Skip to main content

The biology of land restoration

  • Chapter

Part of the book series: Monographiae Biologicae ((MOBI,volume 67))

Abstract

Disturbance of land is an inevitable consequence of modern civilization which has resulted in a substantial “heritage” of degraded land on which the original ecosystems, plants, animals and soils have been totally destroyed. All that is left is skeletal soil material. The restoration of functional, self-sustaining ecosystems on these materials is a considerable challenge.

The problems of plant habitat degradation that have to be overcome can be separated into three sets: physical, nutritional, and toxicity. Although some of the treatments involve major engineering-oriented manipulations, long term success depends on understanding, copying, and harnessing the ecological and microevolutionary processes that occur in natural succession. This success depends on overcoming all the specific problems that occur within a site, which in turn depends upon a proper appreciation of all that is critical to ecosystem function as well as the demographic and genetic processes of adaptation. Scientific progress in the restoration of derelict lands requires an understanding of successional sequence of colonization, species’ autecology, and the dynamics of recruitment, and it is based on the population variability for metal tolerance or similar adaptive genetic criteria; therefore, both community and ecosystem level interactions among species must be investigated. Land restoration is therefore an acid test of our ecological understanding of adaptive processes at all three levels (communities, species, populations) in an integrative applied science.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  • Antonovics, J., Bradshaw, A. D. and Turner, R. G. 1971. Heavy metal tolerance in plants. Advances in Ecological Research 7: 1–85.

    Article  Google Scholar 

  • Bloomfield, H. E., Handley, J. F. and Bradshaw, A. D. 1981. Top soil quality. Landscape Design 135: 32–34.

    Google Scholar 

  • Bradshaw, A. D. 1983. The reconstruction of ecosystems. Journal of Applied Ecology 20: 1–17.

    Article  Google Scholar 

  • Bradshaw, A. D. 1984. The importance of evolutionary ideas in ecology — and vice versa. In Evolutionary Ecology ed. B. Shorrocks, 1–25. Blackwell, Oxford.

    Google Scholar 

  • Bradshaw, A. D. 1987. Restoration: an ecological acid test. In Restoration Ecology — A Synthetic Approach to Ecological Research, eds. W. R. Jordan, M. Gilpin and J. D. Aber. Cambridge University Press, Cambridge.

    Google Scholar 

  • Bradshaw, A. D. and Chadwick, M. J. 1980. The Restoration of Land. Blackwell, Oxford.

    Google Scholar 

  • Brooks, D. R. 1976. Rehabilitation following mineral sand mining on North Stradbrooke Island, Queensland. In Landscaping and Land Use Planning as related to Mining Operations, ed. Australian Institute of Mining and Metallurgy, 93–104. Australian Institute of Mining and Metallurgy, Adelaide.

    Google Scholar 

  • Cairns, J. 1982. Restoration of damaged ecosystems. In Research on Fish and Wildlife Habitat, ed. W. T. Mason and S. Iker, 220–239. U.S. Environmental Protection Agency, Washington.

    Google Scholar 

  • Carroll, L. 1876. Alice Through the Looking Glass. Macmillan, London.

    Google Scholar 

  • Caudhill, H. M. 1976. The Watches of the Night. Atlantic — Little, Brown, New York.

    Google Scholar 

  • Chadwick, M. J. and Hardiman, K. M. 1976. Vegetating colliery spoil. In Papers of the Land Reclamation Conference 1976. ed. J. Essex and P. Higgins, 431–442. Thurrock Borough Council, Grays, Essex.

    Google Scholar 

  • Copping, N. J. and Bradshaw, A. D. 1982. Quarry Reclamation. Mining Journal Books, London.

    Google Scholar 

  • Costigan, P. A., Bradshaw, A. D. and Gemmell, R. P. 1981. The reclamation of acidic colliery spoil. I. Acid production potential. Journal of Applied Ecology 18: 865–878.

    Article  CAS  Google Scholar 

  • Cairns, J., Jr. (ed.). 1988. Rehabilitating Damaged Ecosystems. Vols. I, II. C.R.C. Press, Baco Raton.

    Google Scholar 

  • Cox, R. and Hutchinson, T. C. 1980. Multiple metal tolerance in the grass Deschampsia caespitosa (L.) Beauv. from the Sudbury smelting area. New Phytologist 84: 631–647.

    Article  CAS  Google Scholar 

  • Crocker, R. L. and Major, J. 1955. Soil development in relation to vegetation and surface age at Glacier Bay, Alaska. Journal of Ecology 43: 427–448.

    Article  Google Scholar 

  • Dancer, W. S., Handley, J. F. and Bradshaw, A. D. 1977. Nitrogen accumulation in kaolin mining wastes in Cornwall. I. Natural communities. Plant and Soil 48: 153–167.

    Article  CAS  Google Scholar 

  • Dancer, W. S., Handley, J. F. and Bradshaw, A. D. 1977. Nitrogen accumulation in kaolin mining in Cornwall. II. Forage legumes. Plant and Soil 48: 303–314.

    Article  CAS  Google Scholar 

  • Department of the Environment. 1984. Survey of Derelict land In England 1982. Department of the Environment, London.

    Google Scholar 

  • Dickson, B. A. and Crocker, R. L. 1953. A chronosequence of soils and vegetation near Mt. Shasta, California. Journal of Soil Science 4: 123–54.

    Article  Google Scholar 

  • Environmental Advisory Unit, University of Liverpool. 1985. Transferring our Waste Land — The Way Forward. Her Majesty’s Stationery Office, London.

    Google Scholar 

  • Ernst, W. 1974. Schmermetall vegetation derErde. Fischer, Stuttgart.

    Google Scholar 

  • Fairbrother, N. 1970. New Lives, New Landscapes. Architectural Press, London.

    Google Scholar 

  • Fitter, A. H. and Bradshaw, A. D. 1974. Root penetration of Lolium perenne on colliery shale in response to reclamation treatments. Journal of Applied Ecology, 11: 609–616.

    Article  Google Scholar 

  • Gartside, D. W. and McNeilly, T. 1974. The potential for evolution of heavy metal tolerance in plants. II. Copper tolerance in normal populations of different plant species. Heredity 32:335–348.

    Google Scholar 

  • Godwin, H. 1975. The History of the British Flora (2nd ed.). Cambridge University Press, London.

    Google Scholar 

  • Goodman, G.T., Pitcairn, C. E. R. and Gemmell, R. P. 1973. Ecological factors affecting growth on sites contaminated by heavy metals. In Ecology and Reclamation of Devastated Land. ed. R. J. Hutnik & G. Davis, 149–174. Gordon and Breach, New York.

    Google Scholar 

  • Greenwood, E. F. and Gemmell, R. G. 1978. Derelict industrial land as a habitat for rare plants in S. Lanes (V.C. 59) and W. Lanes (V.C. 60). Watsonia 12: 33–40.

    Google Scholar 

  • Halderson, J. L. and Zenz, D. R. 1978. Use of municipal sewage sludge in reclamation of soils. In Reclamation of Drastically Disturbed Lands, ed. F. W. Schaller and P. Sutton, 355–378. American Society of Agronomy, Madison.

    Google Scholar 

  • Hall, J. E., Daw, A. P. and Bayes, C. D. 1986. The use of Sewage Sludge in Land Reclamation. WRC Environment, Medmenham, Bucks.

    Google Scholar 

  • Harper, J. L. and Benton, R. A. 1966. The behavior of seeds in soil, part 2. The germination of seeds on the surface of a water supplying substrate. Journal of Ecology 54:151–166.

    Article  Google Scholar 

  • Hill, J. C. 1977. Establishment of vegetation on copper —, gold — and nickel-mining wastes in Rhodesia. Transactions of the Institute of Mining and Metallurgy 86A: 135–145.

    Google Scholar 

  • Hoogerkamp, M., Rogaar, H. and Eijsackers, H. J. P. 1983. The effect of earthworms (Lumbricidinae) on grassland on recently reclaimed polder soils in the Netherlands. In Earthworm Ecology ed. J. E. Satchell, 85–104. Chapman and Hall, London.

    Google Scholar 

  • Humphries, R. N. 1982. The establishment of vegetation on quarry materials: physical and chemical constraints. In Ecology of Quarries, ed. B. N. K. Davis, 55–61. Institute of Terrestrial Ecology, Cambridge.

    Google Scholar 

  • Jain, S. K. In press. Restoration ecology: Some basic principles and research needs. In: P. Fiedler and S. Jain (eds.) Conservation Biology: Theory and Practice. Chapman and Hall, London.

    Google Scholar 

  • Johnson, M.S., Bradshaw, A. D. and Handley, J. F. 1976. Revegetation of metalliferous fluorspar mine tailings. Transaction of the Institute of Mining and Metallurgy 85A: 32–37.

    Google Scholar 

  • Johnson, M.S., McNeilly, T. and Putwain, P. D. 1977. Revegetation of metalliferous mine spoil contaminated by lead and zinc. Environmental Pollution 12: 261–277.

    Article  CAS  Google Scholar 

  • Jordan, W. R., M. E. Gilpin, and J. D. Aber. (eds.). 1987. Restoration Ecology. Cambridge Univ. Press.

    Google Scholar 

  • Kay, B. L. 1978. Mulch and chemical stabilizers for land reclamation in dry regions. In Reclamation of Drastically Disturbed Lands, ed. F. W. Schuller and P. Sutton, 467–483. American Society of Agronomy, Madison.

    Google Scholar 

  • Knabe, W. 1973. Investigation of soils and tree growth in five deep-mine refuse piles in the hard coal region of the Ruhr. In Ecological and Reclamation of Devastated Land. ed. R. J. Hutnik and G. Davis. Vol. 1, 307–324. Gordon and Breach, New York.

    Google Scholar 

  • Lawrence, D. B., Schoenike, R. E., Quispel, A. and Bond, G. 1967. The role of Dryas drummondii in vegetation development following ice recession at Glacier Bay, Alaska, with special reference to its nitrogen fixation by root nodules. Journal of Ecology 55: 793–813.

    Article  Google Scholar 

  • Leisman, G. A. 1957. A vegetation and soil chronosequence on the Mesabi Iron Range spoil banks, Minnesota. Ecological Monographs 27: 221–245.

    Article  Google Scholar 

  • Ludeke, K. L. 1973. Vegetative stabilization of copper mine tailing disposal berms of Pima Mining Company. In Tailings Disposal Today, ed. C. L. Aplin and G. O. Argall. 377–408. San Francisco.

    Google Scholar 

  • Magnuson, J. J., Reigier, H. A., Christie, W. J. and Sonzogi, W. C. 1980. To rehabilitate and restore Great Lakes ecosystems. In The Recovery Process in Damaged Ecosystems, ed. J. Cairns, 95–112. Ann Arbor Science, Michigan.

    Google Scholar 

  • Marrs, R. H., Roberts, R. D., Skeffington, R. A. and Bradshaw, A. D. 1983. Nitrogen and the development of ecosystems. In Nitrogen as an Ecological Factor, ed. J. A. Lee, S. McNeill and I. H. Rorison, 113–136. Blackwell, Oxford.

    Google Scholar 

  • McNeilly, T. 1987. Evolutionary lessons from degraded ecosystems. In: Restoration Ecology: A Synthetic Approach to Ecological Research, eds. W. R. Jordan III, M. E. Gilpin, and J. D. Aber, 271–286. Cambridge.

    Google Scholar 

  • Newmann, U. 1973. Succession of soil fauna in afforested spoil banks of the brown-coal district of Cologne. In Ecology and Reclamation of Devastated Land. ed. Hutnik, R. J. and Davis, G. Vol. 1: 335–348. Gordon and Breach, New York.

    Google Scholar 

  • Paone, J., Morning, J. L. and Guorgettil. 1974. Land Utilization and Reclamation in the Mining Industry, 1930–71. Information Circular 8642. U.S. Bureau of Mines, Utah.

    Google Scholar 

  • Park, D. G. 1982. Seedling demography in quarry habitats. In Ecology of Quarries, ed. B. N. K. Davis, 32–40, Institute of Terrestrial Ecology, Cambridge.

    Google Scholar 

  • Parry, G. D. R. and Bell, R. M. 1985. Covering systems. In Contaminated Land. ed. M. A. Smith, Chapter 5, Plenum, New York.

    Google Scholar 

  • Prat, S. 1934. Die Erblichkeit der Resistenz gegen Kupfer. Bering Deutsch Botanische Gesellschaft 102: 65–67.

    Google Scholar 

  • Putwain, P. D., Gillham, D. A. and Holliday, R. J. 1983. Restoration of heather moorland and lowland heathland with special reference to pipelines. Environmental Conservation 9: 225–235.

    Article  Google Scholar 

  • Ratcliffe, D. 1974. Ecological effects of mineral exploitation in the United Kingdom and their significance to nature conservation. Proceedings of the Royal Society, London A3 39: 355–372.

    Google Scholar 

  • Roberts, R. D., Marrs, R. H., Skeffington, R. A. and Bradshaw, A. D. 1981. Ecosystem development on naturally colonized China clay wastes. I. Vegetation changes and overall accumulation of organic matter and nutrients. Journal of Ecology 69: 153–61.

    Article  Google Scholar 

  • Roberts, R. D. and Roberts, J. M. 1986. The selection and management of soil in landscape schemes. In Ecological and Design in Landscape, ed. A. D. Bradshaw, D. A. Goode and E. Thorp, 99–126. Blackwell, Oxford.

    Google Scholar 

  • Schaller, F. W. and Sutton, P. 1978. Reclamation of Drastically Disturbed Lands. American Society of Agronomy, Madison.

    Google Scholar 

  • Sheldon, J. C. and Bradshaw, A. D. 1977. The development of a hydraulic seeding technique for unstable sand slopes. I. Effects of fertilizers, mulches and stabilizers. Journal of Applied Ecology! 4: 905–918.

    Article  Google Scholar 

  • Skeffington, R. A. and Bradshaw, A. D. 1980. Nitrogen fixation by plants grown on reclaimed china clay wastes. Journal of Applied Ecology 17: 469–477.

    Article  Google Scholar 

  • Skeffington, R. A. and Bradshaw, A. D. 1981. Nitrogen accumulation in kaolin mining wastes in Cornwall. IV. Sward quality and the development of a nitrogen cycle. Plant and Soil 62: 439–451.

    Article  Google Scholar 

  • Smith, R. A. H. and Bradshaw, A. D. 1979. The use of metal tolerant plant populations for the reclamation of metalliferous wastes. Journal of Applied Ecology 16: 595–612.

    Article  CAS  Google Scholar 

  • Symeonidis, L., T. McNeilly, and A. D. Bradshaw. 1985. Interpopulation variation in metal tolerance to cadmium, copper, lead, nickel, and zinc in nine populations of Agrostis capillaris L. New Phytol. 101: 317–324.

    Article  CAS  Google Scholar 

  • Teagle, W. G. 1978. The Endless Village. Nature Conservancy Council, Shrewsbury.

    Google Scholar 

  • Usher, M. B. 1986. (ed.). Biological Conservation Evaluation. Chapman and Hall, London.

    Google Scholar 

  • Williamson, N. A., Johnson, M.S. and Bradshaw, A. D. 1982. Mine Wastes Reclamation. Mining Journal Books, London.

    Google Scholar 

  • Wu, L. and Kruckeberg, A. L. 1985. Copper tolerance in two legume species from a copper mine habitat. New Phytologist 99: 565–570.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

S. K. Jain L. W. Botsford

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bradshaw, A.D. (1992). The biology of land restoration. In: Jain, S.K., Botsford, L.W. (eds) Applied Population Biology. Monographiae Biologicae, vol 67. Springer, Dordrecht. https://doi.org/10.1007/978-0-585-32911-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-32911-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-1425-7

  • Online ISBN: 978-0-585-32911-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics