Induction of CAT mRNA Translation by Chloramphenicol: an Example of Translational Attenuation

  • Paul S. Lovett
  • Nicholas_P. AmbulosJr.
  • Elizabeth J. Rogers


The role of crb-86 in cat-86 induction may be a function of both its complementarity with 16S rRNA and the crb -@#@ encoded peptide. Solving the role of crb. as a gene regulatory device will dissect ribosome function in a manner not possible by conventional methodology much in the same vein as other recently discovered variations of ribosome function (12).


Bacillus Subtilis Ribosome Binding Site Regulatory Leader Amino Acid Starvation Chloramphenicol Acetyltransferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexieva, Z., E.J. Duvall, N.P. Ambulos, Jr., U.J. Kim and P.S. Lovett. 1988. Chloramphenicol induction of cat-86 requires ribosome stalling at a specific site in the leader Proc. Natl. Acad. Sci. U.S.A. 85:3057–3061.CrossRefGoogle Scholar
  2. 2.
    Ambulos, N.P., Jr., E.J. Rogers, Z. Alexieva, and P.S. Lovett 1988. Induction of cat-86 by chloramphenicol and amino acid starvation in relaxed mutants of Bacillus subtilis. J. Bacteriol. 170:5642–5646.PubMedGoogle Scholar
  3. 3.
    Duvall, E.J. and P.S. Lovett. 1988. Chloramphenicol induces translation of the mRNA for a chloramphenicol resistance gene in Bacillus subtilis. Proc. Natl. Acad. Sci. U.S.A. 83: 3939–3943.CrossRefGoogle Scholar
  4. 4.
    Duvall, E.J., S. Mongkolsuk, U.J. Kim, P.S. Lovett, T.M. Henkin, and G.H. Chambliss. 1985. Induction of the chloramphenicol acetyltransferase gene cat-86 through the action of the ribosomal antibiotic amicetin. Involvement of a Bacillus subtilis ribosomal component in cat induction. J. Bacteriol. 161: 665–672.PubMedGoogle Scholar
  5. 5.
    Gold, L. 1988. Post-transcriptional regulatory mechanisms in Escherichia coli. Annu. Rev. Biochem. 57: 199–233.CrossRefGoogle Scholar
  6. 6.
    Landick, R., and C. Yanofsky. 1987. Transcription attenuation, p. 1276–1301. In F.C. Neidhardt, J.L. Ingraham, B. Magasanik, K.B. Low, M. Schaechter, and H.E. Umbarger (Eds), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C.Google Scholar
  7. 7.
    Lovett, P.S. 1990. Translational attenuation as the regulator of inducible cat genes. J. Bacteriol. 172: 1–6.PubMedGoogle Scholar
  8. 8.
    Rogers, E.J., N.P. Ambulos, Jr., and P.S. Lovett. 1990. Complementarity of Bacillus subtilis 16S rRNA with sites of antibiotic-dependent ribosome stalling in cat and exm leaders. J. Bacteriol. 172: 6282–6290.PubMedGoogle Scholar
  9. 9.
    Rogers, E.J., U.J. Kim, N.P. Ambulos, Jr., and P.S. Lovett. 1990. Four codons in the cat 86 leader define a chloramphenicol-sensitive ribosome stall sequence. J. Bacteriol. 172: 110–115.PubMedGoogle Scholar
  10. 10.
    Rogers, E.J. and P.S. Lovett. 1990. Erythromycin induces expression of the chloramphenicol acetyltransferase gene cat-86. J. Bacteriol. 172: 4694–4695.PubMedGoogle Scholar
  11. 11.
    Shaw, W.V. 1983. Chloramphenicol acetyltransferase: enzymology and molecular biology. Crit. Rev. Biochem. 14.: 1–43.Google Scholar
  12. 12.
    Weiss, R.B., W.M. Huang, and D.M. Dunn. 1990. A nascent peptide is required for ribosomal bypass of the coding gap in bacteriophage T4 gene 60. Cell 62: 117–126.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • Paul S. Lovett
  • Nicholas_P. AmbulosJr.
  • Elizabeth J. Rogers
    • 1
  1. 1.Department of Biological SciencesUniversity of Maryland Catonsville

Personalised recommendations