The population dynamics and control of the parasitic nematode Trichostrogylus tennis in red grouse in the North of England

  • A. P. Dobson
  • P. J. Hudson
Part of the Monographiae Biologicae book series (MOBI, volume 67)


In this chapter we present evidence which suggests that the parasitic nematode Trichostrongylus tenuis is responsible for producing the patterns of cyclic abundance commonly observed in red grouse Lagopus lagopus scoticus. We first review the life history of the parasite, then outline some mathematical models that may be used to explore the population dynamics of this system. This model produces cycles similar to the observed cycles for reasonable parameter values. Different ways of controlling the parasites are discussed and other work on grouse populations are discussed in terms of our own work.


Host Population Parasitic Nematode Parasite Burden Population Cycle Instantaneous Death Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, R. M. and R. M. May. 1978. Regulation and stability of host — parasite population interactions: I. Regulatory processes. Journal of Animal Ecology 47: 219–249.CrossRefGoogle Scholar
  2. Anderson, R. M. and R. M. May. 1979. Population biology of infectious disease: Part I. Nature 280:361–367.PubMedCrossRefGoogle Scholar
  3. Anderson, R. M. and R. M. May (eds.). 1982. Population Biology of Infectious Diseases. Dahlem Konferenzen No. 25, 314 pp. Springer Verlag, Berlin.Google Scholar
  4. Anderson, R. M. and R. M. May. 1985. Helminth infections of humans: mathematical models, population dynamics, and control. Advances in Parasitology 24:1–101.PubMedCrossRefGoogle Scholar
  5. Anderson, R. M. and R. M. May. 1986. The invasion, persistence and spread of infectious diseases within animal and plant communities. Phil. Trans. Roy. Soc. Lond. B. 314: 533–570.CrossRefGoogle Scholar
  6. Boag, B. and R. J. Thomas. 1985. The effect of temperature on the survival of infective larvae of nematodes. J. of Parasitology 71: 383–384.CrossRefGoogle Scholar
  7. Catchpole, C. K. 1972. A comparative study of territory in the reed warbler (Acrocephalus scrirpaceus) and sedge warbler (A. schoenobaenus). J. Zoology, London 166: 213–231.CrossRefGoogle Scholar
  8. Chitty, D. 1967. The natural selection of self-regulatory behaviour in animal populations. Proc. Ecological Society of Australia 2: 51–78.Google Scholar
  9. Crompton, D. W. T. 1984. The influence of parasitic infection on food intake. Federation Proceedings 43: 239–245.PubMedGoogle Scholar
  10. Dobson, A. P. 1989. The population biology of parasitic helminths in animal populations. Pp. 145–175 in T. G. Hallam, L. J. Gross and S. A. Levin (eds.). Applied Mathematical Ecology. Springer-Verlag, Berlin.Google Scholar
  11. Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford.Google Scholar
  12. Fitzsimmons, W. M. 1969. Pathogenesis of the Trichostrongyles. Helminthological Abstracts 38: 139–190.Google Scholar
  13. Harvey, P. H., P. J. Greenwood and C. M. Perrins. 1979. Breeding area fidelity of the great tit (Parus major). J. Animal Ecology 48: 305–313.CrossRefGoogle Scholar
  14. Henderson, B. A. 1977. The genetics and demography of a high and low density of Red Grouse Lagopus I. scoticus. J. Animal Ecology 46: 581–592.CrossRefGoogle Scholar
  15. Hudson, P.J. 1986. The effect of a parasitic nematode on the breeding performance of red grouse. J. Animal Ecology 55: 85–92.CrossRefGoogle Scholar
  16. Hudson, P. J. and A. P. Dobson. 1987a. Red Grouse. The Biology and Management of a Wild Gamebird. Brourne Press, Bournemouth.Google Scholar
  17. Hudson, P. J. and A. P. Dobson. 1987b. The population dynamics of Trichostrongylus tenuis in Red grouse. Parasitology (in press).Google Scholar
  18. Hudson, P. J. and A. Watson. 1985. Exploited animals: Red Grouse. Biologist 32:13–18.Google Scholar
  19. Hudson, P. J., A. P. Dobson, and D. Newborn. 1985. Cyclic and non-cyclic populations of red grouse: a role for parasitism. In: Ecology and Genetics of Host-Parasite Interactions. D. Rollinson and R. M. Anderson, eds., pp. 77–90. Academic Press, London.Google Scholar
  20. Jenkins, D., A. Watson, and G. R. Miller. 1963. Population studies on red grouse, Lagopus lagopus scoticus (Lath.), in northeast Scotland. J. Animal Ecology 32: 317–376.CrossRefGoogle Scholar
  21. Jenkins, D., A. Watson and G. R. Miller. 1967. Population fluctuations in the Red grouse Lagopus lagopus scoticus. J. Animal Ecology 36: 97–122.CrossRefGoogle Scholar
  22. Kermack, W. O and A. G. McKendrick. 1927. A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London, Series A, 138: 55–83.CrossRefGoogle Scholar
  23. Krebs, C. J. 1978. A review of the Chitty hypothesis of population regulation. Canadian J. of Zoology, 56: 2463–2480.Google Scholar
  24. Lack, D. 1966. Population Studies of Birds. Clarendon Press, Oxford.Google Scholar
  25. Lovat, L. 1911. The Grouse in Health and Disease: being the final report of the Committee of Inquiry on Grouse Disease. 2 vols. Smith, Elder and Co., London.Google Scholar
  26. Mackenzie, J. M. D. 1952. Fluctuations in the numbers of British tetraonide. J. Animal Ecology 21:128–153.CrossRefGoogle Scholar
  27. May, R. M. and R. M. Anderson. 1978. Regulation and stability of host-parasite population interactions. II. Destablising processes. J. Animal Ecology 47: 249–268.CrossRefGoogle Scholar
  28. May, R. M. and R. M. Anderson. 1979. Population biology of infectious diseases: Part II. Nature 280: 455–461.PubMedCrossRefGoogle Scholar
  29. May, R. M. and A. P. Dobson. 1986. Population dynamics and the evolution of pesticide resistance. In: Pesticide Resistance and Management, pp. 170–193, NAS-NRC publications, Washington.Google Scholar
  30. Miller, G. R. and A. Watson and D. Jenkins. 1970. Responses of Red Grouse populations to experimental improvement of their food. Symposia of the British Ecological Society, 10: 323–334.Google Scholar
  31. Moss, R. and A. Watson. 1980. Inherent changes in the aggressive behaviour of a fluctuating red grouse Lagopus lagopus scoticus population. Ardea 68:113–119.Google Scholar
  32. Moss, R. and A. Watson. 1985. Adaptive value of spacing behaviour in population cycles of red grouse and other animals. In: Behavioural Ecology, R. M. Sibly and R. H. Smith, eds., pp. 275–294. Blackwell Scientific Publications, Oxford.Google Scholar
  33. Moss, R., A. Watson and R. Parr. 1975. Maternal nutrition and breeding success in red grouse (Lagopus lagopus scoticus). J. Animal Ecology 44: 171–190.CrossRefGoogle Scholar
  34. Moss, R., A. Watson and P. Rothery. 1984. Inherent changes in the body size, viability and behaviour of a fluctuating red grouse (Lagopus I. scoticus) population. J. Animal Ecology 53:171–189.CrossRefGoogle Scholar
  35. Potts, G. R., S. C. Tapper and P. J. Hudson. 1984. Population fluctuations in red grouse: analysis of bag records and a simulation model. J. Animal Ecology 53: 21–36.CrossRefGoogle Scholar
  36. Redfield, J. A. 1973. Demography and genetics in colonizing populations of Blue Grouse (Dendrtagapus obscurus). Evolution 27: 576–592.CrossRefGoogle Scholar
  37. Stenseth, N. C. 1981. On Chitty’s theory for fluctuating populations: the importance of genetic polymorphism in the generation of regular density cycles. J. Theoretical Biology 90: 9–36.CrossRefGoogle Scholar
  38. Symons, L. E. A. 1969. Pathology of gastrointestinal helminthiasis. International Review of Tropical Medicine, 3: 49–100.PubMedGoogle Scholar
  39. Watson, A. 1970. Territorial and reproductive behaviour of red grouse. J. Reproduction and Fertility, Supplement, 11: 3–14.Google Scholar
  40. Watson, A. and R. Moss. 1979. Population cycles in the Tetraonidae. Ornis Fennica 56: 87–109.Google Scholar
  41. Watson, A., R. Moss, P. Rothery and R. Parr. 1984. Demographic causes and predictive models of population fluctuations in red grouse. J. Animal Ecology 53: 639–662.CrossRefGoogle Scholar
  42. Watson, A., R. Moss and R. Rothery. 1984. Effects of food enhancement on numbers and spacing behaviour of red grouse. J. Animal Ecology 53: 663–678.CrossRefGoogle Scholar
  43. Watson, A. and R. Moss. 1980. Advances in our understanding of the population dynamics of Red Grouse from a recent fluctuation in population numbers. Ardea 68:103–111.Google Scholar
  44. Wilson, G. R. 1983. The prevalence of caecal threadworms (Trichostrongylus tenuis) in red grouse (Lagopus lagopus scoticus). Oecologia 58: 265–268.CrossRefGoogle Scholar
  45. Wilson, G. R. and L. P. Wilson. 1978. Haematology, weight and condition of captive red grouse (Lagopus lagopus scoticus) infected with caecal threadworm (Trichostrongylus tenuis).Google Scholar
  46. Wynne-Edwards, V. C. 1962. Animal Dispersion in Relation to Social Behaviour. Oliver and Boyd, Edinburgh.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • A. P. Dobson
    • 1
  • P. J. Hudson
    • 2
  1. 1.Department of BiologyPrinceton UniversityPrincetonUSA
  2. 2.The Game Conservancy, Grouse Research ProjectCrubenmore Lodge, NewtonomoreIverness-shireScotland

Personalised recommendations