Rhodopsin C-Terminal Sequence Qvs(A)Pa Directs Its Sorting To The Ros In Retinal Photoreceptors

  • Dusanka Deretic
  • Sonia Schmerl
  • Paul A. Hargrave
  • Anatol Arendt
  • J. Hugh McDowell


Several mutations that cause severe forms of autosomal dominant retinitis pigmentosa (ADRP) cluster in the C-terminal region of rhodopsin. Recent studies have implicated the C-terminal domain of rhodopsin in its trafficking on specialized post-Golgi membranes to the rod outer segment (ROS) of the photoreceptor cell. In addition, aberrant subcellular localization of rhodopsin has been observed in transgenic animals carrying C-terminal mutations. To test if sequence within the C-terminal domain regulates rhodopsin sorting to the ROS, we tested the effects of synthetic peptides that mimic this domain on intracellular trafficking of rhodopsin reconstituted in the frog retinal cell free system. The rhodopsin C-terminal sequence QVS(A)PA is highly conserved among different species. Synthetic peptides corresponding to the C-terminal of frog (AA 330-354) and bovine (AA 324-348) rhodopsin inhibited post-Golgi trafficking by 60% and 50%, respectively, and arrested newly synthesized rhodopsin in the trans-Golgi network (TGN). Peptides corresponding to the cytoplasmic loops and several control peptides had no effect. To assess the role of the last 5 amino acids QVS(A)PA in rhodopsin trafficking, and to model three naturally occurring mutations: Q344ter (lacking the last 5 amino acids QVAPA), V345M and P347S, we introduced equivalent substitutions into the frog C-terminal peptide. Each of these substitutions completely abolished the inhibitory activity of the peptides. Our data could help to explain detrimental effect of mutant rhodopsin in patients with ADRP. We propose that amino acids QVS(A)PA comprise a sorting signal that is recognized by specific factor(s) in the trans-Golgi network. A lack of recognition of this sequence, due to mutations in the last five amino acids causing ADRP most likely results in abnormal post-Golgi membrane formation and in an aberrant subcellular localization of rhodopsin.


Retinitis Pigmentosa Photoreceptor Cell Retinal Degeneration Cytoplasmic Loop Sorting Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Li Z.Y., Kljavin I.J., Milam A.H. 1995. Rod photoreceptor neurite sprouting in retinitis pigmentosa. J. Neurosci. 15:5429–5438.PubMedGoogle Scholar
  2. 2.
    Li T., Snyder W.K., Olsson J.E., Dryja T.R 1996. Transgenic mice carrying the dominant rhodopsin mutation P347S: evidence for defective vectorial transport of rhodopsin to the outer segments. Proc Natl Acad Sci USA. 93:14176–14181.PubMedCrossRefGoogle Scholar
  3. 3.
    Sung C.H., Makino C., Baylor D., Nathans J. 1994. A rhodopsin gene mutation responsible for autosomal dominant retinitis pigmentosa results in a protein that is defective in localization to the photoreceptor outer segment. J Neurosci. 14:5818–5833.PubMedGoogle Scholar
  4. 4.
    Colley N.J., Cassill J.A., Baker E.K., Zuker C.S. 1995. Defective intracellular transport is the molecular basis of rhodopsin-dependent dominant retinal degeneration. Proc Natl Acad Sci USA. 92:3070–3074.PubMedCrossRefGoogle Scholar
  5. 5.
    Roof D.J., Adamian M., Hayes A. 1994. Rhodopsin accumulation at abnormal sites in retinas of mice with a human P23H rhodopsin transgene. Invest Ophthalmol Vis Sci. 35:4049–4062.PubMedGoogle Scholar
  6. 6.
    Rosenfeld P.J., Cowley G.S., McGee T.L., Sandberg M.A., Berson E.L., Dryja T.P. 1992. A null mutation in the rhodopsin gene causes rod photoreceptor dysfunction and autosomal recessive retinitis pigmentosa. Nat Genet. 1:209–213.PubMedCrossRefGoogle Scholar
  7. 7.
    Humphries M.M., Rancourt D., Farrar G.J., Kenna P., Hazel M., Bush R.A., Sieving P.A.. Sheils D.M., McNally N., Creighton P., Erven A., Boros A., Gulya K., Capecchi M.R., Humphries P. 1997. Retinopathy induced in mice by targeted disruption of the rhodopsin gene. Nat Genet. 15:216–219.PubMedCrossRefGoogle Scholar
  8. 8.
    Kumar J.P., Bowman J., O’Tousa J.E., Ready D.F. 1997. Rhodopsin replacement rescues photoreceptor structure during a critical developmental window. Dev Biol. 188:43–47.PubMedCrossRefGoogle Scholar
  9. 9.
    Berson E.L. 1996. Retinitis pigmentosa: unfolding its mystery. Proc Natl Acad Sci USA. 93:4526–4528.Google Scholar
  10. 10.
    Papermaster D.S., Windle J. 1995. Death at an early age. Apoptosis in inherited retinal degenerations. Invest Ophthalmol Vis Sci. 36:977–983.PubMedGoogle Scholar
  11. 11.
    Sung C.H., Schneider B.G., Agarwal N., Papermaster D.S., Nathans J. 1991. Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci USA. 88:8840–8844.PubMedCrossRefGoogle Scholar
  12. 12.
    Berson E.L., Rosner B., Sandberg M.A., Weigel DiFranco C., Dryja T.P. 1991. Ocular findings in patients with autosomal dominant retinitis pigmentosa and rhodopsin, proline-347-leucine. Am J Ophthalmol. 111:614–623.PubMedGoogle Scholar
  13. 13.
    Sandberg M.A., Weigel DiFranco C., Dryja T.P., Berson E.L. 1995. Clinical expression correlates with location of rhodopsin mutation in dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 36:1934–1942.PubMedGoogle Scholar
  14. 14.
    Sullivan L.S., Daiger S.P. 1996. Inherited retinal degeneration: exceptional genetic and clinical heterogeneity. Mol Med Today. 2:380–386.PubMedCrossRefGoogle Scholar
  15. 15.
    Dryja T.P., McGee T.L., Hahn L.B., Cowley G.S., Olsson J.E., Reichel E., Sandberg M.A., Berson E.L. 1990. Mutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. N Engl J Med. 323:1302–1307.PubMedCrossRefGoogle Scholar
  16. 16.
    Berson E.L., Sandberg M.A., Dryja T.P. 1991. Autosomal dominant retinitis pigmentosa with rhodopsin, valine-345-methionine. Trans Am Ophthalmol Soc. 89:117–130.PubMedGoogle Scholar
  17. 17.
    Sung C.H., Davenport C.M., Hennessey J.C., Maumenee I.H., Jacobson S.G., Heckenlively J.R., Nowakowski R., Fishman G., Gouras P., Nathans J. 1991. Rhodopsin mutations in autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci USA. 88:6481–6485.PubMedCrossRefGoogle Scholar
  18. 18.
    Jacobson S.G., Kemp C.M., Sung C.H., Nathans J. 1991. Retinal function and rhodopsin levels in autosomal dominant retinitis pigmentosa with rhodopsin mutations. Am J Ophthalmol. 112:256–271.PubMedGoogle Scholar
  19. 19.
    Weiss E.R., Hao Y., Dickerson C.D., Osawa S., Shi W., Zhang L., Wong F. 1995. Altered cAMP levels in retinas from transgenic mice expressing a rhodopsin mutant. Biochem Biophys Res Commun. 216:755–761.PubMedCrossRefGoogle Scholar
  20. 20.
    Li Z.Y., Wong F., Chang J.H., Possin D.E., Hao Y., Petters R.M., Milam A.H. 1998. Rhodopsin trans-genic pigs as a model for human retinitis pigmentosa. Investigative Ophthalmology & Visual Science. 39:808–819.Google Scholar
  21. 21.
    Deretic D., Puleo Scheppke B., Trippe C. 1996. Cytoplasmic domain of rhodopsin is essential for post-Golgi vesicle formation in a retinal cell-free system. J Biol Chem. 271:2279–2286.PubMedCrossRefGoogle Scholar
  22. 22.
    Griffiths G., Simons K. 1986. The trans Golgi network: sorting at the exit site of the Golgi complex. Science. 234:438–443.PubMedCrossRefGoogle Scholar
  23. 23.
    Matter K., Mellman I. 1994. Mechanisms of cell polarity: sorting and transport in epithelial cells. Curr Opin Cell Biol. 6:545–554.PubMedCrossRefGoogle Scholar
  24. 24.
    Schekman R., Orci L. 1996. Coat proteins and vesicle budding. Science. 271:1526–1533.PubMedCrossRefGoogle Scholar
  25. 25.
    Simons K., Ikonen E. 1997. Functional rafts in cell membranes. Nature. 387:569–572.PubMedCrossRefGoogle Scholar
  26. 26.
    Scheiffele P., Peränen J, Simons K. 1995. N-glycans as apical sorting signals in epithelial cells. Nature. 378:96–98.PubMedCrossRefGoogle Scholar
  27. 27.
    Dotti C.G., Simons K. 1990. Polarized sorting of viral glycoproteins to the axon and dendriles of hippocampal neurons in culture. Cell. 62:63–72.PubMedCrossRefGoogle Scholar
  28. 28.
    Deretic D, Schmerl S., Hargrave P. A., Arendt A., McDowell J.H. 1998. Regulation of sorting and post-Golgi trafficking of rhodopsin by its C-terminal sequence QVS(A)PA. Proc Natl Acad Sci USA. 95:in press.Google Scholar
  29. 29.
    Pittler S.J., Fliesler S.J., Baehr W. 1992. Primary structure of frog rhodopsin. FEBS Lett. 313:103–108.PubMedCrossRefGoogle Scholar
  30. 30.
    Hargrave P.A., McDowell J.H., Curtis DR., Wang J.K., Juszczak E., Fong S.L., Rao J.K., Argos P. 1983. The structure of bovine rhodopsin. Biophys Struct Mech. 9:235–244.PubMedCrossRefGoogle Scholar
  31. 31.
    Nathans J., Hogness D.S. 1983. Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell. 34:807–814.PubMedCrossRefGoogle Scholar
  32. 32.
    Deretic D., Papermaster D.S. 1991. Polarized sorting of rhodopsin on post-Golgi membranes in frog retinal photoreceptor cells. J Cell Biol. 113:1281–1293.PubMedCrossRefGoogle Scholar
  33. 33.
    Deretic D., Papermaster D.S. 1993. Rab6 is associated with a compartment that transports rhodopsin from the trans-Golgi to the site of rod outer segment disk formation in frog retinal photoreceptors. J Cell Sci. 106:803–813.PubMedGoogle Scholar
  34. 34.
    Deretic D., Papermaster D.S. 1993. Isolation of post-Golgi membranes transporting newly synthesized rhodopsin. In: Hargrave P.A., ed. Methods for the Study of Photoreceptor Cells. New York: Rocke-feller University Press, 108–120. (Conn PM, ed. Methods in Neurosciences; vol 15).Google Scholar
  35. 35.
    Deretic D., Huber L.A., Ransom N., Mancini M., Simons K., Papermaster D.S. 1995. rab8 in retinal photoreceptors may participate in rhodopsin transport and in rod outer segment disk morphogenesis. J Cell Sci. 108:215–224.PubMedGoogle Scholar
  36. 36.
    Deretic D., Papermaster D.S. 1995. The Role of Small G-Proteins in the Transport of Newly Synthe-sized Rhodopsin. In: Osborne N.N., Chader G.J., eds. Progress in Retinal and Eye Research. New York: Pergamon Press, 249–265. vol 14.Google Scholar
  37. 37.
    Rodriguez de Turco EB, Deretic D, Bazan NG, Papermaster DS. 1997. Post-Golgi vesicles colransport docosahexaenoyl-phospholipids and rhodopsin during frog photoreceptor membrane biogenesis. J Biol Chem. 272:10491–10497.PubMedCrossRefGoogle Scholar
  38. 38.
    Deretic D. 1997. Rab proteins and post-Golgi trafficking of rhodopsin in photoreceptor cells. Electrophoresis. 18:2537–2541.PubMedCrossRefGoogle Scholar
  39. 39.
    Hargrave P.A., McDowell J.H. 1992. Rhodopsin and phototransduction. Int Rev Cytol. 137b:49–97.PubMedGoogle Scholar
  40. 40.
    Yeagle P.L., Alderfer J.L., Albert A.D. 1995. Structure of the carboxy-terminal domain of bovine rhodopsin [letter]. Nat Struct Biol. 2:832–834.PubMedCrossRefGoogle Scholar
  41. 41.
    Yeagle P.L., Alderfer J.L., Albert A.D. 1996. Structure determination of the fourth cytoplasmic loop and carboxyl terminal domain of bovine rhodopsin. Mol. Vis. 2:12.PubMedGoogle Scholar
  42. 42.
    Konig B., Arendt A., McDowell J.H., Kahlert M., Hargrave P.A., Hofmann K.P. 1989. Three cytoplasmic loops of rhodopsin interact with transducin. Proc Natl Acad Sci USA. 86:6878–6882.PubMedCrossRefGoogle Scholar
  43. 43.
    Krupnick J.G., Gurevich V.V., Schepers T., Hamm H.E., Benovic J.L. 1994. Arrestin-rhodopsin interaction. Multi-site binding delineated by peptide inhibition. J Biol Chem. 269:3226–3232.PubMedGoogle Scholar
  44. 44.
    Thurmond R.L., Creuzenet C., Reeves P., Khorana H.G. 1997. Structure and function of rhodopsin: Peptide sequences in the cytoplasmic loops of rhodopsin are intimately involved in the interaction with rhodopsin kinase. Proc. Natl. Acad. Sci. USA. 94:1715–1720.PubMedCrossRefGoogle Scholar
  45. 45.
    Unger V.M., Hargrave P.A., Baldwin J.M., Schertler G.F. 1997. Arrangement of rhodopsin transmem-brane alpha-helices. Nature. 389:203–206.PubMedCrossRefGoogle Scholar
  46. 46.
    Dryja T.P., Hahn L.B., Cowley G.S., McGee T.L., Berson E.L. 1991. Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa. Proe Natl Acad Sci USA. 88:9370–9374.CrossRefGoogle Scholar
  47. 47.
    Palczewski K., Arendt A., McDowell J.H., Hargrave P.A. 1989. Substrate recognition determinants for rhodopsin kinase: studies with synthetic peptides, polyanions, and polycations. Biochemistry. 28:8764–8770.PubMedCrossRefGoogle Scholar
  48. 48.
    Milam A.H., Li Z.Y., Cideciyan A.V., Jacobson S.G. 1996. Clinicopathologic effects of the Q64ter rhodopsin mutation in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 37:753–765.PubMedGoogle Scholar
  49. 49.
    Dickerson C.D., Weiss E.R. 1995. The coupling of pertussis toxin-sensitive G proteins to phospholi-pase A2 and adenylyl cyclase in CHO cells expressing bovine rhodopsin. Exp Cell Res. 216:46–50.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic / Plenum Publishers 1999

Authors and Affiliations

  • Dusanka Deretic
    • 1
    • 2
  • Sonia Schmerl
    • 1
  • Paul A. Hargrave
    • 3
  • Anatol Arendt
    • 3
  • J. Hugh McDowell
    • 3
  1. 1.Department of OphthalmologyUniversity of MichiganAnn Arbor
  2. 2.Anatomy and Cell BiologyUniversity of MichiganAnn Arbor
  3. 3.Department of OphthalmologyUniversity of FloridaGainesville

Personalised recommendations