Advertisement

Hematopoietic Growth Factors Involved in B-Cell Development

  • Ana Cumano
  • Barbara L. Kee
  • Isabelle Godin
  • Françoise Dieterlen-Lièvre
  • C. J. Paige
Part of the Blood Cell Biochemistry book series (BLBI, volume 7)

Abstract

B lymphocytes are continuously generated throughout life. Like all other members of the hematopoietic system, B cells are derived from multipotent hematopoietic stem cells (Wu et al., 1967). The developmental pathway that leads from multipotent stem cells to committed B lymphocytes is characterized by a series of differentiation steps. Many of these steps can be recognized based on the appearance of proteins such as growth factor receptors or the B-lineage-specific molecules that allow or promote the further development of progenitor cells. These stages of differentiation can also be recognized based on functional assays that have been developed over the last 30 years. Initially, such assay systems relied on the ability of progenitor cells to repopulate the hematopoietic system of a mouse that had previously been subjected to high doses of ionizing radiation. This approach has been crucial for the identification of multipotent stem cells and defining cells, which have long-term reconstituting potential (Dick et al., 1985; Keller et al.,1985; Lemischka et al., 1986). Irradiation/reconstitution experiments have been less useful for identifying intermediate stages in the developmental process. This method is also inadequate for studying either the essential cellular interactions or the growth and differentiation factors that promote hematopoiesis.

Keywords

Stromal Cell Fetal Liver Adult Bone Marrow Hematopoietic Precursor Stromal Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, F. W., and Baltimore, D., 1982, Joining of immunoglobulin heavy chain gene segments: Implications from a chromosome with evidence of three D—JH fusions, Proc. Natl. Acad. Sci. U.S.A. 79: 4118–4122.PubMedCrossRefGoogle Scholar
  2. Alt, F. W., Yancopoulos, G. D., Blackwell, T. K., Wood, C., Thomas, E., Boss, M., Coffman, R., Rosenberg, N., Tonegawa, S., and Baltimore, D., 1984, Ordered rearrangement of immunoglobulin heavy chain variable region segments, EMBO J. 3: 1209–1219.PubMedGoogle Scholar
  3. Anderson, D. M., Lyman, S. D., Baird, A., Wignall, J., Eisenman, J., Rauch, C., March, C. J., Boswell, H. S., Gimpel, S. D., Cosman, D., and Williams, D. E., 1990, Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble form, Cell 63: 233–243.CrossRefGoogle Scholar
  4. Billips, L. G., Petitte, D., Dorshkind, K., Narayanan, R., Chiu, C.-P., and Landreth, K. S., 1992, Differential roles of stromal cells, interleukin-7, and kit-ligand in the regulation of B lymphopoiesis, Blood 79: 1185–1192.PubMedGoogle Scholar
  5. Chabot, B., Stephenson, D. A., Chapman, V. M., Besmer, P., and Bernstein, A., 1988, The protooncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus, Nature 335: 88–89.PubMedCrossRefGoogle Scholar
  6. Chen, J., Ma, F., Young, F., and Alt, F. W., 1994, IL-2 receptor a chain expression during early B lymphocyte differentiation, bit. Immunol. 6: 1265–1268.Google Scholar
  7. Cohn, M., and Langman, R. E., 1990, The protecton: The evolutionarily selected unit of humoral immunity, Immunol. Rev. 115: 1–131.CrossRefGoogle Scholar
  8. Collins, L. S., and Dorshkind, K., 1987, A stromal cell line from myeloid long-term bone marrow cultures can support myelopoiesis and B lymphopoiesis, J. Immunol. 138: 1082–1087.PubMedGoogle Scholar
  9. Colon, P. J., Morrissey, R. P., Nordan, K. H., Grabstein, K. H., Prickett, K. S., Reed, S. G., Goodwin, R., Cosman, D., and Namen, A. E., 1989, Murine thymocytes proliferate in direct response to interleukin-7, Blood 74: 1368–1371.Google Scholar
  10. Cumano, A., and Paige, C. J., 1992, Enrichment and characterization of uncommitted B-cell precursors from fetal liver at day 12 of gestation, EMBO J. 11: 593–601.PubMedGoogle Scholar
  11. Cumano, A., Dorshkind, K., Gillis, S., and Paige, C. J., 1990, The influence of 817 stromal cells and interleukin-7 on B cell development, Eur. J. Immunol. 20: 2183–2189.PubMedCrossRefGoogle Scholar
  12. Cumano, A., Paige, C. J., Iscove, N. N., and Brady, G., 1992a, Bipotential precursors of B cells and macrophages in murine fetal liver, Nature 356: 612–615.PubMedCrossRefGoogle Scholar
  13. Cumano, A., Furlonger, C., and Paige, C. J., 1992b, Differentiation and characterization of B-cell precursors detected in the yolk sac and embryo body of embryos beginning at the 10–12 somite stage, Proc. Natl. Acad. Sci. U.S.A. 90: 6429–6433.CrossRefGoogle Scholar
  14. Cumano, A., Kee, B. L., Ramsden, D. A., Marshall, A., Paige, C. J., and Wu, G. E., 1994, Development of B lymphocytes from lymphoid committed and uncommitted progenitors, Immunol. Rev. 137: 5–33.PubMedCrossRefGoogle Scholar
  15. Dick, J. E., Magli, M. C., Huszar, D., Phillips, R. A., and Bernstein, A.,1985, Introduction of a selectable gene into primitive stem cells capable of long term reconstitution of the hemopoietic system of W/W’ mice, Cell 42: 71–79.Google Scholar
  16. Dieterlen-Lièvre, F., and Martin, C., 1981, Diffuse intraembryonic hemopoiesis in normal and chimeric avian development, Del,. Biol. 88: 180–188.Google Scholar
  17. Ehlich, A., Schaal, S., Gu, H., Kitamura, D., Müller, W., and Rajewsky, K., 1993, Immunoglobulin heavy and light chain genes rearrange independently at early stages of B cell developent, Cell 72: 695–704.PubMedCrossRefGoogle Scholar
  18. Fisher, A. G., Burdet, C., LeMeur, M., Haasner, D., Gerber, P., and Ceredig, R., 1992, Lymphoproliferative desorders in an IL-7 transgenic mouse line, Leukemia 2: 566–568.Google Scholar
  19. Geissler, E. N., Ryan, M. A., and Houseman, D. E., 1988, The dominant white spotting locus of the mouse encodes the c-kit protooncogene, Cell 55: 185–192.PubMedCrossRefGoogle Scholar
  20. Giri, J., Ahdieh, M., Eisenman, J., Shanabeck, K., Grabstein, K., Kumaki, S., Namen, A., Park, L., Cosman, D., and Anderson, D., 1994, Utilization of the f3 and the y chains of the IL-2 receptor by the novel cytokine IL-15, EMBO J. 13: 2822–2830.PubMedGoogle Scholar
  21. Godin, I., Garcia-Porrero, J. A., Coutinho, A., Dieterlen-Lièvre, F., and Marcos, M. A. R., 1993, Para-aortic splanchnopleura from early mouse embryos contains Bla cell progenitors, Nature 364: 67–70.PubMedCrossRefGoogle Scholar
  22. Godin, I., Dieterlen-Lièvre, F., and Cumano, A., 1995, Emergence of multipotent hematopoietic cells in the yolk sac and para-aortic splanchnopleura of 8.5 dpc mouse embryos, Proc. Natl. Acad. Sci. U.S.A. 92: 773–777.PubMedCrossRefGoogle Scholar
  23. Grabstein, K. H., Waldschmidt, T. J., Finkelman, F. D., Hess, B. W., Alpert, A. R., Boiani, N. E., Namen, A. E., and Morrissey, P. J., 1993, Inhibition of murine B and T lymphopoiesis in vivo by anti-interlekin 7 monoclonal antibody, J. Exp. Med. 178: 257–264.PubMedCrossRefGoogle Scholar
  24. Hardy, R. R., Carmack, C. E., Shinton, S. A., Kemp. J. D., and Hayakawa, K., 1991, Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow, J. Exp. Med. 173: 1213–1225.Google Scholar
  25. Hirayama, F., Shih, J.-P., Awgulewitsch, A., Warr, G. W., Clark, S. S., and Ogawa, M.,1992, Clonal proliferation of murine lymphohemopoietic progenitors in culture, Proc. Natl. Acad. Sci. U.S.A. 89: 5907–5911.Google Scholar
  26. Hombach, J., Tsubata, T., Leclercq, L., Stappert, H., and Reth, M., 1990, Molecular components of the B-cell antigen receptor complex of the IgM class, Nature 343: 760–762.PubMedCrossRefGoogle Scholar
  27. Hunt, P., Robertson, D., Weiss, D., Rennick, D., Lee, F., and Witte, O. N., 1987, A single bone marrow-derived stromal cell type supports the in vitro growth of early lymphoid and myeloid cells, Cell 48: 997–1007.PubMedCrossRefGoogle Scholar
  28. Ip, N. Y., Nye, S. H., Boulton, T. G., Davis, S., Taga, T., Li, Y., Birren, S. J., Yasukawa, K., Kishimoto, T., Anderson, D. J., Stahl, N., and Yancopoulos, G. D., 1992, CNTF and LIF act on neuronal cells via shared signaling pathways that involve the IL-6 signal transducing receptor component gp130, Cell 69: 1121–1132.PubMedCrossRefGoogle Scholar
  29. Jenkinson, E. J., Fanchi, L. L., Kingston, R., and Owen, J. J. T., 1982, Effect of deoxyguanosine on lymphopoiesis in the developing thymus rudiment in vitro: Application in the production of chimeric thymus rudiments, Eur. J. Immunol. 12: 583–592.PubMedCrossRefGoogle Scholar
  30. Jordan, C. T., McKearn, J. T., and Lemischka, I. R., 1990, Cellular and developmental properties of fetal hematopoietic stem cells, Cell 61: 953–963.PubMedCrossRefGoogle Scholar
  31. Kamps, W. A., and Cooper, M. D., 1982, Microenvironmental studies of pre-B and B cell development in human and mouse fetuses, J. Immunol. 129: 526–531.PubMedGoogle Scholar
  32. Kee, B. L., Paige, C. J., and Letarte, M., 1992, Characterization of murine CD10, an endopeptidase expressed on bone marrow adherent cells, Int. Immunol. 4: 1041–1047.PubMedCrossRefGoogle Scholar
  33. Kee, B. L., Cumano, A., Iscove, N. N., and Paige, C. J., 1994, Stromal cell independent growth of bipotent B cell-macrophage precursors from murine fetal liver, Int. Immunol. 6: 401–407.PubMedCrossRefGoogle Scholar
  34. Keller, G., Paige, C. J., Gilboa, E., and Wagner, E. F., 1985, Expression of a foreign gene in myeloid and lymphoid cells derived from multipotent heamatopoietic precursors, Nature 318: 149–154.PubMedCrossRefGoogle Scholar
  35. Kincade, P. W., Lee, G., Watanabe, S., and Scheid, M. P., 1981, Antigens displayed on murine B lymphocyte precursors, J. Immunol. 127: 2262–2268.PubMedGoogle Scholar
  36. Kitamura, D., and Rajewsky, K., 1992, Targeted disruption of chain membrane exon causes loss of heavy-chain allelic exclusion, Nature 356: 154–156.PubMedCrossRefGoogle Scholar
  37. Kitamura, D., Roes, J., Kühn, R., and Rajewsky, K., 1991, A B cell deficient mouse generated through targeted disruption of the membrane exon of the immunoglobulin µ chain, Nature 350: 423–426.PubMedCrossRefGoogle Scholar
  38. Kitamura, D., Kudo, A., Schaal, S., Müller, W., Melchers, F., and Rajewsky, K., 1992, A critical role of X 5 protein in B cell development, Cell 69: 823–831.PubMedCrossRefGoogle Scholar
  39. Kondo, M., Takeshita, T., Higuchi, M., Nakamura, M., Sudo, T., Nishikawa, S.-I., and Sagamura, K., 1994, Functional participation of the IL-2 receptor -y chain in IL-7 receptor complexes, Science 263: 1453–1454.PubMedCrossRefGoogle Scholar
  40. Lafaille, J. J., DeCloux, A., Bonneville, M., Takagaki, Y., and Tonegawa, S., 1989, Junctional sequences of T cell receptor gd genes: Implications for gd T cell lineages and for a novel intermediate of V—(D)—J joining, Cell 59: 859–868.PubMedCrossRefGoogle Scholar
  41. Landreth, K.S., Narayanan, R., and Dorshkind, K., 1992, Insulin-like growth factor-1 regulates pro-B cell defferentiation, Blood 80: 1207–1212.PubMedGoogle Scholar
  42. Lee, G., Namen, A. E., Gillis, S., Ellingsworth, L. R., and Kincade, P. W., 1989, Normal B cell precursors responsive to recombinant murine IL-7 and inhibition of IL-7 activity by transforming growth factor-a, J. Immunol. 142: 3875–3883.PubMedGoogle Scholar
  43. Lemischka, L R., Raulet, D., and Mulligan, R. C., 1986, Developmental potential and dynamic behaviour of hemopoietic stem cells, Cell 45: 917–927.PubMedCrossRefGoogle Scholar
  44. Medvinsky, A. L., Samoylina, N. L., Muller, A. M., and Dzierzak, E. A., 1993, An early pre-liver intraembryonic source of CFU-S in the developing mouse, Nature 364: 64–67.PubMedCrossRefGoogle Scholar
  45. Miyake, K., Medina, K. L., Hayashi, S.-I., Ono, S., Hamaoka, T., and Kincade, P. W., 1990, Monoclonal antibodies to Pgp-1/CD44 block lympho-hemopoiesis in long-term bone marrow cultures, J. Exp. Med. 171: 477–488.PubMedCrossRefGoogle Scholar
  46. Miyake, K., Weissman, I. L., Greenberger, J. S., and Kincade, P. W., 1991, Evidence for a role of the integrin VLA-4 in lympho-hemopoiesis, J. Exp. Med. 173: 599–607.PubMedCrossRefGoogle Scholar
  47. Moore, M. A. S., and Metcalf, D., 1970, Ontogeny of the haemopoietic system: Yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo, Br. J. Haematol. 18: 279–295.PubMedCrossRefGoogle Scholar
  48. Müller, A. M., Medvinsky, A., Strouboulis, J., Grosveld, F., and Dzierzak, E., 1994, Development of hematopoietic stem cell activity in the mouse embryo, Immunity 4: 291–302.CrossRefGoogle Scholar
  49. Namen, A. E., Lupton, S., Hjerrild, K., Wignall, J., Mochizuki, D. Y., Schmierer, A., Mosley, B., March, C. J., Urdal, K., Gillis, S., Cosman, D., and Goodwin, R. G., 1988, Stimulation of B cell progenitors by cloned murine interleukin 7, Nature 333: 571–573.PubMedCrossRefGoogle Scholar
  50. Nishikawa, S.-I., Ogawa, M., Nishikawa, S., Kunisada, T., and Kodama, H., 1988, B lymphopoiesis on stromal cell clone: Stromal cell clones acting on different stages of B cell differentiation, Eur. J. Immunol. 18: 1767–1771.PubMedCrossRefGoogle Scholar
  51. Noguchi, M., Nakamura, Y., Russel, S., Ziegler, S. F., Tsang, M., Cao, X., and Leonard, W. J., 1993, Interleukin-2 receptor y chain: A functional component of the interleukin-7 receptor, Science 262: 1877–1880.PubMedCrossRefGoogle Scholar
  52. Paige, C. J., 1983, Surface immunoglobulin-negative B-cell precursors detected by formation of antibody-secreting colonies in agar, Nature 302: 711–713.PubMedCrossRefGoogle Scholar
  53. Paige, C. J., Kincade, P. W., Moore, M. A. S., and Lee, G., 1979, The fate of fetal and adult B-cell progenitors grafted into immunodeficient CBAIN mice, J. Exp. Med. 150: 548–563.PubMedCrossRefGoogle Scholar
  54. Paul, S. R., Bennett, F., Calvetti, J. A., Kelleher, K., Wood, C. R., O’Hara, R. M., Leary, A. C., Sibley, B., Clark, S. C., Williams, D. A., and Yang, Y.-C., 1990, Molecular cloning of a cDNA encoding interleukin 11, a stromal cell-derived lymphopoietic and hematopoietic cytoquine, Proc. Natl. Acad. Sci. U.S.A. 87: 7512–7516.PubMedCrossRefGoogle Scholar
  55. Peschon, J. J., Morrissey, P. J., Grabstein, K. H., Ramsdell, F. J., Maraskovsky, E., Gliniak, B. C., Park, L. S., Ziegler, S. F., Williams, D. E., Ware, C. B., Meyer, J. D., and Davison, B. L., 1994, Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice, J. Exp. Med. 180: 1955–1960.PubMedCrossRefGoogle Scholar
  56. Pietrangeli, C. E., Hayashi, S.-I., and Kincade, P., 1988, Stromal cell lines which support lymphocyte growth: Characterization, sensitivity to radiation and responsivness to growth factors, Eur. J. Immunol. 18: 863–872.PubMedCrossRefGoogle Scholar
  57. Raff, M. C., Megson, M., Owen, J. J. T., and Cooper, M. D., 1976, Early production of intracellular IgM by B-lymphocyte precursors in mouse, Nature 259: 224–226.PubMedCrossRefGoogle Scholar
  58. Reth, M. G., Petrac, E., Wiese, P, Lobel, L., and Alt, F., 1987, Activation of Vk gene rearrangement in pre-B cells follows the expression of membrane-bound immunoglobulin heavy chains, EMBO J. 6: 3299–3305.PubMedGoogle Scholar
  59. Rolink, A., Kudo, A., Karasuyama, H., Kikuchi, Y., and Metchers, F., 1991, Long-term proliferating early pre-B cell lines and clones with the potential to develop to surface Ig-positive, mitogen reactive B cells in vitro and in vivo, EMBO J. 10: 327–336.PubMedGoogle Scholar
  60. Rolink, A., Grawunder, U., Winkler, T. H., Karasuyama, H., and Metchers, F., 1994, IL-2 receptor a chain (CD25, TAC) expression defines a crucial stage in pre-B cell development, Int. Immunol. 6: 1257–1264.PubMedCrossRefGoogle Scholar
  61. Russel, S. M., Keegan, A. D., Harada, N., Nakamura, Y., Noguchi, M., Leland, P., Friedmann, M. C., Miyajima, A., Puri, R. K., Paul, W. E., and Leoanrd, W. J., 1993, Interleukin-2 receptor -y chain: A functional component of the interleukin-4 receptor, Science 262: 1880–1883.CrossRefGoogle Scholar
  62. Samaridis, J., Casorati, G., Traunecker, A., Igesias, A., Gutierrez, J., Muller, U., and Palacios, R., 1991, Development of lymphocytes in interleukin 7 transgenic mice, Eur. J. Immunol. 21: 453–460.PubMedCrossRefGoogle Scholar
  63. Sauter, H., and Paige, C. J., 1988, B cell progenitors have different growth requirements before and after immunoglobulin heavy chain commitment, J. Exp. Med. 168: 1511–1514.PubMedCrossRefGoogle Scholar
  64. Spangrude, G. J., Heimfeld, S., and Weissman I. L., 1988, Purification and characterization of mouse hematopoietic stem cells, Science 241: 58–62.PubMedCrossRefGoogle Scholar
  65. Sudo, R., Nishikawa, S., Ohno, M., Akiyama, N., Tamakoshi, M., Yoshida, H., and Nishikawa, S.-I., 1993, Expression and function of interleukin 7 receptor in murine lymphocytes, Proc. Natl. Acad. Sci. U.S.A. 90: 9125–9129.PubMedCrossRefGoogle Scholar
  66. Tonegawa, S., 1983, Somatic generation of antibody diversity, Nature 302: 575–577.PubMedCrossRefGoogle Scholar
  67. Trevisan, M., and Iscove N. N., 1995, Phenotypic analysis of murine long-term hemopoietic reconstituting cells quantitated competitively in vivo and comparison with more advanced colony-forming progeny, J. Exp. Med. 181: 93–103.PubMedCrossRefGoogle Scholar
  68. Tyan, M., and Herzenberg, L. A.,1968, Studies on the ontogeny of the mouse immune system. II. Immunoglobulinproducing cells, J. Immunol. 101: 446–452.Google Scholar
  69. Uchida, N., and Weissman, I., 1992, Searching for hematopoietic stem cells: Evidence that Thy-1.110Lin—Sca-1+ cells are the only stem cells in C57BL/Ka-Thy1.1 bone marrow, J. Exp. Med. 175: 175–184.PubMedCrossRefGoogle Scholar
  70. Whitlock, C. A., Tidmarch, G. F., Muller-Sieberg, C., and Weissman, I. L., 1987, Bone marrow stromal cell lines with lymphopoietic activity express high levels of a pre-B neoplasia associated molecule, Cell 48: 1009–1021.PubMedCrossRefGoogle Scholar
  71. Wu, A. M., Till, J. E., Siminovitch, L., and McCulloch, E. A., 1967, Cytological evidence for a relationship between normal hemopoietic colony-forming cells and cells of the lymphoid system, J. Exp. Med. 127: 455–463.CrossRefGoogle Scholar
  72. Wu, Q., Lahti, J. M., Air, G. M., Burrows, P. D., and Cooper, M. D., 1990, Molecular cloning of the murine BP-1/6C3 antigen: A member of the zinc-dependent metallopeptidase family, Proc. Natl. Acad. Sci. U.S.A. 87: 993–997.PubMedCrossRefGoogle Scholar
  73. Wu, Q., Li, L., Cooper, M. D., Pierres, M., and Gorvel, J. P., 1991, Aminopeptidase A activity of the murine B-lymphocyte differentiation antigen BP-1/603, Proc. Natl. Acad. Sci. U.S.A. 88: 676–680.PubMedCrossRefGoogle Scholar
  74. Yin, T., Yaga, T., Tsang, M. L.-S., Yasukawa, D., Kishimoto, T., and Yang, Y.-C., 1993, Involvment of IL-6 signal transducer gp130 in IL-11 mediated signal transduction, J. Immunol. 151: 2555–2561.PubMedGoogle Scholar
  75. Zsebo, K. M., Williams, D. A., Geissler, E. N., Broudy, V. C., Martin, F. H., Atkins, H. L., Hsu, R.-Y., Birkett, N. C., Okino, K. H., Murdock, D. C., Jacobsen, F. W., Langley, K. E., Smith, K. A., Takeishi, T., Cattanach, B. M., Galli, S. J., and Sugges, S. V., 1990, Stem cell factor is encoded at the SI locus of the mouse and is the ligand for c-kit tyrosine kinase receptor, Cell 63: 213–224.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Ana Cumano
    • 1
  • Barbara L. Kee
    • 2
  • Isabelle Godin
    • 3
  • Françoise Dieterlen-Lièvre
    • 3
  • C. J. Paige
    • 2
  1. 1.Unité de Biologie Moléculaire du GèneInstitut PasteurParisFrance
  2. 2.The Wellesley Hospital Research InstituteTorontoCanada
  3. 3.Institut d’Embryologie du CNRS et du Collège de FranceNogent-sur-MarneFrance

Personalised recommendations