Skip to main content

Environmental Control of Microbial Gene Expression and Evolution

  • Chapter
Biotechnology and Environmental Science

Summary

The survival of microorganisms is dependent on their ability to respond to a changing environment. In the very stressed environment of the CF lung, with salty and dehydrated mucus, the microorganisms need to protect themselves from losing their intracellular water and one way to accomplishing this is to produce an exopolysaccharide capsule with strong gelling properties as a barrier to dehydration. It is interesting that the algD promoter is activated by those environmental factors that are characteristic of the CF disease, which explains why CF patients are particularly vulnerable to infections by mucoid P. aeruginosa. It is also interesting to note that the alginate capsule, which is presumably produced to protect P. aeruginosa from intracellular dehydration, also affords protection The activation of the algD promoter has been measured by measuring catechol 2,3-dioxygenase (C230) activity, since a construct containing the xylE gene placed under the algD promoter was used in these experiments (see ref. 18 and 19). One unit of catechol 2,3-dioxygenase activity is defined as the amount of enzyme oxidizing one mmol of catechol to 2-hydroxymuconic semialdehyde, a product with a molar extinction coefficient of 4.4 × 104 at 375 nm. against antibiotics and antibodies to the detriment of the human patients. When the environment is beset with chlorinated compounds, the immediate response of natural microorganisms is to evolve degradative genes in the form of a plasmid. As a first step, they tend to recruit genes that allow degradation of a structurally analogous non-chlorinated compound, which undergo mutational or recombinational divergence to the appropriate genes whose products have broad substrate specificities to include chlorinated compounds. Such evolutionary processes apparently are not very effective for highly chlorinated compounds for which appropriate enzyme systems have not yet fully developed. In a single incidence of directed evolution, the chromosomal DNA shows the presence of multiple copies of a transposable element near the evolved genes, suggesting that an accelerated process of evolution may bypass the requirement of genetic relatedness of the evolved genes to the genome of the recruiting cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ronson, C.W., Nixon, B.T. and Ausubel, F.M. (1987). Cell 49:579–581.

    Article  PubMed  CAS  Google Scholar 

  2. Stock, J.B., Ninfa, A.J. and Stock, A.M. (1989). Microbiol. Rev. 53:450–490.

    PubMed  CAS  Google Scholar 

  3. Matin, A., Auger, E.A., Blum, P.H. and Schultz, J.E. (1989). Ann. Rev. Microbiol. 43:293–316.

    Article  CAS  Google Scholar 

  4. Lee, C.A. and Falkow, S. (1990). Proc. Natl. Acad. Sci. USA 87:4304–4308.

    Article  PubMed  CAS  Google Scholar 

  5. Roy, C.R., Miller, J.F. and Flakow, S. (1990). Proc. Natl. Acad. Sci. USA 87:3763–3767.

    Article  PubMed  CAS  Google Scholar 

  6. McPherson, M.A. and Goodchild, M.C. (1988). Clin. Sci. 74:337–345.

    PubMed  CAS  Google Scholar 

  7. Darzins, A., Wang, S.K., Vanags, R.I. and Chakrabarty, A.M. (1985). J. Bacteriol. 164:516–524.

    PubMed  CAS  Google Scholar 

  8. Wang, S.K., Sa-Correia, I., Darzins, A. and Chakrabarty, A.M. (1987). J. Gen. Microbiol. 133:2303–2317.

    PubMed  CAS  Google Scholar 

  9. Darzins, A., Nixon, L.L, Vanags, R.I. and Chakrabarty, A.M. (1985). J. Bacteriol. 161:249–257.

    PubMed  CAS  Google Scholar 

  10. Deretic, V., Gill, J.F. and Chakrabarty, A.M. (1987). J. Bacteriol. 169:351–358.

    PubMed  CAS  Google Scholar 

  11. Deretic, V., Dikshit, R., Konyecsni, W.M., Chakrabarty, A.M. and Misra, T.K. (1989). J. Bacteriol. 171:1278–1283.

    PubMed  CAS  Google Scholar 

  12. Kato, J., Chu, L, Kitano, K., DeVault, J.D., Kimbara, K., Chakrabarty, A.M. and Misra, T.K. (1989). Gene 84:31–38.

    Article  PubMed  CAS  Google Scholar 

  13. Kato, J., Misra, T.K. and Chakrabarty, A.M. (1990). Proc.Natl.Acad. Sci. USA 87:2887–2891.

    Article  PubMed  CAS  Google Scholar 

  14. Zielinski, N.A., Chakrabarty, A.M. and Berry, A. (1991). J. Biol. Chem. 266:9754–9763.

    PubMed  CAS  Google Scholar 

  15. Darzins, A., Frantz, B., Vanags, R.I. and Chakrabarty, A.M. (1986). Gene 42:293–302.

    Article  PubMed  CAS  Google Scholar 

  16. Deretic, V., Gill, J.F. and Chakrabarty, A.M. (1987). Nucleic Acid Res. 15:4567–4581.

    Article  PubMed  CAS  Google Scholar 

  17. Shinabarger, D., Berry, A., May, T.B., Rothmel, R., Fialho, A. and Charkrabarty, A.M. (1991). J. Biol. Chem. 266:2080–2088.

    PubMed  CAS  Google Scholar 

  18. Roychoudhury, S., May, T.B., Gill J.F., Singh, S.K., Feingold, D.S. and Chakrabarty, A.M. (1989). J. Biol. Chem. 264:9380–9385.

    PubMed  CAS  Google Scholar 

  19. DeVault, J.D., Berry, A., Misra, T.K., Darzins, A. and Chakrabarty, A.M. (1989). Bio/Technology 7:352–357.

    Article  CAS  Google Scholar 

  20. Kato, J. and Chakrabarty, A.M. (1991). Proc. Natl. Acad. Sci. USA 88:1760–1764.

    Article  PubMed  CAS  Google Scholar 

  21. Berry, A., DeVault, J.D. and Chakrabarty, A.M. (1989). J. Bacteriol. 171:2312–2317.

    PubMed  CAS  Google Scholar 

  22. DeVault, J.D., Kimbara, K. and Chakrabarty, A.M. (1990). Molec. Microbiol. 4:737–745.

    Article  CAS  Google Scholar 

  23. Kimbara, K. and Chakrabarty, A.M. (1989). Biochem. Biophys. Res. Commun. 164:601–608.

    Article  PubMed  CAS  Google Scholar 

  24. Sangodkar, U.M.X., Aldrich, T.L, Haugland, R.A., Johnson, J., Rothmel, R.K., Chapman, P.J. and Chakrabarty, A.M. (1989). Acta Biotechnol. 9:301–316.

    Article  CAS  Google Scholar 

  25. Ghosal, D., You, -I.S., Chatterjee, D.K. and Chakrabarty, A.M. (1985). Science 228:135–142.

    Article  CAS  Google Scholar 

  26. Frantz, B. and Chakrabarty, A.M. (1987). Proc. Natl. Acad. Sci. USA 84:4460–4464.

    Article  PubMed  CAS  Google Scholar 

  27. Aldrich, T.L and Chakrabarty, A.M. (1988). J. Bacteriol. 170:1297–1304.

    PubMed  CAS  Google Scholar 

  28. Rothmel, R.K., Aldrich, T.L, Houghton, J.E., Coco, W.M., Ornston, L.N. and Chakrabarty, A.M. (1990). J. Bacteriol. 172:922–931.

    PubMed  CAS  Google Scholar 

  29. Rothmel, R.K., Haugland, R.A., Coco, W.M., Sangodkar, U.M.X. and Chakrabarty, A.M. (1989). In Recent Advances in Microbial Ecology (T. Hattori, Y. Ishida, Y. Maruyama, R.Y. Morita and A. Uchida, Eds.), Japan Scientific Societies Press, Tokyo, p. 605–610.

    Google Scholar 

  30. Schlomann, M., Pieper, D.H. and Knackmuss, H.-J. (1990).In: Pseudomonas: Biotransformations, Pathogenesis, and Evolving Biotechnology (S. Silver, A.M. Chakrabarty, B. Iglewski and S. Kaplan, Eds.), American Society for Microbiology, Washington, D.C., p.185–196.

    Google Scholar 

  31. Ghosal, D., You, -I.S., Chatterjee, D.K. and Chakrabarty, A.M. (1985). Proc. Natl. Acad. Sci. USA 82:1638–1642.

    Article  PubMed  CAS  Google Scholar 

  32. Ghosal, D. and You, -I.S. (1989). Gene 83:225–232.

    Article  PubMed  CAS  Google Scholar 

  33. Sangodkar, U.M.X., Chapman, P.J. and Chakrabarty, A.M. (1988). Gene 7l:267–277.

    Article  Google Scholar 

  34. Tomasek, P.H., Frantz, B, Sangodkar, U.M.X., Haugland, R.A. and Chakrabarty, A.M. (1989). Gene 76:227–238.

    Article  PubMed  CAS  Google Scholar 

  35. Haugland, R.A., Sangodkar, U.M.X. and Chakrabarty, A.M. (1990). Mol. Gen. Genet. 220:222–228.

    Article  PubMed  CAS  Google Scholar 

  36. Haugland, R.A., Sangodkar, U.M.X., Sferra, P.R. and Chakrabarty, A.M. (1991). Gene 100:65–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Plenum Press, New York

About this chapter

Cite this chapter

Chakrabarty, A.M. (1992). Environmental Control of Microbial Gene Expression and Evolution. In: Mongkolsuk, S., Lovett, P.S., Trempy, J.E. (eds) Biotechnology and Environmental Science. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-32386-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-32386-2_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-44352-7

  • Online ISBN: 978-0-585-32386-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics