Skip to main content

Rhodopsin C-Terminal Sequence Qvs(A)Pa Directs Its Sorting To The Ros In Retinal Photoreceptors

  • Chapter
Retinal Degenerative Diseases and Experimental Therapy

Abstract

Several mutations that cause severe forms of autosomal dominant retinitis pigmentosa (ADRP) cluster in the C-terminal region of rhodopsin. Recent studies have implicated the C-terminal domain of rhodopsin in its trafficking on specialized post-Golgi membranes to the rod outer segment (ROS) of the photoreceptor cell. In addition, aberrant subcellular localization of rhodopsin has been observed in transgenic animals carrying C-terminal mutations. To test if sequence within the C-terminal domain regulates rhodopsin sorting to the ROS, we tested the effects of synthetic peptides that mimic this domain on intracellular trafficking of rhodopsin reconstituted in the frog retinal cell free system. The rhodopsin C-terminal sequence QVS(A)PA is highly conserved among different species. Synthetic peptides corresponding to the C-terminal of frog (AA 330-354) and bovine (AA 324-348) rhodopsin inhibited post-Golgi trafficking by 60% and 50%, respectively, and arrested newly synthesized rhodopsin in the trans-Golgi network (TGN). Peptides corresponding to the cytoplasmic loops and several control peptides had no effect. To assess the role of the last 5 amino acids QVS(A)PA in rhodopsin trafficking, and to model three naturally occurring mutations: Q344ter (lacking the last 5 amino acids QVAPA), V345M and P347S, we introduced equivalent substitutions into the frog C-terminal peptide. Each of these substitutions completely abolished the inhibitory activity of the peptides. Our data could help to explain detrimental effect of mutant rhodopsin in patients with ADRP. We propose that amino acids QVS(A)PA comprise a sorting signal that is recognized by specific factor(s) in the trans-Golgi network. A lack of recognition of this sequence, due to mutations in the last five amino acids causing ADRP most likely results in abnormal post-Golgi membrane formation and in an aberrant subcellular localization of rhodopsin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Li Z.Y., Kljavin I.J., Milam A.H. 1995. Rod photoreceptor neurite sprouting in retinitis pigmentosa. J. Neurosci. 15:5429–5438.

    PubMed  CAS  Google Scholar 

  2. Li T., Snyder W.K., Olsson J.E., Dryja T.R 1996. Transgenic mice carrying the dominant rhodopsin mutation P347S: evidence for defective vectorial transport of rhodopsin to the outer segments. Proc Natl Acad Sci USA. 93:14176–14181.

    Article  PubMed  CAS  Google Scholar 

  3. Sung C.H., Makino C., Baylor D., Nathans J. 1994. A rhodopsin gene mutation responsible for autosomal dominant retinitis pigmentosa results in a protein that is defective in localization to the photoreceptor outer segment. J Neurosci. 14:5818–5833.

    PubMed  CAS  Google Scholar 

  4. Colley N.J., Cassill J.A., Baker E.K., Zuker C.S. 1995. Defective intracellular transport is the molecular basis of rhodopsin-dependent dominant retinal degeneration. Proc Natl Acad Sci USA. 92:3070–3074.

    Article  PubMed  CAS  Google Scholar 

  5. Roof D.J., Adamian M., Hayes A. 1994. Rhodopsin accumulation at abnormal sites in retinas of mice with a human P23H rhodopsin transgene. Invest Ophthalmol Vis Sci. 35:4049–4062.

    PubMed  CAS  Google Scholar 

  6. Rosenfeld P.J., Cowley G.S., McGee T.L., Sandberg M.A., Berson E.L., Dryja T.P. 1992. A null mutation in the rhodopsin gene causes rod photoreceptor dysfunction and autosomal recessive retinitis pigmentosa. Nat Genet. 1:209–213.

    Article  PubMed  CAS  Google Scholar 

  7. Humphries M.M., Rancourt D., Farrar G.J., Kenna P., Hazel M., Bush R.A., Sieving P.A.. Sheils D.M., McNally N., Creighton P., Erven A., Boros A., Gulya K., Capecchi M.R., Humphries P. 1997. Retinopathy induced in mice by targeted disruption of the rhodopsin gene. Nat Genet. 15:216–219.

    Article  PubMed  CAS  Google Scholar 

  8. Kumar J.P., Bowman J., O’Tousa J.E., Ready D.F. 1997. Rhodopsin replacement rescues photoreceptor structure during a critical developmental window. Dev Biol. 188:43–47.

    Article  PubMed  CAS  Google Scholar 

  9. Berson E.L. 1996. Retinitis pigmentosa: unfolding its mystery. Proc Natl Acad Sci USA. 93:4526–4528.

    Google Scholar 

  10. Papermaster D.S., Windle J. 1995. Death at an early age. Apoptosis in inherited retinal degenerations. Invest Ophthalmol Vis Sci. 36:977–983.

    PubMed  CAS  Google Scholar 

  11. Sung C.H., Schneider B.G., Agarwal N., Papermaster D.S., Nathans J. 1991. Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci USA. 88:8840–8844.

    Article  PubMed  CAS  Google Scholar 

  12. Berson E.L., Rosner B., Sandberg M.A., Weigel DiFranco C., Dryja T.P. 1991. Ocular findings in patients with autosomal dominant retinitis pigmentosa and rhodopsin, proline-347-leucine. Am J Ophthalmol. 111:614–623.

    PubMed  CAS  Google Scholar 

  13. Sandberg M.A., Weigel DiFranco C., Dryja T.P., Berson E.L. 1995. Clinical expression correlates with location of rhodopsin mutation in dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 36:1934–1942.

    PubMed  CAS  Google Scholar 

  14. Sullivan L.S., Daiger S.P. 1996. Inherited retinal degeneration: exceptional genetic and clinical heterogeneity. Mol Med Today. 2:380–386.

    Article  PubMed  CAS  Google Scholar 

  15. Dryja T.P., McGee T.L., Hahn L.B., Cowley G.S., Olsson J.E., Reichel E., Sandberg M.A., Berson E.L. 1990. Mutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. N Engl J Med. 323:1302–1307.

    Article  PubMed  CAS  Google Scholar 

  16. Berson E.L., Sandberg M.A., Dryja T.P. 1991. Autosomal dominant retinitis pigmentosa with rhodopsin, valine-345-methionine. Trans Am Ophthalmol Soc. 89:117–130.

    PubMed  CAS  Google Scholar 

  17. Sung C.H., Davenport C.M., Hennessey J.C., Maumenee I.H., Jacobson S.G., Heckenlively J.R., Nowakowski R., Fishman G., Gouras P., Nathans J. 1991. Rhodopsin mutations in autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci USA. 88:6481–6485.

    Article  PubMed  CAS  Google Scholar 

  18. Jacobson S.G., Kemp C.M., Sung C.H., Nathans J. 1991. Retinal function and rhodopsin levels in autosomal dominant retinitis pigmentosa with rhodopsin mutations. Am J Ophthalmol. 112:256–271.

    PubMed  CAS  Google Scholar 

  19. Weiss E.R., Hao Y., Dickerson C.D., Osawa S., Shi W., Zhang L., Wong F. 1995. Altered cAMP levels in retinas from transgenic mice expressing a rhodopsin mutant. Biochem Biophys Res Commun. 216:755–761.

    Article  PubMed  CAS  Google Scholar 

  20. Li Z.Y., Wong F., Chang J.H., Possin D.E., Hao Y., Petters R.M., Milam A.H. 1998. Rhodopsin trans-genic pigs as a model for human retinitis pigmentosa. Investigative Ophthalmology & Visual Science. 39:808–819.

    CAS  Google Scholar 

  21. Deretic D., Puleo Scheppke B., Trippe C. 1996. Cytoplasmic domain of rhodopsin is essential for post-Golgi vesicle formation in a retinal cell-free system. J Biol Chem. 271:2279–2286.

    Article  PubMed  CAS  Google Scholar 

  22. Griffiths G., Simons K. 1986. The trans Golgi network: sorting at the exit site of the Golgi complex. Science. 234:438–443.

    Article  PubMed  CAS  Google Scholar 

  23. Matter K., Mellman I. 1994. Mechanisms of cell polarity: sorting and transport in epithelial cells. Curr Opin Cell Biol. 6:545–554.

    Article  PubMed  CAS  Google Scholar 

  24. Schekman R., Orci L. 1996. Coat proteins and vesicle budding. Science. 271:1526–1533.

    Article  PubMed  CAS  Google Scholar 

  25. Simons K., Ikonen E. 1997. Functional rafts in cell membranes. Nature. 387:569–572.

    Article  PubMed  CAS  Google Scholar 

  26. Scheiffele P., Peränen J, Simons K. 1995. N-glycans as apical sorting signals in epithelial cells. Nature. 378:96–98.

    Article  PubMed  CAS  Google Scholar 

  27. Dotti C.G., Simons K. 1990. Polarized sorting of viral glycoproteins to the axon and dendriles of hippocampal neurons in culture. Cell. 62:63–72.

    Article  PubMed  CAS  Google Scholar 

  28. Deretic D, Schmerl S., Hargrave P. A., Arendt A., McDowell J.H. 1998. Regulation of sorting and post-Golgi trafficking of rhodopsin by its C-terminal sequence QVS(A)PA. Proc Natl Acad Sci USA. 95:in press.

    Google Scholar 

  29. Pittler S.J., Fliesler S.J., Baehr W. 1992. Primary structure of frog rhodopsin. FEBS Lett. 313:103–108.

    Article  PubMed  CAS  Google Scholar 

  30. Hargrave P.A., McDowell J.H., Curtis DR., Wang J.K., Juszczak E., Fong S.L., Rao J.K., Argos P. 1983. The structure of bovine rhodopsin. Biophys Struct Mech. 9:235–244.

    Article  PubMed  CAS  Google Scholar 

  31. Nathans J., Hogness D.S. 1983. Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell. 34:807–814.

    Article  PubMed  CAS  Google Scholar 

  32. Deretic D., Papermaster D.S. 1991. Polarized sorting of rhodopsin on post-Golgi membranes in frog retinal photoreceptor cells. J Cell Biol. 113:1281–1293.

    Article  PubMed  CAS  Google Scholar 

  33. Deretic D., Papermaster D.S. 1993. Rab6 is associated with a compartment that transports rhodopsin from the trans-Golgi to the site of rod outer segment disk formation in frog retinal photoreceptors. J Cell Sci. 106:803–813.

    PubMed  CAS  Google Scholar 

  34. Deretic D., Papermaster D.S. 1993. Isolation of post-Golgi membranes transporting newly synthesized rhodopsin. In: Hargrave P.A., ed. Methods for the Study of Photoreceptor Cells. New York: Rocke-feller University Press, 108–120. (Conn PM, ed. Methods in Neurosciences; vol 15).

    Google Scholar 

  35. Deretic D., Huber L.A., Ransom N., Mancini M., Simons K., Papermaster D.S. 1995. rab8 in retinal photoreceptors may participate in rhodopsin transport and in rod outer segment disk morphogenesis. J Cell Sci. 108:215–224.

    PubMed  CAS  Google Scholar 

  36. Deretic D., Papermaster D.S. 1995. The Role of Small G-Proteins in the Transport of Newly Synthe-sized Rhodopsin. In: Osborne N.N., Chader G.J., eds. Progress in Retinal and Eye Research. New York: Pergamon Press, 249–265. vol 14.

    Google Scholar 

  37. Rodriguez de Turco EB, Deretic D, Bazan NG, Papermaster DS. 1997. Post-Golgi vesicles colransport docosahexaenoyl-phospholipids and rhodopsin during frog photoreceptor membrane biogenesis. J Biol Chem. 272:10491–10497.

    Article  PubMed  CAS  Google Scholar 

  38. Deretic D. 1997. Rab proteins and post-Golgi trafficking of rhodopsin in photoreceptor cells. Electrophoresis. 18:2537–2541.

    Article  PubMed  CAS  Google Scholar 

  39. Hargrave P.A., McDowell J.H. 1992. Rhodopsin and phototransduction. Int Rev Cytol. 137b:49–97.

    PubMed  CAS  Google Scholar 

  40. Yeagle P.L., Alderfer J.L., Albert A.D. 1995. Structure of the carboxy-terminal domain of bovine rhodopsin [letter]. Nat Struct Biol. 2:832–834.

    Article  PubMed  CAS  Google Scholar 

  41. Yeagle P.L., Alderfer J.L., Albert A.D. 1996. Structure determination of the fourth cytoplasmic loop and carboxyl terminal domain of bovine rhodopsin. Mol. Vis. 2:12.

    PubMed  CAS  Google Scholar 

  42. Konig B., Arendt A., McDowell J.H., Kahlert M., Hargrave P.A., Hofmann K.P. 1989. Three cytoplasmic loops of rhodopsin interact with transducin. Proc Natl Acad Sci USA. 86:6878–6882.

    Article  PubMed  CAS  Google Scholar 

  43. Krupnick J.G., Gurevich V.V., Schepers T., Hamm H.E., Benovic J.L. 1994. Arrestin-rhodopsin interaction. Multi-site binding delineated by peptide inhibition. J Biol Chem. 269:3226–3232.

    PubMed  CAS  Google Scholar 

  44. Thurmond R.L., Creuzenet C., Reeves P., Khorana H.G. 1997. Structure and function of rhodopsin: Peptide sequences in the cytoplasmic loops of rhodopsin are intimately involved in the interaction with rhodopsin kinase. Proc. Natl. Acad. Sci. USA. 94:1715–1720.

    Article  PubMed  CAS  Google Scholar 

  45. Unger V.M., Hargrave P.A., Baldwin J.M., Schertler G.F. 1997. Arrangement of rhodopsin transmem-brane alpha-helices. Nature. 389:203–206.

    Article  PubMed  CAS  Google Scholar 

  46. Dryja T.P., Hahn L.B., Cowley G.S., McGee T.L., Berson E.L. 1991. Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa. Proe Natl Acad Sci USA. 88:9370–9374.

    Article  CAS  Google Scholar 

  47. Palczewski K., Arendt A., McDowell J.H., Hargrave P.A. 1989. Substrate recognition determinants for rhodopsin kinase: studies with synthetic peptides, polyanions, and polycations. Biochemistry. 28:8764–8770.

    Article  PubMed  CAS  Google Scholar 

  48. Milam A.H., Li Z.Y., Cideciyan A.V., Jacobson S.G. 1996. Clinicopathologic effects of the Q64ter rhodopsin mutation in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 37:753–765.

    PubMed  CAS  Google Scholar 

  49. Dickerson C.D., Weiss E.R. 1995. The coupling of pertussis toxin-sensitive G proteins to phospholi-pase A2 and adenylyl cyclase in CHO cells expressing bovine rhodopsin. Exp Cell Res. 216:46–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Deretic, D., Schmerl, S., Hargrave, P.A., Arendt, A., McDowell, J.H. (1999). Rhodopsin C-Terminal Sequence Qvs(A)Pa Directs Its Sorting To The Ros In Retinal Photoreceptors. In: Hollyfield, J.G., Anderson, R.E., LaVail, M.M. (eds) Retinal Degenerative Diseases and Experimental Therapy. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-33172-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-33172-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46193-4

  • Online ISBN: 978-0-585-33172-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics