Skip to main content

Evidence for Myosin VIIa-Driven Transport of Rhodopsin in the Plasma Membrane of the Photoreceptor-Connecting Cilium

  • Chapter
Retinal Degenerative Diseases and Experimental Therapy

Abstract

Defects in the gene encoding for the unconventional myosin VIIa leads to human Usher syndrome 1B, the most common form of hereditary combined blindness and deafness. To determine cellular function of myosin VIIa, we have investigated the subcellular localization of myosin VIIa in spacial relation relationship to potentially interacting proteins in mammalian photoreceptor cells. Western blot analysis of the axonemal fraction of photoreceptor cells by Western blot show that myosin VIIa and actin, as well as opsin, were present in the ciliary portion of the photoreceptors. Improved immunoelectron microscopy revealed that in mammalian photoreceptor cells, myosin VIIa was localized at the membrane of the connecting cilium linking photoreceptor inner segments with their outer segments. In addition, actin, the functional partner of myosins, actin, was detected at the ciliary membrane providing considerable evidence that myosin VIIa also interacts with actin filaments in the connecting cilium. Applying the highly-sensitive silver-enhanced indirect nanogold™-labeling for immunoelectron microscopy, intense anti-opsin immunoreactivity was recognized in the membrane of the connecting cilium indicating that rhodopsin trafficing to the outer segment occurs through the ciliary membrane. Co-localization of rhodopsin with the myosin VIIa-actin systems at the membrane also provides evidence for mysion VIIa driven ciliary transport of rhodopsin. Absence of myosin VIIa or presence of non-functioning myosin VIIa may lead to defects in the ciliary transport and cause retinitis pigmentosa in Usher syndrome 1B patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.H. Usher, 1914, On the inheritance of Retinitis pigmentosa, with notes of cases, R Lond Ophthalmol. Hosp. Rep. 19:130–236.

    Google Scholar 

  2. W. Kimberling and C. Möller, 1995, Clinical and molecular genetics of Usher syndrome, J. Am. Acad. Audiol. 6:63–72.

    PubMed  CAS  Google Scholar 

  3. M. Wagenaar, B. Terrahe, A. VanAaarem, P. Huygen, R. Admiraal, E. Bleeker-Wagemakers, A. Pinckers, W. Kimberling, and C. Cremers, 1995, Clinical findings in obligate carriers of type I Usher syndrome, Am. J. Med. Genet. 59:375–379.

    Article  PubMed  CAS  Google Scholar 

  4. D. Weil, S. Blanchard, J. Kaplan, P. Guilford, F. Gibson, J. Walsh, P. Mburu, A. Varela, J. Levilliers, M.D. Weston, P.M. Kelley, W.J. Kimberling, M. Wagenaar, F. Levi-Acobas, D. Larget-Piet, A. Munnich, K.P. Steel, S.D.M. Brown, and C. Petit, 1995, Defective myosin VIIA gene responsible for Usher syndrome type 1B, Nature 374:60–61.

    Article  PubMed  CAS  Google Scholar 

  5. Z.Y. Chen, T. Hasson, P.M. Kelley, B.J. Schwender, M.F. Schwartz, M. Ramakrishnan, W.J. Kimberling, M.S. Mooseker, and D.P. Corey, 1996, Molecular cloning and domain structure of human myosin-VIIa. The gene product defective in usher syndrome 1B, Genomics 36:440–448.

    Article  PubMed  CAS  Google Scholar 

  6. D. Weil, G. Levy, I. Sahly, F. Levia-Cobas, S. Blanchard, A. El-Amraoui, F. Crozet, H. Philippe, M. Abitbol, and C. Petit, 1996, Human myosin VIIA responsible for the Usher 1B syndrome: A predicted membrane-associated motor protein expressed in developing sensory epithelia, Proc. Natl. Acad. Sci. USA 93:3232–3237.

    Article  PubMed  CAS  Google Scholar 

  7. X.R. Liu, G. Vansant, I.P. Udovichenko, U. Wolfrum, and D.S. Williams, 1997, Myosin VIIa, the product of the Usher 1B syndrome gene, is concentrated in the connecting cilia of photoreceptor cells, Cell Motil. Cytoskeleton 37:240–252.

    Article  PubMed  CAS  Google Scholar 

  8. R.W. Young, 1976, Visual cells and the concept of renewal, Invest. Ophthalmol. 15:700–725.

    CAS  Google Scholar 

  9. D.S. Papermaster, B.G. Schneider, and J.C. Besharse, 1985, Vesicular transport of newly synthesized opsin from the Golgi apparatus toward the rod outer segment, Invest. Ophthalmol. Visual Sci. 26:1386–1404.

    CAS  Google Scholar 

  10. D.S. Papermaster, B.G. Schneider, D. DeFoe, and J.C. Besharse, 1986, Biosynthesis and vectorial transport of opsin on vesicles in retinal rod photorecptors, J. Histochem. Cytochem. 34:5–16.

    PubMed  CAS  Google Scholar 

  11. D. Deretic and D.S. Papermaster, 1995, The role of small G-proteins in the transport of newly synthesized rhodopsin, Prog. Retin. Eye. Res. 14:249–265.

    Article  CAS  Google Scholar 

  12. D. Deretic, S. Schmerl, P.A. Hargrave, A. Arendt, and J.H. McDowell, 1998, Regulation of sorting and post-Golgi trafficking of rhodopsin by its C-terminal sequence QVS(A)PA, Proc. Natl. Acad. Sci. USA 95:10620–10625.

    Article  PubMed  CAS  Google Scholar 

  13. Chuang and C.H. Sung, 1998, The cytoplasmic tail of rhodopsin acts as a novel apical sorting signal in polarized MDCK cells, J. Cell Biol. 142:1245–1256.

    Article  PubMed  CAS  Google Scholar 

  14. A.W. Tai, J.Z. Chuang, C. Bode, U Wolfrum, and C.H. Sung, 1998, Rhodopsin’s carboxy-terminal cytoplasmic tail act as a membrane receptor for cytoplasmic dynein via ist light chain Tctex-1 (submitted).

    Google Scholar 

  15. J.C. Besharse and C.J. Horst, 1990, The photoreceptor connecting cilium—a model for the transition tone, in: Ciliary and flagellar membranes (R.A. Bloodgood, ed.), pp. 389–417, Plenum Publishing Coporation, New York.

    Google Scholar 

  16. S.D. Barrong, M. Chaitin, S. Fliesler, D. Possin, S. Jacobson, and A. Milam, 1992, Ultrastructure of connecting cilia in different forms of retinitis pigmentosa. Arch. Ophthalmol. 110:706–710.

    PubMed  CAS  Google Scholar 

  17. U. Wolfrum, X.R. Liu, A. Schmitt, I.P. Udovichenko, and D.S. Williams, 1998, Myosin VIIa as a common component of cilia and microvilli, Cell Motil. Cytoskeleton 40:261–271.

    Article  PubMed  CAS  Google Scholar 

  18. G. Adamus, A. Arendt, Z.S. Zam, J.H. Mcdowell, and P.A. Hargrave, 1988, Use of peptides to select for anti-rhodopsin antibodies with desired amino acid sequence specificities, Peptide Res. 1:42–47.

    CAS  Google Scholar 

  19. G. Adamus, Z.S. Zam, A. Arendt, K. Palczewski, J.H. Mcdowell, and P.A. Hargrave, 1991, Anti-rhodopsin monoclonal antibodies of defined specificity: characterization and application, Vision Res. 31:17–31.

    Article  PubMed  CAS  Google Scholar 

  20. J.L. Lessard, 1988, Two monoclonal antibodies to actin: one muscle selective and one generally reactive, Cell Motil. Cytoskeleton 10:349–362.

    Article  PubMed  CAS  Google Scholar 

  21. U. Wolfrum, 1995, Centrin in the photoreceptor cells of mammalian retinae, Cell Motil. Cytoskeleton 32:55–64.

    Article  PubMed  CAS  Google Scholar 

  22. D. Fleischman and M. Denisevich, 1979, Guanylate cyclase of isolated bovine retinal rod axonemes, Biochem. 18:5060–5066.

    Article  CAS  Google Scholar 

  23. C.J. Horst, D.M. Forestner, and J.C. Besharse, 1987, Cytoskeletal-membrane interactions: Between cell surface glycoconjugates and doublet microtubules of the photoreceptor connecting cilium, J. Cell Biol. 105:2973–2987.

    Article  PubMed  CAS  Google Scholar 

  24. U. Wolfrum and A. Schmitt, 1998, Rhodopsin transport in the membrane of the photorecptor cilium: myosin VIIa the product the Usher 1B gene is involved. (submitted).

    Google Scholar 

  25. G. Danscher, 1981, Localization of gold in biological tissue. A photochemical method for light and electron microscopy, Histochem. 71:81–88.

    Article  CAS  Google Scholar 

  26. U. Wolfrum, A. Schmitt, D.S. Williams, and R. Paulsen, 1997, Are centrin and myosin VIIa, the Usher gene product, co-localized in photoreceptors, olfactory cells, and hair cells? in: Proc. of the 25th Göttingen Neurobiology Conference (N. Elsner and H. Wässle, eds.), pp. 523, Thieme, Stuttgart.

    Google Scholar 

  27. M.H. Chaitin, B.G. Schneider, M.O. Hall, and D.S. Papermaster, 1984, Actin in the photoreceptor connecting cilium: Immunocytochemical localization to the site of outer segment disk formation, J. Cell Biol. 99:239–247.

    Article  PubMed  CAS  Google Scholar 

  28. M.H. Chaitin and D. Bok, 1986, Immunoferritin localization of actin in retinal photoreceptors, Invest. Ophthalmol. Visual Sci. 27:1764–1767.

    CAS  Google Scholar 

  29. D.S. Williams, K.A. Linberg, D.K. Vaughan, R.N. Fariss, and S.K. Fisher, 1988, disruption of microfilament organization and deregulation of disk membrane morphogenesis by Cytochalasin D in rod and cone photoreceptors, J. Comp. Neurol. 272:161–176.

    Article  PubMed  CAS  Google Scholar 

  30. K. Arikawa and D.S. Williams, 1989, Organization of actin filaments and immunocolocalization of alpha-actinin in connacting cilium of rat photorecetors, J. Comp. Neurol. 288:640–646.

    Article  PubMed  CAS  Google Scholar 

  31. M.H. Chaitin and B. Burnside, 1989, Actin filament polarity at the site of rod outer segment disk mormhogenesis, Invest. Ophthalmol. Visual Sci. 30:2461–2469.

    CAS  Google Scholar 

  32. M.H. Chaitin and N. Coelho, 1992, Immunogold localization of myosin in the photoreceptor cilium, Invest. Ophthalmol. Visual Sci. 33:3103–3108.

    CAS  Google Scholar 

  33. D.S. Williams, M.A. Hallett, and K. Arikawa, 1992, Association of myosin with the connecting cilium of rod photoreceptor cells, J. Cell Sci. 103:183–190.

    PubMed  CAS  Google Scholar 

  34. J.C. Besharse, 1986, Photosensitive membrane turnover: differentated membrane domains and cell-cell interaction, in: The retina a model for biological studies. Part I (R. Adler, D. Faber, eds.), pp. 297–352, Academic Press, Florida.

    Google Scholar 

  35. G. Piperno and D.J.L. Luck, 1979, An actin-like protein is a component of axonemes from Chlamydomonas, J. Biol. Chem. 254:2187–2190.

    PubMed  CAS  Google Scholar 

  36. G.P. Richardson, A. Forge, C.J. Kros, J. Fleming, S.D.M. Brown, and K.P. Steel, 1997, Myosin VIIA is required for aminoglycoside accumulation in cochlear hair cells, J. Neurosci. 17:9506–9519.

    PubMed  CAS  Google Scholar 

  37. J.C. Besharse and M.G. Wetzel, 1995, Immunocytochemical localization of opsin in rod photoreceptors during periods of rapid disc assembly, J. Neurocytol. 24:371–388.

    Article  PubMed  CAS  Google Scholar 

  38. B. Matsumoto and I.L. Hale, 1993, Preparation of retinas for studying photoreceptors with confocal microscopy, in: Methods in neurosciences Vol. 15: Photoreceptor cells. (P.A. Hargrave, ed.), pp. 54–71, Academic Press, San Diego.

    Google Scholar 

  39. K. Miyaguchi and P.H. Hashimoto, 1992, Evidence for the transport of opsin in the connecting cilium and basal rod outer segment in rat retina—rapid-Freeze, deep-etch, and horseradish peroxidase labelling studies, J. Neurocytol. 21:449–457.

    Article  PubMed  CAS  Google Scholar 

  40. F. Gibson, J. Walsh, P. Mburu, A. Varela, K.A. Brown, M. Antonio, K.W. Beisel, K.P. Steel, and S.D.M. Brown, 1995, A type VII myosin encoded by the mouse deafness gene shaker-1, Nature 374:62–64.

    Article  PubMed  CAS  Google Scholar 

  41. D.S. Williams and X. Liu, 1998, Myosin VIIa, is requiered for normal opsin transport through the connecting cilia of photoreceptors, Mol. Biol. Cell [Supplement] 9:389a.

    Google Scholar 

  42. G.B. Arden and B. Fox, 1979, Increased incidence of abnormal nasal cilia in patients with Retinitis pigmentosa, Nature 279:534–536.

    Article  PubMed  CAS  Google Scholar 

  43. D.G. Hunter, G.A. Fishman, R.S. Metha, and F.L. Kretzer, 1986, Abnormal sperm and photoreceptor axonemes in Usher’s syndrome, Arch. Ophthalmol. 104:385–389.

    PubMed  CAS  Google Scholar 

  44. C.H. Sung, C. Makino, D. Baylor, and J. Nathans, 1994, A rhodopsin gene mutation responsible for autosomal dominant retinitis pigmentosa results in a protein that is defective in localization to the photoreceptor outer segment, J. Neurosci. 14:5818–5833.

    PubMed  CAS  Google Scholar 

  45. D.J. Roof, M. Adamian, and A. Hayes, 1994, Rhodopsin accumulation at abnormal sites in retinas of mice with a human P23H rhodopsin transgene, Invest. Ophthalmol. Visual Sci. 35:4049–4062.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Wolfrum, U., Schmitt, A. (1999). Evidence for Myosin VIIa-Driven Transport of Rhodopsin in the Plasma Membrane of the Photoreceptor-Connecting Cilium. In: Hollyfield, J.G., Anderson, R.E., LaVail, M.M. (eds) Retinal Degenerative Diseases and Experimental Therapy. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-33172-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-33172-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46193-4

  • Online ISBN: 978-0-585-33172-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics