Advertisement

Bacterial Heavy Metal Detoxification and Resistance Systems

  • Simon Silver

Abstract

Bacterial plasmids contain genetic determinants for resistance systems for Hg2+ (and organomercurials), Cd2+, AsO2, AsO4 3-, CrO4 2-, TeO3 2-, Cu2+, Ag+, Co2+, Pb2+, and other metals of environmental concern. In some cases, there is the potential for using genetically engineered microbes for bio-remediation. Recombinant DNA analysis has been applied to mercury, cadmium, zinc, cobalt, arsenic, chromate, tellurium and copper resistance systems. The eight mercury resistance systems that have been sequenced all contain the gene for mercuric reductase, the enzyme that converts toxic Hg2+ ions to less toxic volatile metallic Hg°. Four of these systems also determine the enzyme organomercurial lyase, which cuts the HgC bond and thus detoxifies methylmercury and phenylmercury. Two sequenced Cd2+ resistance determinants govern cellular efflux of Cd2+ assuring a low level of intracellular Cd2+: not an obvious candidate for bioremediation. Cadmium accumulation by bacterial metallothionein or phytochelatin is a potentially useful process, but only preliminary reports have appeared on bacteria producing polythiol polypeptides. For arsenic resistance, a unique efflux ATPase maintains low intracellular As levels. A bacterial AsO2- oxidase has been reported, with the potential of converting more toxic As(III) into less toxic As(V), but this system has not been studied in recent years. For chromate, resistance results from reduced cellular uptake. However, both soluble and membrane-bound Cr(VI) reductase bacterial activities convert more toxic Cr(VI) to less toxic Cr(III) in different bacteria.

Keywords

Resistance System Resistance Determinant Copper Resistance Chromate Reduction Chromate Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiking, H., H. Govers and J. van’t Riet 1985. Detoxification of cadmium, mercury and lead in Klebsiella aerogenes NCTC418 growing in continuous culture. Appl. Environ. Microbiol. 50, 1262–1267.PubMedGoogle Scholar
  2. Begley, T.P., Walts, A.E., and Walsh, C.T. 1986a. Bacterial organomercurial lyase: overproduction, isolation and characterization. Biochem. 25: 7186–7192.CrossRefGoogle Scholar
  3. Begley, T.P., Walts, A.E., Walsh, C.T. 1986b. Mechanistic studies of a protonolytic organomercurial cleaving enzyme: bacterial organomercurial lyase. Biochemistry 25: 7192–7200.PubMedCrossRefGoogle Scholar
  4. Belliveau, B.H., and Trevors, J.T. 1989. Mercury resistance and detoxification in bacteria. Appl. Organometaliic Chem. 3: 283–294.CrossRefGoogle Scholar
  5. Bender, C.L, Malvick, D.K., Conway, K.E., George, S., and Pratt, P. 1990. Characterization of pXV10A, a copper-resistance plasmid in Xanthomonas campestris pv. vesicatoria. Appl. Environ. Microbiol. 56, 170–175.PubMedGoogle Scholar
  6. Bopp, L.H. and Ehrlich, H.L. 1988. Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch. Microbiol. 150: 426–431.CrossRefGoogle Scholar
  7. Bopp, L.H. 1984. Microbial removal of chromate from contaminated waste water. U.S. patent # 4,468,461, issued August 28, 1984.Google Scholar
  8. Brierley, CL, Brierley, J.A., and Davidson, M.S. 1989. Applied microbial processes for metals recovery and removal from waste water. pp. 359–382. In T.J. Beveridge and R.J. Doyle (eds.) “Metal Ions and Bacteria”, John Wiley & Sons, N.Y.Google Scholar
  9. Brierley, J.A., Brierley, C.L., and Goyak, G.M. 1986. AMT-BIOCLAIM: a new waste water treatment and metal recovery technology, pp. 291–304. In “Fundamental and Applied Biohydrometallurgy” (R.W. Lawrence, R.M.R. Branion and H.G. Ebner, eds.) Elsevier, Amsterdam.Google Scholar
  10. Brown, N.L. 1985. Bacterial resistance to mercury: reductio ad absurdum. Trends Biochem. Sci. 10: 400–403.CrossRefGoogle Scholar
  11. Cervantes, C, Ohtake, H., Chu, L, Misra, T.K., and Silver., S. 1990. Cloning, nucleotide sequence, and expression of the chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505. J. Bacteriol. 172: 287–291.PubMedGoogle Scholar
  12. Cervantes, C. and Silver, S. 1990. Inorganic cation and anion transport systems of Pseudomonas. InPseudomonas: Biotransformations, Pathogenesis and Evolving Biotechnology” (eds. S. Silver, A.M. Chakrabarty, B. Iglewski, and S. Kaplan) American Society for Microbiology, Washington, D.C., pp. 359–372.Google Scholar
  13. Chen, CM., Misra, T.K., Silver, S. and Rosen, B.P. 1986. Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J. Biol. Chem. 26l: 15030–15038.Google Scholar
  14. Cooksey, D.A. 1987. Characterization of a copper resistance plasmid conserved in copperresistant strains of Pseudomonas syringae pv. tomato. Appl. Environ. Microbiol. 53, 454–456.PubMedGoogle Scholar
  15. Darnall, D.W. 1989. Removal and recovery of heavy metal ions from waste waters using a new bioabsorbant; AlgaSORB. In “Innovative Hazardous Waste Treatment Technology” (H. Freeman, ed.), Technomic Publishing company, Lancaster, PA, in press.Google Scholar
  16. Darnall, D.W., Gabel, A.M., and Gardea-Torresday, J. 1989. AlgaSORB: a new biotechnology for removing and recovering heavy metal ions from ground water and industrial waste water, pp. 113–124. In Hazardous Waste Treatment: Biosystems for Pollution Control, Proceedings of the 1989. A & WMA/EPA International Symposium. EPA, Cincinnati, Ohio.Google Scholar
  17. Distefano, M.D., Au, K.G. and Walsh, C.T. 1989. Mutagenesis of the redox-active disulfide in mercuric ion reductase: catalysis by mutant enzymes restricted to flavin redox chemistry. Biochemistry 28: 1168–1183.PubMedCrossRefGoogle Scholar
  18. Distefano, M.D., Moore, M.J. and Walsh, C.T. 1990. Active site of mercuric reductase resides at the subunit interface and requires Cys135 and Cys140 from one subunit and Cys558 and Cys559 from the adjacent subunit: evidence from in vivo and in vitro heterodimer formation. Biochemistry 29: 2703–2713.PubMedCrossRefGoogle Scholar
  19. Dyke, K.G.H., Walters, J.A. and Curnock, S.P. 1991. Characterization of a staphylococcal plasmid that specifies resistance to cadmium ions, Manuscript in preparation.Google Scholar
  20. Erardi, F.X., Failla, M.L. and Falkinham III, J.O. 1987. Plasmid-encoded copper resistance and precipitation bv Mvcobacterium scrofulaceum. Appl. Environ. Microbiol. 53: 1951–1954.PubMedGoogle Scholar
  21. Gotz, F., Zebielski, J., Philipson, L. and Lindberg, M. 1983. DNA homology between the arsenate resistance plasmid pSX267 from Staphylococcus xylosus and the penicillinase plasmid pl258 from Staphylococcus aureus. Plasmid 9: 126–137.PubMedCrossRefGoogle Scholar
  22. Gvozdyak, P.I., Mogilevich, N.F., Ryl’skii, A.F. and Grishchenko, N.I. 1986. Reduction of hexavalent chromium by collection strains of bacteria. Mikrobiologiya 55: 962–965.Google Scholar
  23. Hansen, CL., Zwolinski, G., Martin, D. and Williams, J.W. (1984). Bacterial removal of mercury from sewage. Biotech. Bioengin. 26: 1330–1333.CrossRefGoogle Scholar
  24. Helmann, J.D., Ballard, B.T. and Walsh, CT. 1990. The Mer Rmetalloregulatory protein binds mercuric ion as a tricoordinate, metal-bridged dimer. Science 247: 946–948.PubMedCrossRefGoogle Scholar
  25. Helmann, J.D. and Walsh, C.T. 1990. Metal dependent transcriptional activation: binding of metal ions by the Bacillus species RC607 MerR protein. Unpublished Manuscript.Google Scholar
  26. Horitsu, H., Futo, S., Miyazawa, Y., Ogai, S. and Kawai, K. 1987. Enzymatic reduction of hexavalent chromium by hexavalent chromium tolerant Pseudomonas ambigua G-1. Agric. Biol. Chem. 51: 2417–2420.Google Scholar
  27. Hsu, CM. and Rosen, B.P. 1989. Characterization of the catalytic subunit of an anion pump. J. Biol. Chem. 264: 17349–17354.PubMedGoogle Scholar
  28. Hutchins, S.R., Davidson, M.S., Brierley, J.A. and Brierley, C.L 1986. Microorganisms in reclamation of metals. Annu. Rev. Microbiol. 40:311–336.PubMedCrossRefGoogle Scholar
  29. Ishibashi, Y., Cervantes, C. and Silver, S. 1990. Chromium reduction by Pseudomonas putida. Appl. Environ. Microbiol. 56:2268–2270.PubMedGoogle Scholar
  30. Karkaria, C.E. and Rosen, B.P. 1990. Mutagenesis of a nucleotide binding site of an aniontranslocating ATPase. J. Biol. Chem. 265: 7832–7836.PubMedGoogle Scholar
  31. Karplus, A. and Schulz, G.E. 1987. Refined structure of glutathione reductase at 1.54 Å resolution. J. Mol. Biol. 195: 701–729.PubMedCrossRefGoogle Scholar
  32. Khazaeli, M.B. and R.S. Mitra 1981. Cadmium-binding component in Escherichia coli during accomodation to low levels of this ion. Appl. Environ. Microbiol. 41: 46–50.PubMedGoogle Scholar
  33. Komori, K., Wang, P.C., Toda, K. and Ohtake, H. 1989. Factors affecting chromate reduction in Enterobacter cloacae strain HO1. Appl. Microbiol. Biotechnol. 21: 567–570.CrossRefGoogle Scholar
  34. Komori, K., Rivas, A., Toda, K. and Ohtake, H. 1990a. Biological removal of toxic chromium using Enterobacter cloacae strain that reduces chromate under anaerobic conditions. Biotechnol. Bioengin. 35: 951–954.CrossRefGoogle Scholar
  35. Komori, K., Toda, K. and Ohtake, H. 1990b. Effects of oxygen stress on chromate reduction in Enterobacter cloacae. J. Ferment. Bioeng. 69: 67–69.CrossRefGoogle Scholar
  36. Komori, K., Rivas, A., Toda, K. and Ohtake, H. 1990c. A method for removal of toxic chromium using dialysis-sac cultures of achromate-reducing strain of Enterobacter cloacae. Appl. Microbiol. Biotechnol. 23: 117–119.Google Scholar
  37. Kusano, T., Ji, G., Inoue, C. and Silver, S. 1990. Constitutive synthesis of a transport function encoded by theThiobacillus ferrooxidans merC gene cloned in Escherichia coli. J. Bacteriol. 172: 2688–2692.PubMedGoogle Scholar
  38. Kvasnikov, E.I., Stepanyuk, V.V., Klyushnikova, T.M., Serpokrylov, N.S., Simonova, G.A., Kasatkina, T.P. and Pachenko, L.P. 1985. A new chromium-reducing, gram-variable bacterium with mixed type flagellation. Mikrobiologiya 54: 83–88.Google Scholar
  39. Laddaga, R.A., Bessen, R. and Silver, S. 1985. Cadmium-resistant mutant of Bacillus subtilis 168 with reduced cadmium uptake. J. Bacteriol. 162, 1106–1110.PubMedGoogle Scholar
  40. Lebedeva, E.V. and Lyalikova, N.N. 1979. Reduction of crocoite by Pseudomonas chromatophila sp. nov. Mikrobiologiya 48: 517–522.Google Scholar
  41. Lee, B.T.O., Brown, N.L., Rogers, S., Bergemann, A., Camakaris, J. and Rouch, D.A., 1991. Bacterial response to copper in the environment: copper resistance in Escherichia coli as a model system. NATO ASI series vol. G23, pp. 625–632. In “Metal Specification in the Environment”, J.A.C. Broekaert, S. Gucer, and F. Adams, eds. Springer Verleg, Berlin.Google Scholar
  42. Lund, P.A. and Brown, N.L. 1989. Regulation of transcription from the mer and merR promoters of the transposon Tn501. J. Mol. Biol. 205: 343–353.PubMedCrossRefGoogle Scholar
  43. Meissner, P.S. and Falkinham III, J.O. 1984. Plasmid-encoded mercuric reductase in Mycobacterium scrofulaceum. App. Environ. Microbiol. 157: 669–672.Google Scholar
  44. Mellano, M.A. and Cooksey, D.A. 1988. Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. tomato. J. Bacteriol. 170:2879–2883.PubMedGoogle Scholar
  45. Miller, S.M., Moore, M.J., Massey, V., Williams, C.H. Jr., Distefano, M.D., Ballou, D.P., and Walsh, C.T. 1989. Two-electron reduced mercuric reductase binds Hg(ll) to the active site dithiol but does not catalyze Hg(II) reductase. Biochemistry 28: 1194–1205.PubMedCrossRefGoogle Scholar
  46. Mobley, H.L.T. and Rosen, B.P. 1982. Energetics of plasmid-mediated arsenate resistance in Escherichia coli. Proc. Natl. Acad. Sci. USA 79: 6119–6122.PubMedCrossRefGoogle Scholar
  47. Moore, M.J. and Walsh, C.T. 1989. Mutagenesis of the N-and C-terminal cysteine pairs of Tn501 mercuric ion reductase: consequences for bacterial detoxification of mercurials. Biochemistry 28: 1183–1194.PubMedCrossRefGoogle Scholar
  48. Moore, M.J., Distefano, M.D., Walsh, CT., Schliering, N. and Pai, E.F. 1989. Purification, crystallization, and preliminary x-ray diffraction studies of the flavoprotein mercuric ion reductase from Bacillus sp. strain RC607. J. Biol. Chem. 264: 14386–14388.PubMedGoogle Scholar
  49. Nies, A., Nies, D.H. and Silver, S. 1989. Cloning and expression of plasmid genes encoding resistances to chromate and cobalt in Alcaligenes eutrophus. J. Bacteriol. 171:5065–5070.PubMedGoogle Scholar
  50. Nies, A., Nies, D.H. and Silver, S. 1990. Nucleotide sequence and expression of a plasmidencoded chromate resistance determinant from Alcaligenes eutrophus. J. Biol. Chem. 265: 5648–5653.PubMedGoogle Scholar
  51. Nies, D., Mergeay, M., Friedrich, B. and Schlegel, H.G. 1987. Cloning of plasmid genes encoding resistance to cadmium, zinc and cobalt in Alcaligenes eutrophus CH34. J. Bacteriol. 162: 4865–4868.Google Scholar
  52. Nies, D.H., Nies, A., Chu, L. and Silver, S. 1989. Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proc. Natl. Acad. Sci. USA 86 7351–7355.PubMedCrossRefGoogle Scholar
  53. Nies, D.H. and Silver, S. 1989. Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc and cobalt in Alcaligenes eutrophus. J. Bacteriol. 171: 896–900.PubMedGoogle Scholar
  54. Novick, R.P., Murphy, E., Gryczan, T.J., Baron, E. and Edelman, I. 1979. Penicillinase plasmids of Staphylococcus aureus: restriction-deletion maps. Plasmid 2: 109–129.PubMedCrossRefGoogle Scholar
  55. Nucifora, G., Chu, L, Silver, S. and Misra, T.K. 1989a. Mercury operon regulation by the merR gene of the organomercurial resistance system of plasmid pDU1358. J. Bacteriol. 171: 4241–4247.PubMedGoogle Scholar
  56. Nucifora, G., Chu, L, Misra, T.K. and Silver, S. 1989b. Cadmium resistance of Staphylococcus auieus plasmid pl258 results from a Cd2+ efflux ATPase determined by the cadA gene. Proc. Natl. Acad. Sci. USA 86: 3544–3548.PubMedCrossRefGoogle Scholar
  57. O’Halloran, T.V. 1989. Metalloregulatory proteins: metal responsive molecular switches governing gene expression, vol. 25, pp. 105–145 In “Metal Ions in Biological Systems” H. Sigel, ed. Marcel Dekker, New York.Google Scholar
  58. O’Halloran, T.V., Frantz, B., Shin, M.K., Ralston, D.M. and Wright, J.G. 1989. The merR heavy metal receptor mediates positive activation in a topologically novel transcription complex. Cell 56: 119–129.PubMedCrossRefGoogle Scholar
  59. Ohtake, H., Fujii, E. and Toda, T. 1990. Reduction of toxic chromate in an industrial effluent by use of a chromate-reducing strain of Enterobacter cloacae. Environ. Technol. Lett., 11: 663–668.CrossRefGoogle Scholar
  60. Ohtake, H., Cervantes, C. and Silver, S. 1987. Decreased chromate uptake in Pseudomo nas fluorescens carrying a chromate resistance plasmid. J. Bacteriol. 169:3853–3856.PubMedGoogle Scholar
  61. Osborne, F.H. and Ehrlich, H.L. 1976. Oxidation of arsenite by a soil isolate of Alcaligene S. J. Appl. Bacteriol. 41: 295–305.PubMedGoogle Scholar
  62. Owolabi, J.B. and Rosen, B.P. 1990. Differential mRNA stability controls relative gene expression within the plasmid-encoded arsenical resistance operon. J. Bacteriol. 172: 2367–2371.PubMedGoogle Scholar
  63. Perry, R.D. and Silver, S. 1982. Cadmium and manganese transport in Staphylococcus aureus membrane vesicles. J. Bacteriol. 150: 973–976.PubMedGoogle Scholar
  64. Phillips, S.E. and Taylor, M.L 1976. Oxidation of arsenite to arsenate by Alcaligenes faecalis. Appl. Environ. Microbiol. 22: 392–399.Google Scholar
  65. Ralston, R.M. and O’Halloran, T.V. 1990. Ultrasensitivity and heavy-metal selectivity of the allosterically modulated MerR transcription complex. Proc. Natl. Acad. Sci. USA 87: 3846–3850.PubMedCrossRefGoogle Scholar
  66. Romanenco, V.I. and Kkoren’kov, V.N. 1977. A pure culture of bacteria utilizing chromates and bichromates as hydrogen acceptors in growth under anaerobic conditions. Mikrobiologiya 46: 414–417.Google Scholar
  67. Rosen, B.P., Weigel, U., Karkaria, C. and Gangola, P. 1988. Molecular characterization of an anion pump. The arsA gene product is an arsenite(antimonate)-stimulated ATPase. J. Biol. Chem. 263: 3067–3070.PubMedGoogle Scholar
  68. Rosenstein, R. and Götz, F. 1991. Nucleotide sequence and expression of arsenic resistance genes of Staphylococcus xylosus. Molec. Gen. Genet., Submitted.Google Scholar
  69. Rouch, D., Camakaris, J., Lee, B.T.O. and Luke, R.K.J. 1985. Inducible plasmid-mediated copper resistance in Escherichia coli. J. Gen. Microbiol. 123: 939–943.Google Scholar
  70. Rouch, D., Lee, B.T.O. and Camakaris, J. 1989a. Genetic and molecular basis of copper resistance in Escherichia coli. pp. 439–446. In “Metal lon Homeostasis: Molecular Biology and Chemistry” (eds. D.H. Hamer and D.R. Winge), Alan R. Liss, New York.Google Scholar
  71. Rouch, D., Camakaris, J. and Lee, B.T.O. 1989b. Copper transport in Escherichia coli. pp. 469–477. In “Metal lon Homeostasis: Molecular Biology and Chemistry” (eds. D. H. Hamer and D.R. Winge), Alan R. Liss, New York.Google Scholar
  72. Sahlman, L., Lamier, A.-M., Lindskog, S. and Dunford, H.B. 1984. The reaction between NADPH and mercuric reductase from Pseudomonas aeruginosa. J. Biol. Chem. 259: 12403–12408.PubMedGoogle Scholar
  73. Sahlman, L., Lamier, A.-M. and Lindskog, S. 1986. Rapid-scan stopped-flow studies of the pH dependence of the reaction between mercuric reductase and NADPH. Eur. J. Biochem. 156: 479–488.PubMedCrossRefGoogle Scholar
  74. Sandstrom, A. and Lindskog, S. 1987. Activation of mercuric reductase by the substrate NADPH. Eur. J. Biochem. 164: 243–249.PubMedCrossRefGoogle Scholar
  75. San Francisco, M.J.D., Tisa, L.S. and Rosen, B.P. 1989. Identification of the membrane component of the anion pump encoded by the arsenical resistance operon of plasmid R773. Molec. Microbiol. 3: 15–21.CrossRefGoogle Scholar
  76. San Francisco, M.J.D., Hope, C.L., Owolabi, J.B., Tisa, L.S. and Rosen, B.P. 1990. Identification of the metalloregulatory element of the plasmid-encoded arsenical resistance operon. Nucleic Acids Res. 18: 619–624.PubMedCrossRefGoogle Scholar
  77. Shimada, K. and Matsushima, K. 1983. Isolation of potassium chromate-resistant bacterium and reduction of hexavalent chromium by the bacterium. Bull. Faculty Agriculture Mie Univ. 67: 101–106.Google Scholar
  78. Silver, S., Budd, K., Leahy, K.M., Shaw, W.V., Hammond, D., Novick, R.P., Willsky, G.R., Malamy, M.H. and Rosenberg, H 1981. Inducible plasmid-determined resistance to arsenate, arsenite and antimony(III) in Escherichia coli and Staphylococcus aureus. J. Bacteriol. 46: 983–996.Google Scholar
  79. Silver, S. and Keach, D. 1982. Energy-dependent arsenate efflux: the mechanism of plasmidmediated resistance. Proc. Natl. Acad. Sci. USA 79: 6114–6118.PubMedCrossRefGoogle Scholar
  80. Silver, S. and Laddaga, R.A. 1990. Molecular genetics of heavy metal resistances in Staphylococcus plasmids. In “Molecular Biology of the Staphylococci” (R.P. Novick ed.), VCH Publishers, New York, pp. 531–549.Google Scholar
  81. Silver, S. and Misra, T.K. 1988. Plasmid-mediated heavy metal resistances. Annu. Rev. Microbiol. 42: 717–743.PubMedCrossRefGoogle Scholar
  82. Silver, S., Nucifora, G., Chu, L and Misra, T.K. 1989. Bacterial resistance ATPases: primary pumps for exporting toxic cations and anions. Trends Biochem. Sci. 14: 76–80.PubMedCrossRefGoogle Scholar
  83. Strandberg, G.W., Shumate II, S.E. and Parrott Jr., J.R. 1981. Microbial cells as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Appl. Environ. Microbiol. 41: 237–245.PubMedGoogle Scholar
  84. Strandberg, G.W. and Arnold Jr., W.D. 1988. Microbial accumulation of neptunium. J. Indus. Microbiol. 3: 329–331.CrossRefGoogle Scholar
  85. Summers, A.O. and Silver, S. 1978. Microbial transformations of metals. Annu. Rev. Microbiol. 32: 637–672.PubMedCrossRefGoogle Scholar
  86. Tetaz, T.J. and Luke, R.K.J. 1983. Plasmid-controlled resistance to copper in Escherichia coli. J. Bacteriol. 154: 1263–1268.PubMedGoogle Scholar
  87. Thieme, R., Pai, E.F., Schirmer, R.H. and Schulz, G.E. 1981. Three-dimensional structure of glutathione reductase at the 2 Å resolution. J. Mol. Biol. 152: 763–782.PubMedCrossRefGoogle Scholar
  88. Tisa, L.S. and Rosen, B.P. 1989. Molecular characterization of an anion pump: the ArsB protein is the membrane anchor for the ArsA protein. J. Biol. Chem. 265: 190–194.Google Scholar
  89. Tisa, L.S. and Rosen, B.P. 1990. Transport systems encoded by bacterial plasmids. J. Bioenerg. Biomembr. 22: 493–507.PubMedCrossRefGoogle Scholar
  90. Trevor, J.T. 1987. Copper resistance in bacteria. Microbiol. Sci. 4: 29–31.Google Scholar
  91. Tynecka, Z., Gos, Z., and Zajac, J. 1981. Energy-dependent efflux of cadmium coded by a plasmid resistance determinant in Staphylococcus aureus. J. Bacteriol. 147:313–319.PubMedGoogle Scholar
  92. Walsh, CT., Distefano, M.D., Moore, M.J., Shewchuk, L.M. and Verdine, G.L 1988. Molecular basis of bacterial resistance to organomercurial and inorganic mercuric salts. FASEB J. 2: 124–130.PubMedGoogle Scholar
  93. Walts, A.E. and Walsh, C.T. 1988. Bacterial organomercurial lyase: novel enzymatic protonolysis of organostannanes. J. Amer. Chem. Soc. 110: 1950–1953.CrossRefGoogle Scholar
  94. Wang, P.C., Mori, T., Komori, K., Sasatsu, M., Toda, K. and Ohtake, H. 1989. Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl. Environ. Microbiol. 55: 1665–1669.PubMedGoogle Scholar
  95. Wang, P.C., Mori, T., Toda, K. and Ohtake, H. 1989. Membrane-associated chromate reductase activity from Enterobacter cloacae. J. Bacteriol. 172: 1670–1672.Google Scholar
  96. Weiss, A.A., Silver, S. and Kinscherf, T.G. 1978. Cation transport alteration associated with plasmid-determined resistance to cadmium in Staphylococcus aureus. Antimicrob. Agents Chemother. 14: 856–865.PubMedGoogle Scholar
  97. Witte, W., Green, L., Misra, T.K. and Silver, S. 1986. Resistance to mercury and cadmium in chromosomally-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 29: 663–669.PubMedGoogle Scholar
  98. Yoon, K.P. and Silver, S. 1991. A second gene in the cadA cadmium resistance determinant of Staphylococcus aureus plasmid pl258. J. Bacteriol., Submitted.Google Scholar
  99. Yoon, K.P., Misra, T.K. and Silver, S. 1991. Regulation of the cadA cadmium resistance determinant of Staphylococcus aureus plasmid pl258. J. Bacteriol., Submitted.Google Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • Simon Silver
    • 1
  1. 1.University of IllinoisChicagoUSA

Personalised recommendations