Advertisement

Moveable Elements in The Human Genome: Status of Research

  • Maxine F. Singer
  • Thomas G. Fanning
  • Debra M. Lelbold
  • Gary D. Swergold
  • Ronald E. Thayer

Abstract

The first moveable DNA elements to be studied at the molecular level were the transposable elements found in prokaryotes. Although several different types are now known, they all share two properties: first, the DNA within the element encodes a gene or genes that are required for transposition, and, second, specific DNA sequences are repeated in inverted orientation at the two ends of the element and are required for transposition.

Keywords

Moveable Element ORF2 Protein Factor Viii Gene Transposition Mechanism Short Open Reading Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.E. Paulson, A.G. Matera, N. Deka, and C.W. Schmid. 1987. Nucleic Acids Res. 15 5199–5215.PubMedCrossRefGoogle Scholar
  2. 2.
    C.A. Hutchison III, S.C. Hardies, D.D. Loeb, W.R. Shehee, and M.H. Edgell. 1989. In Mobile DNA, D.E. Berg and M.M Howe, eds. American Society for Microbiology, Washington, D.C. pp. 593–617.Google Scholar
  3. 3.
    H.H. Kazazian Jr., C. Wong, H. Youssoufian, A.F. Scott, D.G. Phillips, and S.E. Antonarakis. 1980. Nature 332, 164–166.CrossRefGoogle Scholar
  4. 4.
    B. Morse, P.G. Rothberg, V.J. South, J.M. Spandorfer, and S.M. Astrin. 1988. Nature 333 87–90.PubMedCrossRefGoogle Scholar
  5. 5.
    J. Skowronski, T.G. Fanning, and M.F. Singer. 1988. Mol. Cell. Biol. 8 1385–1397.PubMedGoogle Scholar
  6. 6.
    J. Skowronski and M.F. Singer. 1985. Proc. Natl. Acad. Sci USA 82 6050–6054.PubMedCrossRefGoogle Scholar
  7. 7.
    A.F. Scott, B. J. Schmeckpeper, M. Abdelrazik, C.T. Comey, B. O’Hara, J.P. Rossiter, T. Cooley, P. Heath, K.D. Smith, and L Margolellt. 1987. Genomics 1 113–125.PubMedCrossRefGoogle Scholar
  8. 8.
    L.J. Mizrokhi, S.G. Georgieva, and Y.V. Ilyin. 1988. Cell 54 685–691.PubMedCrossRefGoogle Scholar
  9. 9.
    T. Fanning and M. Singer. 1987. Nucleic Acids Res. 15 2251–2260.PubMedCrossRefGoogle Scholar
  10. 10.
    R.F. Doolittle, D-F. Feng, M.S. Johnson, and M.A. McLure. 1989. Quart. Rev. Biol. 641–30.Google Scholar
  11. 11.
    M. Hattori, S. Hidaka, and Y. Sakaki. 1985. nucleic Acid Res. 13 7813–7827.PubMedCrossRefGoogle Scholar
  12. 12.
    D.M. Leibold, G.D. Swergold, M.F. Singer, R.E. Thayer, B.A. Dombroski, and T.G. Fanning. 1990. Proc. Natl. Acad. Sci. USA. 87 6990–6994.PubMedCrossRefGoogle Scholar
  13. 13.
    W.R. Shehee, S-F. Chao, D.D. Loeb, M.B. Comer, C.A. Hutchison III, and M.H. Edgell. 1987. J. Mol Biol. 196 757–767.PubMedCrossRefGoogle Scholar
  14. 14.
    M. Johnson and S.L. McKnight. 1989. Annu. Rev. Biochem. 58 799–839.PubMedCrossRefGoogle Scholar
  15. 15.
    G.D. Swergold. 1990. Mol. Cell. Biol. 10 6718–6729.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • Maxine F. Singer
    • 1
  • Thomas G. Fanning
    • 1
  • Debra M. Lelbold
    • 1
  • Gary D. Swergold
    • 1
  • Ronald E. Thayer
    • 1
  1. 1.Laboratory of BiochemistryNational Cancer InstituteBethesdaUSA

Personalised recommendations