.S. Karnik, T.P Sakmar, H.-B. Chen, and H.G. Khorana, 1988, Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin, Proc. Natl. Acad. Sci. USA 85:8459–8463.

    Article  PubMed  CAS  Google Scholar 

  38. S. Osawa and E.R. Weiss, 1994, The carboxy-terminus of bovine rhodopsin is not required for G protein activation, Mol. Pharmacol. 46:1036–1040.

    PubMed  CAS  Google Scholar 

  39. R.W. Hammerton, K.A. Kizeminski, R.W. Mays, D.A. Wollner, and W.J. Nelson, 1991, Mechanism for regulating cell surface distribution of Na+, K+-ATPase in polarized epithelial cells, Science 254:847–850.

    Article  PubMed  CAS  Google Scholar 

  40. K.A. Siemers, R. Wilson, R.W. Mays, R.A. Tyan, D.A. Wollner, and W.J. Nelon, 1993, Delivery of Na+, K+-ATPase in polarized epithelial cells, Science 260:554–556.

    Article  CAS  Google Scholar 

  41. B.G. Schneider and E. Kraig, 1990, Na, K-ATPase of the photoreceptor: selective expression of α3 and β2 isoforms, Exp. Eye Res. 51:553–564.

    Article  PubMed  CAS  Google Scholar 

  42. C.G. Dotti and K. Simons, 1990, Polarized sorting of viral glycoproteins to the axon and dendrites of hippocampal neurons in culture, Cell 62:63–72.

    Article  PubMed  CAS  Google Scholar 

  43. D.S. Papermaster and B.G. Schneider, 1982, Biosynthesis and morphogenesis of outer segment membranes in vertebrate photoreceptor cells, in Cell Biology of the Eye, (D.S. McDevitt, editor), pp. 477–531, Academic Press, New York.

    Google Scholar 

  44. D.M. Defoe and J.C. Besharse, 1985, Membrane assembly in retinal photoreceptors. II. Immunocytochemical analysis of freeze-fractured rod photoreceptor membranes using anti-opsin antibodies, J. Neurosci. 5:1023–1034.

    PubMed  CAS  Google Scholar 

  45. J.A. Rodriguez, C.A. Herrera, D.G. Birch, J.R. Heckenlively, and S.P. Daiger, 1993, Rhodopsin mutations in patients with retinitis pigmentosa, Am. J. Hum. Genet. 53:1224.

    Google Scholar 

  46. K. Scott, P.A. Sieving, E. Bingham, V.J. Bhagat, J. Sullivan, M. Alpern, and J.E. Richards, 1993, Rhodopsin mutations associated with autosomal dominant retinitis pigmentosa, Am. J. Hum. Genet. 53:147.

    Google Scholar 

  47. G. Restagno, M. Maghtheh, S. Bhattacharya, M. Ferrone, S. Garnerone, R. Samuelly, and A. Carbonara, 1993, A large deletion at the 3’ end of the rhodopsin gene in an Italian family with a diffuse form of autosomal dominant retinitis pigmentosa, Hum. Mol. Genet. 2:207–208.

    Article  PubMed  CAS  Google Scholar 

  48. M. Horn, P. Humphries, M. Kunisch, C. Marchese, E. Apfelstedt-Sylla, L. Fugi, E. Zrenner, P. Kenna, A. Gal, and J. Farrar, 1992, Deletions in exon 5 of the human rhodopsin gene causing a shift in the reading frame and autosomal dominant retinitis pigmentosa, Hum. Genet. 90:255–257.

    Article  PubMed  CAS  Google Scholar 

  49. T.P. Dryja, L.B. Hahn, G.S. Cowley, T.L. McGee, and E.L. Berson, 1991, Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa, Proc. Natl. Acad. Sci. USA 88:9370–9374.

    Article  PubMed  CAS  Google Scholar 

  50. R. Vaithinathan, E.L. Berson, and T.P. Dryja, 1994, Further screening of the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa, Genomics 21:461–463.

    Article  PubMed  CAS  Google Scholar 

  51. E.M. Stone, K. Vandenburgh, A.E. Kimura, B.L. Lam, G.A. Fishman, J.R. Heckenlively, R.A. Castillo, and V. Sheffield, 1993, Novel mutations in the peripherin (RDS) and rhodopsin genes associated with autosomal dominant retinitis pigmentosa (ADRP). Invest. Ophthalmol. Vis. Res. 34:1149.

    Google Scholar 

  52. A. Gal, A. Artlich, M. Ludwig, G. Niemeyer, K. Olek, E. Schwinger, and A. Schinzel, 1991, Pro-347-Arg mutation of the rhodopsin gene in autosomal dominant retinitis pigmentosa. Genomics 11:468–470.

    Article  PubMed  CAS  Google Scholar 

  53. T.P. Dryja, T.L. McGee, L.B. Hahn, G.S. Cowley, J.E. Olsson, E. Reichel, M.A. Sandberg, and E.L. Berson, Mutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa, New Engl. J. Med. 323:1302–1307.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Sung, CH., Chuang, JZ. (1999). The Cytoplasmic Tail of Rhodopsin Acts as a Sorting Signal in Polarized Photoreceptors and MDCK Cells. In: Hollyfield, J.G., Anderson, R.E., LaVail, M.M. (eds) Retinal Degenerative Diseases and Experimental Therapy. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-33172-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-33172-0_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46193-4

  • Online ISBN: 978-0-585-33172-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics