Advertisement

The Cytoplasmic Tail of Rhodopsin Acts as a Sorting Signal in Polarized Photoreceptors and MDCK Cells

  • Ching-Hwa Sung
  • Jen-Zen Chuang

Abstract

In this report, we demonstrate that wild-type rhodopsin is targeted to the apical plasma membrane via the trans- Golgi network (TGN) upon expression in polarized epithelial Madin-Darby canine kidney (MDCK) cells. Truncated rhodopsin with a deletion of 32 C-terminal residues shows a non-polar steady-state distribution. Addition of the C-terminal 39 residues of rhodopsin redirects the basolateral membrane protein CD7 to the apical membrane. Fusion of rhodopsin’s cytoplasmic tail to a cytosolic protein glutathione 5-transferase (GST) also targets this fusion protein (GST-Rho39Tr) to the apical membrane. We conclude that the carboxy-terminal tail of rhodopsin contains a novel cytoplasmic apical sorting determinant. This result is in agreement with previous studies showing that the cytoplasmic tail of rhodopsin mediates its vectorial transport from its site of synthesis in the rod photoreceptor cell body to the rod outer segment, where phototransduction occurs. Several mutant rhodopsins, found in patients with autosomal dominant retinitis pigmentosa (ADRP), have an amino acid change at the carboxy-terminus and these mutants are defective in their outer segment localization. It will be of interest to examine the relationship between the defects in rhodopsin’s targetingJ.transport and the pathogenesis of retinal degeneration.

Keywords

MDCK Cell Outer Segment Cytoplasmic Tail Apical Plasma Membrane Basolateral Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bok, M.O. Hall, and P. O’Brien, 1977, International Cell Biology, (B.R. Brinkley and K.R. Porter, eds.), p. 608, Rockefeller University Press, New York.Google Scholar
  2. 2.
    R. Schmied, and E. Holtzman, 1989, Involvement of the Golgi apparatus in sorting of materials to opposite ends of frog rod retinal photoreceptors, J. Neurobiol. 20:115–138.PubMedCrossRefGoogle Scholar
  3. 3.
    D.S. Papermaster, B.G. Schneider, D. Defoe, and J.C. Besharse, 1986, Biosynthesis and vectorial transport of opsin on vesicles in retinal rod photoreceptors, J. Histochem. Cytochem. 34:5–16.PubMedGoogle Scholar
  4. 4.
    C.-H. Sung, C. Makino, D. Baylor, and J. Nathans, 1994, A rhodopsin gene mutation responsible for autosomal dominant retinitis pigmentosa results in a protein that is defective in localization to the photoreceptor outer segment, J. Neurosci. 14:5818–5833.PubMedGoogle Scholar
  5. 5.
    C.-H. Sung, C.M. Davenport, J.C. Hennessey, I.H. Maumenee, S.G. Jacobson, J.R. Heckenlively, R. Nowakowski, G. Fishman, P. Gouras, and J. Nathans, 1991, Rhodopsin mutations in autosomal dominant retinitis pigmentosa, Proc. Natl. Acad. Sci. USA 88:6481–6485.PubMedCrossRefGoogle Scholar
  6. 6.
    T. Li, W.K. Snyder, J.E. Olsson, and T.P. Dryja, 1996, Transgenic mice carrying the dominant rhodopsin mutation P347S: evidence for defective vectorial transport of rhodopsin to the outer segments, Proc. Natl. Acad. Sci. USA 93:14176–14181.PubMedCrossRefGoogle Scholar
  7. 7.
    Z.Y. Li, F. Wong, J.H. Chang, D.E. Possin, Y. Hao, R.M. Petters, and A.H. Milam, 1998, Rhodopsin transgenic pigs as a model for human retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 39:808–819.PubMedGoogle Scholar
  8. 8.
    C.-H. Sung, B.G. Schneider, N. Agarwal, D.S. Papermaster, and J. Nathans, 1991, Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa, Proc. Natl. Acad. Sci. USA 88:8840–8844.PubMedCrossRefGoogle Scholar
  9. 9.
    C.-H. Sung, C.M. Davenport, and J. Nathans, 1993, Rhodopsin mutations responsible for autosomal dominant retinitis pigmentosa. Clustering of functional classes along the polypeptide chain, J Biol. Chem. 268:26645–26649.PubMedGoogle Scholar
  10. 10.
    S. Kaushal, and H. Khorana, 1994, Structure and function in rhodopsin. 7. Point mutations associated with autosomal dominant retinitis pigmentosa, Biochemistry 33:6121–6128.PubMedCrossRefGoogle Scholar
  11. 11.
    D. Deretic, L. Huber, N. Ransom, M. Mancini, K. Simons, and D.S. Papermaster, 1995, rab8 in retinal photoreceptors may participate in rhodopsin transport and in rod outer segment disk morphogenesis, J Cell Sci. 108:215–224.PubMedGoogle Scholar
  12. 12.
    A. Wandinger-Ness, M.K. Bennett, C. Antony, and K. Simons, 1990, Distinct transport vesicles mediate the delivery of plasma membrane proteins to the apical and basolateral domains of MDCK cells, J. Cell Biol. 111:987–1000.PubMedCrossRefGoogle Scholar
  13. 13.
    W. Hunziker, C. Harter, K. Matter, and I. Mellman, 1991, Basolateral sorting in MDCK cells requires a distinct cytoplasmic domain determinant, Cell 66:907–920.PubMedCrossRefGoogle Scholar
  14. 14.
    J.E. Casanova, G. Apodaca, and K.E. Mostov, 1991, An autonomous signal for basolateral sorting in the cytoplasmic domain of the polymeric immunoglobulin receptor, Cell 66:65–75.PubMedCrossRefGoogle Scholar
  15. 15.
    A. Le Bivic, Y. Sambuy, A. Patzak, N. Patil, M. Chao, and E. Rodriguez-Boulan, 1991, An internal deletion in the cytoplasmic tail reverses the apical localization of human NGF receptor in transfected MDCK cells, J. Cell Biol. 115:607–618.PubMedCrossRefGoogle Scholar
  16. 16.
    K. Matter, W. Hunziker, and I. Mellman, 1992, Basolateral sorting of LDL receptor in MDCK cells: the cytoplasmic domain contains two tyrosine-dependent targeting determents, Cell 71:741–753.PubMedCrossRefGoogle Scholar
  17. 17.
    W.J. Nelson, 1992, Regulation of cell surface polarity from bacteria to mammals, Science 258:948–955.PubMedCrossRefGoogle Scholar
  18. 18.
    D.A. Brown, B. Crise, and J.K. Rose, 1989, Mechanism of membrane anchoring affects polarized expression of two proteins in MDCK cells, Science 245:1499–1501.PubMedCrossRefGoogle Scholar
  19. 19.
    M.P. Lisanti, I.W. Caras, M.A. Davitz, and E. Rodriguez-Boulan, 1989, A glycophospholipid membrane anchor acts as an apical targeting signal in polarized epithelial cells, J. Cell Biol. 109:2145–2156.PubMedCrossRefGoogle Scholar
  20. 20.
    L. Fiedler and K. Simons, 1995, The role of N-glycans in the secretory pathway, Cell 81:309–312.PubMedCrossRefGoogle Scholar
  21. 21.
    C. Yeaman, A.H. Le Gall, A.N. Baldwin, L. Monlauzeur, A. Le Bivic, and E. Rodriguez-Boulan, 1997, The O-glycosylated “stalk” domain is required for apical sorting of neurotrophin receptors in polarized MDCK cells, J. Cell Biol. 139:929–940.PubMedCrossRefGoogle Scholar
  22. 22.
    B. Chatton, A. Bahr, J. Acker, and C. Kedinger, 1995, Eukaryotic GST fusion vector for the study of protein-protein associations in vivo: application to interaction of ATFa with Jun and Fos, BioTechniques 18:142–145.PubMedGoogle Scholar
  23. 23.
    J.-Z. Chuang and C.-H. Sung, 1998, The carboxy-terminus of rhodopsin functions as an apical sorting signal in MDCK cells, J. Cell Biol. 142:1–12.CrossRefGoogle Scholar
  24. 24.
    G. Adamus, A. Arendt, Z.S. Zam, J.H. McDowell, and P.A. Hargrave, 1988, Use of peptides to select for anti-rhodopsin antibodies with desired amino acid sequence specificities, Pept. Res. 1:42–47.PubMedGoogle Scholar
  25. 25.
    M.P. Lisanti, A.L. Bivic, M. Sargiacomo, and E. Rodriguez-Boulan, 1989, Steady-state distribution and biogenesis of endogenous Madin-Darby canine kidney glycoproteins: evidence for intracellular sorting and polarized cell surface delivery, J. Cell Biol. 109:2117–2127.PubMedCrossRefGoogle Scholar
  26. 26.
    A. LeBivic, F.S. Real, and E. Rodriguez-Boulan, 1989, Vectorial targeting of apical and basolateral plasma membrane proteins in a human adenocarcinoma epithelial cell line, Proc. Natl. Acad. Sci. USA 86:9313–9317.PubMedCrossRefGoogle Scholar
  27. 27.
    C.O. Van Hooff, J.C. Holthuis, A.B. Oestreicher, J. Boonstra, P.N. De Graan, and W.H. Gispen, 1989, Nerve growth factor-induced changes in the intracellular localization of the protein kinase C substrate B-50 in pheochromocytoma PC12 cells, J. Cell Biol. 108:1115–1125.PubMedCrossRefGoogle Scholar
  28. 28.
    C. Haller and S.L. Alper, 1993, Nonpolarized surface distribution and delivery of human CD7 in polarized MDCK cells, Am. J. Physiol. 265:1069–1079.Google Scholar
  29. 29.
    G.K. Ojakian, R.E. Romain, and R.E. Herz, 1987, A distal nephron glycoprotein that has different cell surface distributions on MDCK cell sublines, Am. J. Physiol. 253:C433–C443.PubMedGoogle Scholar
  30. 30.
    R. Mays, K.A. Siemers, B.A. Fritz, A.W. Lowe, G. van Meer, and W.J. Nelson, 1995, Hierarchy of mechanisms involved in generating NaJ.K-ATPase polarity in MDCK epithelial cells, J. Cell Biol. 130:1105–1115.PubMedCrossRefGoogle Scholar
  31. 31.
    Y. Liu, D.A. Fisher, and D.R. Storm, 1994, Intracellular sorting of neuromodulin (GAP-43) mutants modified in the membrane targeting domain, J. Neurosci. 14:5807–5817.PubMedGoogle Scholar
  32. 32.
    A.M. Shenoy-Scaria, D.J. Dietzen, J. Kwong, D.C. Link, and D.M. Lublin, 1994, Cysteine 3 of Src family protein tyrosine kinase determines palmitoylation and localization in caveolae, J. Cell Biol. 126:353–363.PubMedCrossRefGoogle Scholar
  33. 33.
    G. Garcia-Cardena, P. Oh, J. Liu, J.E. Schnitzer, and W.C. Sessa, 1996, Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling, Proc. Natl. Acad. Sci. USA 93:6448–6453.PubMedCrossRefGoogle Scholar
  34. 34.
    P.W. Shaul, E.J. Smart, L.J. Robinson, A. German, I.S. Yuhanna, Y. Ying, R.G. Anderson, and T. Michel, 1996, Acylation targets endothelial nitric-oxide synthase to plasmalemmal caveolae, J. Biol. Chem. 271:6518–6522.PubMedCrossRefGoogle Scholar
  35. 35.
    M.L. Applebury and P.A. Hargrave, 1986, Molecular biology of the visual pigments. Vision Res. 26:1881–1895.PubMedCrossRefGoogle Scholar
  36. 36.
    D.I. Papac, K.R. Thornburg, E.E. Bullesbach, R.K. Crouch, and D.R. Knapp, 1992, Palmitylation of a G-protein coupled receptor. Direct analysis by tandem mass spectrometry, J. Biol. Chem. 267:16889–16894.PubMedGoogle Scholar
  37. 37.
    S.S. Karnik, T.P Sakmar, H.-B. Chen, and H.G. Khorana, 1988, Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin, Proc. Natl. Acad. Sci. USA 85:8459–8463.PubMedCrossRefGoogle Scholar
  38. 38.
    S. Osawa and E.R. Weiss, 1994, The carboxy-terminus of bovine rhodopsin is not required for G protein activation, Mol. Pharmacol. 46:1036–1040.PubMedGoogle Scholar
  39. 39.
    R.W. Hammerton, K.A. Kizeminski, R.W. Mays, D.A. Wollner, and W.J. Nelson, 1991, Mechanism for regulating cell surface distribution of Na+, K+-ATPase in polarized epithelial cells, Science 254:847–850.PubMedCrossRefGoogle Scholar
  40. 40.
    K.A. Siemers, R. Wilson, R.W. Mays, R.A. Tyan, D.A. Wollner, and W.J. Nelon, 1993, Delivery of Na+, K+-ATPase in polarized epithelial cells, Science 260:554–556.CrossRefGoogle Scholar
  41. 41.
    B.G. Schneider and E. Kraig, 1990, Na, K-ATPase of the photoreceptor: selective expression of α3 and β2 isoforms, Exp. Eye Res. 51:553–564.PubMedCrossRefGoogle Scholar
  42. 42.
    C.G. Dotti and K. Simons, 1990, Polarized sorting of viral glycoproteins to the axon and dendrites of hippocampal neurons in culture, Cell 62:63–72.PubMedCrossRefGoogle Scholar
  43. 43.
    D.S. Papermaster and B.G. Schneider, 1982, Biosynthesis and morphogenesis of outer segment membranes in vertebrate photoreceptor cells, in Cell Biology of the Eye, (D.S. McDevitt, editor), pp. 477–531, Academic Press, New York.Google Scholar
  44. 44.
    D.M. Defoe and J.C. Besharse, 1985, Membrane assembly in retinal photoreceptors. II. Immunocytochemical analysis of freeze-fractured rod photoreceptor membranes using anti-opsin antibodies, J. Neurosci. 5:1023–1034.PubMedGoogle Scholar
  45. 45.
    J.A. Rodriguez, C.A. Herrera, D.G. Birch, J.R. Heckenlively, and S.P. Daiger, 1993, Rhodopsin mutations in patients with retinitis pigmentosa, Am. J. Hum. Genet. 53:1224.Google Scholar
  46. 46.
    K. Scott, P.A. Sieving, E. Bingham, V.J. Bhagat, J. Sullivan, M. Alpern, and J.E. Richards, 1993, Rhodopsin mutations associated with autosomal dominant retinitis pigmentosa, Am. J. Hum. Genet. 53:147.Google Scholar
  47. 47.
    G. Restagno, M. Maghtheh, S. Bhattacharya, M. Ferrone, S. Garnerone, R. Samuelly, and A. Carbonara, 1993, A large deletion at the 3’ end of the rhodopsin gene in an Italian family with a diffuse form of autosomal dominant retinitis pigmentosa, Hum. Mol. Genet. 2:207–208.PubMedCrossRefGoogle Scholar
  48. 48.
    M. Horn, P. Humphries, M. Kunisch, C. Marchese, E. Apfelstedt-Sylla, L. Fugi, E. Zrenner, P. Kenna, A. Gal, and J. Farrar, 1992, Deletions in exon 5 of the human rhodopsin gene causing a shift in the reading frame and autosomal dominant retinitis pigmentosa, Hum. Genet. 90:255–257.PubMedCrossRefGoogle Scholar
  49. 49.
    T.P. Dryja, L.B. Hahn, G.S. Cowley, T.L. McGee, and E.L. Berson, 1991, Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa, Proc. Natl. Acad. Sci. USA 88:9370–9374.PubMedCrossRefGoogle Scholar
  50. 50.
    R. Vaithinathan, E.L. Berson, and T.P. Dryja, 1994, Further screening of the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa, Genomics 21:461–463.PubMedCrossRefGoogle Scholar
  51. 51.
    E.M. Stone, K. Vandenburgh, A.E. Kimura, B.L. Lam, G.A. Fishman, J.R. Heckenlively, R.A. Castillo, and V. Sheffield, 1993, Novel mutations in the peripherin (RDS) and rhodopsin genes associated with autosomal dominant retinitis pigmentosa (ADRP). Invest. Ophthalmol. Vis. Res. 34:1149.Google Scholar
  52. 52.
    A. Gal, A. Artlich, M. Ludwig, G. Niemeyer, K. Olek, E. Schwinger, and A. Schinzel, 1991, Pro-347-Arg mutation of the rhodopsin gene in autosomal dominant retinitis pigmentosa. Genomics 11:468–470.PubMedCrossRefGoogle Scholar
  53. 53.
    T.P. Dryja, T.L. McGee, L.B. Hahn, G.S. Cowley, J.E. Olsson, E. Reichel, M.A. Sandberg, and E.L. Berson, Mutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa, New Engl. J. Med. 323:1302–1307.Google Scholar

Copyright information

© Kluwer Academic / Plenum Publishers 1999

Authors and Affiliations

  • Ching-Hwa Sung
    • 1
    • 2
  • Jen-Zen Chuang
    • 1
  1. 1.Department of OphthalmologyJoan and Sanford I. Weill Medical College of Cornell UniversityNew York
  2. 2.Department of Cell Biology and Anatomy The Margaret M. Dyson Vision Research InstituteJoan and Sanford I. Weill Medical College of Cornell UniversityNew York

Personalised recommendations