Search Algorithms for Numeric and Quantitative Data

  • Fionn Murtagh
Part of the Astrophysics and Space Science Library book series (ASSL, volume 182)


Search algorithms underpin astronomical databases, and may be called upon for the processing of (suitably coded) textual data. They may be required in conjunction with the use of dimensionality reduction approaches such as the factor space approach described in chapter 3, or latent semantic indexing (Deerwester et al., 1990). Efficient search algorithms can be the building blocks of data reorganization approaches using clustering (see section 4.8 below). All in all, search algorithms constitute the motor which drives information retrieval.


Information Retrieval Target Point Terminal Node Near Neighbor Latent Semantic Indexing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bentley, J.L. and Friedman, J.H., “Fast algorithms for constructing minimal spanning trees in coordinate spaces”, IEEE Transactions on Computers, C-27, 97–105, 1978.CrossRefGoogle Scholar
  2. 2.
    Bentley, J.L. and Friedman, J.H., “Data structures for range searching”, ACM Computing Surveys, 11, 397–409, 1979.CrossRefGoogle Scholar
  3. 3.
    Bentley, J.L., Weide, B.W. and Yao, A.C., “Optimal expected time algorithms for closest point problems”, ACM Transactions on Mathematical Software, 6, 563–580, 1980.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Broder, A.J., “Strategies for efficient incremental nearest neighbor search”, Pattern Recognition, 23, 171–178, 1990.CrossRefGoogle Scholar
  5. 5.
    Burkhard, W.A. and Keller, R.M., “Some approaches to best-match file searching”, Communications of the ACM, 16, 230–236, 1973.MATHCrossRefGoogle Scholar
  6. 6.
    Croft, W.B., “Clustering large files of documents using the single-link method”, Journal of the American Society for Information Science, 28, 341–344, 1977.CrossRefGoogle Scholar
  7. 7.
    Dasarathy, B.V., Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques, IEEE Computer Society Press, New York, 1991.Google Scholar
  8. 8.
    Deerwester, S., Dumais, ST., Furnas, G.W., Landauer, T.K. and Harshman, R., “Indexing by latent semantic indexing”, Journal of the American Society of Information Science, 41, 391–407, 1990.CrossRefGoogle Scholar
  9. 9.
    Delannoy, C, “Un algorithme rapide de recherche de plus proches voisins”, RAIRO Informatique/Computer Science, 14, 275–286, 1980.Google Scholar
  10. 10.
    Eastman, CM. and Weiss, S.F., “Tree structures for high dimensionality nearest neighbor searching”, Information Systems, 7, 115–122, 1982.MATHCrossRefGoogle Scholar
  11. 11.
    Fekete, G., “Rendering and managing spherical data with sphere quadtrees”, Proceedings of the First IEEE Conference on Visualization, IEEE Computer Society, Los Alamitos, CA, 1990.Google Scholar
  12. 12.
    Frakes, W.B. and Baeza-Yates, R., eds., Information Retrieval: Data Structures and Algorithms, Prentice-Hall, Englewood Cliffs, NJ, 1992.Google Scholar
  13. 13.
    Friedman, J.H., Baskett, F. and Shustek, L.J., “An algorithm for finding nearest neighbors”, IEEE Transactions on Computers, C-24, 1000–1006, 1975.CrossRefGoogle Scholar
  14. 14.
    Friedman, J.H., Bentley, J.L. and Finkel, R.A., “An algorithm for finding best matches in logarithmic expected time”, ACM Transactions on Mathematical Software, 3, 209–226, 1977.MATHCrossRefGoogle Scholar
  15. 15.
    Fukunaga, K. and Narendra, P.M., “A branch and bound algorithm for computing k-nearest neighbors”, IEEE Transactions on Computers, C-24, 750–753, 1975.CrossRefMathSciNetGoogle Scholar
  16. 16.
    Griffiths, A., Robinson, L.A. and Willett, P., “Hierarchic agglomerative clustering methods for automatic document classification”, Journal of Documentation, 40, 175–205, 1984.CrossRefGoogle Scholar
  17. 17.
    Grosky, W.I. and Mehrotra, R., “Image database management”, in M.C. Yovits, ed., Advances in Computers Vol. 35, Academic Press, New York, 237–291, 1992.Google Scholar
  18. 18.
    Hodgson, M.E., “Reducing the computational requirements of the minimum-distance classifier”, Remote Sensing of Environment, 25, 117–128, 1988.CrossRefGoogle Scholar
  19. 19.
    Kamgar-Parsi, B. and Kanal, L.N., “An improved branch and bound algorithm for computing k-nearest neighbors”, Pattern Recognition Letters, 3, 7–12, 1985.CrossRefGoogle Scholar
  20. 20.
    Kimberley, R., “Use of literature-based model to define research activities: Applications in research planning”, Institute for Scientific Information (ISI) paper, 14 pp., 1985.Google Scholar
  21. 21.
    Kittler, J., “A method for determining k-nearest neighbors”, Kybernetes, 7, 313–315, 1978.MATHCrossRefGoogle Scholar
  22. 22.
    Kohonen, T., “Self-organizing topological maps (with 5 appendices)”, in Proc. Connectionism in Perspective: Tutorial, University of Zurich, 1988.Google Scholar
  23. 23.
    Kraft, D.H., “Advances in information retrieval: where is that /#*&@ record?”, in M.C. Yovits, Ed., Advances in Computers Vol. 24, 277–318, 1985.Google Scholar
  24. 24.
    Micó, L., Oncina, J. and Vidal, E., “An algorithm for finding nearest neighbors in constant average time with a linear space complexity”, in 11th International Conference on Pattern Recognition, Volume II, IEEE Computer Science Press, New York, 557–560, 1992.Google Scholar
  25. 25.
    Marimont, R.B. and Shapiro, M.B., “Nearest neighbor searches and the curse of dimensionality”, Journal of the Institute of Mathematics and Its Applications, 24, 59–70, 1979.MATHCrossRefGoogle Scholar
  26. 26.
    Miyamoto, S., Fuzzy Sets in Information Retrieval and Cluster Analysis, Kluwer, Dordrecht, 1990.MATHGoogle Scholar
  27. 27.
    Murtagh, F., “A very fast, exact nearest neighbor algorithm for use in information retrieval”, Information Technology, 1, 275–283, 1982.Google Scholar
  28. 28.
    Murtagh, F., “Expected time complexity results for hierarchic clustering algorithms which use cluster centers”, Information Processing Letters, 16, 237–241, 1983.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Murtagh, F., Multidimensional Clustering Algorithms, Physica-Verlag, Wurzburg, 1985.MATHGoogle Scholar
  30. 30.
    Murtagh, F. and Heck, A., Multivariate Data Analysis, Kluwer Academic, Dordrecht, 1987.MATHGoogle Scholar
  31. 31.
    Niemann, H. and Goppert, R., “An efficient branch-and-bound nearest neighbor classifier”, Pattern Recognition Letters, 7, 67–72, 1988.CrossRefGoogle Scholar
  32. 32.
    Perry, S.A. and Willett, P., “A review of the use of inverted files for best match searching in information retrieval systems”, Journal of Information Science, 6, 59–66, 1983.CrossRefGoogle Scholar
  33. 33.
    Preparata, F.P. and Shamos, M.I., Computational Geometry, Springer-Verlag, New York, 1985.Google Scholar
  34. 34.
    Ramasubramanian, V. and Paliwal, K.K., “An efficient approximation-algorithm for fast nearest-neighbor search based on a spherical distance coordinate formulation”, Pattern Recognition Letters, 13, 471–480, 1992.CrossRefGoogle Scholar
  35. 35.
    Richetin, M., Rives, G. and Naranjo, M., “Algorithme rapide pour la determination des k plus proches voisins”, RAIRO Informatique/Computer Science, 14, 369–378, 1980.MathSciNetGoogle Scholar
  36. 36.
    Rohlf, F.J., “A probabilistic minimum spanning tree algorithm”, Information Processing Letters, 7, 44–48, 1978.MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Salton, G., “Developments in automatic text retrieval”, Science, 253, 974–1012, 1991.CrossRefADSMathSciNetGoogle Scholar
  38. 38.
    Salton, G. and McGill, M.J., Introduction to Modern Information Retrieval, McGraw-Hill, New York, 1983.MATHGoogle Scholar
  39. 39.
    Samet, H., “The quadtree and related hierarchical data structures”, ACM Computing Surveys, 16, 187–260, 1984.CrossRefMathSciNetGoogle Scholar
  40. 40.
    Samet, H. and Webber, R.E., “Hierarchical data structures and algorithms for computer graphics”, IEEE Computer Graphics and Applications, May, 48–68, 1988.Google Scholar
  41. 41.
    Sammon, J.W., “A nonlinear mapping for data structure analysis”, IEEE Transactions on Computers, C-18, 401–409, 1969CrossRefADSGoogle Scholar
  42. 42.
    Schreiber, T., “Efficient search for nearest neighbors”, in A.S. Weigend and N.A Gershenfeld, eds., Predicting the Future and Understanding the Past: A Comparison of Approaches, Addison-Wesley, New York, in press, 1993.Google Scholar
  43. 43.
    Shapiro, M., “The choice of reference points in best-match file searching”, Communications of the ACM, 20, 339–343, 1977.CrossRefGoogle Scholar
  44. 44.
    Smeaton, A.F. and van Rijsbergen, C.J., “The nearest neighbor problem in information retrieval: an algorithm using upperbounds”, ACM SIGIR Forum, 16, 83–87, 1981.CrossRefGoogle Scholar
  45. 45.
    Subramanian, V., Biswas, G. and Bezdek, J.C., “Document retrieval using a fuzzy knowledge-based system”, Optical Engineering, 25, 445–455, 1986.Google Scholar
  46. 46.
    Vidal Ruiz, E., “An algorithm for finding nearest neighbors in (approximately) constant average time”, Pattern Recognition Letters, 4, 145–157, 1986.CrossRefGoogle Scholar
  47. 47.
    Weiss, S.F., “A probabilistic algorithm for nearest neighbor searching”, in R.N. Oddy et al., Eds., Information Retrieval Research, Butterworths, London, 325–333, 1981.Google Scholar
  48. 48.
    Yunck, T.P., “A technique to identify nearest neighbors”, IEEE Transactions on Systems, Man, and Cybernetics, SMC-6, 678–683, 1976.CrossRefMathSciNetGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Fionn Murtagh
    • 1
  1. 1.Space Telescope - European Coordinating FacilityEuropean Southern ObservatoryGarching/MunichGermany

Personalised recommendations