Human T-Cell Differentiation and Cytokine Regulation

  • Mike Salmon
  • Darrell Pilling
  • Clair Mappin
  • Arne N. Akbar
Part of the Blood Cell Biochemistry book series (BLBI, volume 7)


T lymphocytes play an important role in regulating the behavior of other cells and the nature of immune responses. This is mostly by the action of secreted cytokines, but T cells are also constantly affected by signals derived from themselves and the microenvironment around them. It is difficult to separate these processes in a meaningful way, so in this review we discuss the coordination of the signals delivered and received by T cells in regulating immunity.


Visceral Leishmaniasis Cytokine Receptor Cytokine Regulation Progressive Differentiation Leukocyte Common Antigen CD45 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akbar, A. N., Salmon, M., and Janossy, G., 1991, The synergy between naive and memory T cells during activation, Immunol. Today 12: 184–188.PubMedCrossRefGoogle Scholar
  2. Akbar, A. N., Borthwick, N., Salmon, M., Gombert, W., Bofill, M., Shamsadeen, N., Pilling, D., Pett, S., Grundy, J. E., and Janossy, G., 1993, The significance of low bd-2 expression by CD45RO T cells in normal individuals and patients with acute viral infections. The role of apoptosis in T cell memory, J. Exp. Med. 178: 427–438.PubMedCrossRefGoogle Scholar
  3. Akbar, A. N., Borthwick, N., Wickremasinghe, R. G., Panayiotidis, P., Pilling, D., Bofill, M., Krajewski, S., Reed, J. C., Salmon, M., 1996, Interleukin-2 receptor common -y-chain cytokines regulate activated T sell apoptosis in response to growth factor withdrawal: selective induction of anti-apoptotic (bcl-2, bcl-xL) but not proapoptotic (bax, bcl-x,) gene expression, Eur. J. Immunology 26: 294–299.CrossRefGoogle Scholar
  4. Airai, N., Nomura, D., Villaret, D., Malefijt, R. D., Seiki, M., Yoshida, M., Minoshima, S., Fukuyama, R., Maekawa, M., Kudoh, J., Shimizu, N., Yokota, K., Abe, E., Yokota, T., Takebe, Y., and Arai, K., 1989, Complete nucleotide sequence of the chromosomal gene for human IL-4 and its expression, J. lmmunol. 142: 274–282.Google Scholar
  5. Bacon, C. M., Mcvicar, D. W., Ortaldo, J. R., Rees, R. C., Oshea, J. J., and Johnston, J. A., 1995, Interleukin-12 (IL-12) incudes tyrosine phosphorylation of Jak2 and Tyk2—differential use of Janus family tyrosine kinases by IL-2 and IL-12, J. Exp. Med. 181: 399–404.PubMedCrossRefGoogle Scholar
  6. Beadling, C., Guschin, D., Witthuhn, B. A., Ziemiecki, A., Ihle, J. N., Kerr, I. M., and Cantrell, D. A., 1994, Activation of Jak kinases and STAT proteins by interleukin-2 and interferon-alpha, but not the T-cell antigen receptor, in human T-lymphocytes, EMBO J. 13: 5605–5615.PubMedGoogle Scholar
  7. Berridge, M. J., 1993, Inositol trisphosphate and calcium signalling, Nature 361: 315–325.PubMedCrossRefGoogle Scholar
  8. Beverley, P. C. L., 1990, Is T cell memory maintained by cross-reactive stimulation? Immunol. Today 11: 203–205.PubMedCrossRefGoogle Scholar
  9. Boise, L. I. I., Minn, A. J., June, C. H., Lindsten, T., and Thompson, C. B., 1995, Growth factors can enhance lymphocyte survival without committing the cell to undergo cell division, Proc. Natl. Acad. Sci. U.S.A. 92: 5491–5495.PubMedCrossRefGoogle Scholar
  10. Cillari, E., Milano, S., Dieli, M., Maltese, E., Dirosa, S., Mansueto, S., Salerno, A., and Liew, F. Y., 1991, Reduction in the number of UCHL-1+ cells and IL-2 production in the peripheral blood of patients with visceral leishmaniasis, J. Immunol. 146: 1026–1030.PubMedGoogle Scholar
  11. Civil, A., Geerts, M., Aarden, L. A., and Verweij, C. L., 1992, Evidence for a role of CD28RE as a response element for distinct mitogenic T cell activation signals, Eur. J. Immunol. 22: 3041–3043.PubMedCrossRefGoogle Scholar
  12. De Waal Malefyt, R., Yssel, H., and De Vries, J. E., 1993, Direct effects of IL-10 on subsets of human CD4+ T-cell clones and resting T-cells—specific inhibition of IL-2 production and proliferation, J. Immunol. 150: 4754–4765.Google Scholar
  13. Duke R. C., and Cohen, J. J., 1986, IL-2 addiction—withdrawal of growth-factor activates a suicide program in dependent T-cells, Lymphokine Res. 5: 289–299.PubMedGoogle Scholar
  14. Firestein, G. S., Roeder, W. D., Laxer, J. A., Townsend, K. S., Weaver, C. T., Horn, J. T., Linton, J., Torbett, B. E., and Glasebrooke, A. L., 1989, A new murine CD4+ T cell subset with an unrestricted cytokine profile, J. Immunol. 143: 518–524.PubMedGoogle Scholar
  15. Gray, D., and Matzinger, P., 1991, T-cell memory is short-lived in the absence of antigen, J. Exp. Med. 174: 969–974.PubMedCrossRefGoogle Scholar
  16. Gronowski, A. M., Zhong, Z., Wen, Z. L., Thomas, M. J., Darnell, J. E., and Rotwein, P., 1995, In-vivo growth-hormone treatment rapidly stimulates the tyrosine phosphorylation and activation of STAT3, Mol. Endocrinol. 9: 171–177.Google Scholar
  17. Guschin, D., Rogers, N., Briscoe, J., Witthuhn, B., Watling, D., Horn, F., Pellegrini, S., Yasukawa, K., Heinrich, P., Stark, G. R., Ihle, J. N., and Kerr, I. M., 1995, A major role for the protein-tyrosine kinase Jakl in the Jak/STAT signal-transduction pathway in response to interleukin-6, EMBO J. 14: 1421–1429.PubMedGoogle Scholar
  18. Hou, J. Z., Schindler, U., Henzel, W. J., Wong, S. C., and Mcknight, S. L., 1995, Identification and purification of human STAT proteins activated in response to interleukin-2, Immunity 2: 321–329.PubMedCrossRefGoogle Scholar
  19. Hsieh, C. S., Heimberger, A. B., Gold, J. S., O’Garra, A., and Murphy, K. M., 1992, Differential regulation of T-helper phenotype development by interleukin-4 and interleukin-10 in an alpha-beta-T-cell-receptor trans-genic system, Proc. Natl. Acad. Sci. U.S.A. 89: 6065–6069.PubMedCrossRefGoogle Scholar
  20. Hsieh, C. S., Macatonia, S. E., Tripp, C. S., Wolf, S. F., Ogarra, A., and Murphy, K. M. N., 1993, Development of Thl CD4+ T-cells through IL-12 produced by Listeria-induced macrophages, Science 260: 547–549.PubMedCrossRefGoogle Scholar
  21. Jacobson, N. G., Szabo, S. J., Webernordt, R. M., Zhong, Z., Schreiber, R. D., Darnell, J. E., and Murphy, K. M. A., 1995, Interleukin-12 signaling in T-helper type-1 (thl) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (STAT)3 and STAT4, J. Exp. Med. 181: 1755–1762.PubMedCrossRefGoogle Scholar
  22. Jain, J., Loh, C., and Rao, A., 1995, Transcriptional regulation of the IL-2 gene, Curr. Opin. Immunol. 7: 333–342.PubMedCrossRefGoogle Scholar
  23. Kelso, A., Groves, P., Troutt, A. B., and Francis, K., 1995, Evidence for the stochastic acquisition of cytokine profile by CD4+ T cells in a T helper type 2-like response in vivo, Eur. J. Immunol. 25: 1168–1175.PubMedCrossRefGoogle Scholar
  24. Kurt-Jones, E. A., Ramberg, S., O’Hara, J., Paul, W. E., and Abbas, A. K., 1986, Heterogeneity of helper/inducer T lymphocytes 1. Lymphokine production and lymphokine responsiveness, J. Exp. Med. 166: 1774–1787.CrossRefGoogle Scholar
  25. Ledbetter, J. A., Martin, P. J., Spooner, C. E., Wofsy, D., Tsu, T. T., Beatty, P. G., and Gladstone, R, 1985, Antibodies to tp67 and íp44 augment and sustain proliferative responses of activated T cells, J. Immunol. 135: 2331–2336.PubMedGoogle Scholar
  26. Ledbetter, J. A., Deans, J. P., Aruffo, A., Grosmaire, L. S., Kanner, S. B., Bolen, J. B., and Schieven, G. L., 1993, CD4, CD8, and the role of CD45 in T cell activation, Curr. Opin. Immunol. 5: 334–340.PubMedCrossRefGoogle Scholar
  27. Maggi, E., Parronchi, P., Manetti, R., Simonelli, C., Piccinni, M. P., Rugiu, F. S., Decarli, M., Ricci, M., Romagnani, S., 1992, Reciprocal regulatory effects of IFN-gamma and IL-4 on the in vitro development of human Thl and Th2 clones, J. Immunol. 148: 2142–2147.PubMedGoogle Scholar
  28. Male, D., Champion, B., Cooke, A., and Owen, M., 1992, Cytokines, in Advanced Immunology, pp. 11.1–11. 16, Gower, London.Google Scholar
  29. Manetti, R., Gerosa, F., Giudizi, M. G., Biagiotti, R., Parronchi, P., Piccinni, M. R, Sampognaro, S., Maggi, E., Romagnani, S., and Trinchieri, G., 1994, Interleukin-12 induces stable priming for interferon-gamma (IFNgamma) production during differentiation of human T-helper (Th) cells and transient IFN-gamma production in established Th2 cell clones, J. Exp. Med. 179: 1273–1283.PubMedCrossRefGoogle Scholar
  30. Maniatis, T., Goodbourne, S., and Fischer, J. A., 1987, Regulation of inducible and tissue specific gene expression, Science 236: 1237–1245.PubMedCrossRefGoogle Scholar
  31. Mappin, C., Pilling, D., Scheel-Toellner, D., Akbar, A. N., and Salmon, M., 1996, IL-12 accelerates and IL-4 retards the process of progressive differentiation in human primed T cells (in press).Google Scholar
  32. Mason, D., and Powrie, F., 1990, Memory CD4+ T cells in man form 2 distinct subpopulations, defined by their expression of isoforms of the leukocyte common antigen CD45, Immunology 70: 427–433.PubMedGoogle Scholar
  33. Miyazaki, T., Kawahara, A., Fujii, H., Nakagawa, Y., Minami, Y., Liu, Z. J., Oishi, I., Silvennoinen, O., Witthuhn, B. A., Ihle, J. N., and Taniguchi, T., 1994, Functional activation of jakl and jak3 by selective association with IL-2 receptor subunits, Science 266: 1045–1047.PubMedCrossRefGoogle Scholar
  34. Mosmann, T., Cherwinski, H., Bond, M. W., Giedlin, M. A., Coffman, R. L., 1986, Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins, J. Immunol. 136: 2348–2355.PubMedGoogle Scholar
  35. Muller, M., Briscoe, J., Laxton, C., Guschin, D., Ziemiecki, A., Silvennoinen, O., Harpur, A. G., Barbieri, G., Witthuhn, B. A., Schindler, C., Pellegrini, S., Wilks, A. E, Ihle, J. N., Stark, G. R., and Kerr, I. M., 1993, The protein-tyrosine kinase jakl complements defects in interferon-alpha/beta and interferon-gamma signal-transduction, Nature 366: 129–135.PubMedCrossRefGoogle Scholar
  36. Pages, F., Ragueneau, M., Rottapel, R., Truneh, A., Nunes, J., Imbert, J., and Olive, D., 1994, Binding of phosphatidylinositol-3-oh kinase to CD28 is required for T cell signaling, Nature 369: 327–329.PubMedCrossRefGoogle Scholar
  37. Palliard, X., De Waal Malefijt, R., Yssel, H., Blanchard, D., Chretien, I., Abrams, J., De Vries, J., and Spits, H., 1988, Simultaneous production of IL-2, IL-4 and IFN-y by activated human CD4+ and CD8+ T cell clones, J. Immunol. 141: 849–855.Google Scholar
  38. Plant, M., 1990, Antigen-specific lymphokine secretory patterns in atopic disease, J. Immunol. 144:4497–500. Reiner, S. L., and Seder, R. A., 1995, T helper cell differentiation in immune response, Cure Opin. Immunol. 7: 360–366.Google Scholar
  39. Salmon, M., and Akbar, A. N., 1993, T cell cytokines, in The Immunology of Liver Transplantation ( Neuberger and Adams, eds.), pp. 84–94, Edward Arnold, London.Google Scholar
  40. Salmon, M., Kitas, G. D., and Bacon, P. A., 1989, Production of lymphokine mRNA by CD45R+ and CD45Rhelper T cells from human peripheral blood and by human CD4+ T cell clones, J. Immunol. 143: 907–912.PubMedGoogle Scholar
  41. Salmon, M., Pilling, D., Borthwick, N., Viner, N., Bacon, P., Janossy, G., and Akbar, A., 1994, The progressive differentiation of primed T cells is associated with an increasing susceptibility to apoptosis, Eue. J. Immunol. 24: 892–899.CrossRefGoogle Scholar
  42. Seder, R. A., and Paul, W. E., 1994, Acquisition of lymphokine-producing phenotype by CD4+ T-cells, Annu. Rev. Immunol. 12: 635–673.PubMedCrossRefGoogle Scholar
  43. Seder, R. A., Paul, W. E., Davis, M. M., and Destgroth, B. F., 1992, The presence of interleukin-4 during in vitro priming determines the lymphokine-producing potential of CD4+ T-cells from T-cell receptor trans’genic mice, J. Exp. Med. 176: 1091–1098.PubMedCrossRefGoogle Scholar
  44. Seder, R. A., Gazzinelli, R., Sher, A., and Paul, W. E., 1993, Interleukin-12 acts directly on CD4+ T-cells to enhance priming for interferon-gamma production and diminishes interleukin-4 inhibition of such priming, Proc. Natl. Acad. Sci. U.S.A. 90: 10188–10192.PubMedCrossRefGoogle Scholar
  45. Shual, K., Ziemiecki, A., Wilks, A. F., Harpur, A. G., Sadowski, H. B., Gilman, M. Z., and Darnell, J. E., 1993, Polypeptide signaling to the nucleus through tyrosine phosphorylation of Jak and STAT proteins, Nature 366: 580–583.CrossRefGoogle Scholar
  46. Taniguchi, T., 1988, Regulation of cytokine gene expression, Annu. Rev. Immunol. 6: 439–464.PubMedCrossRefGoogle Scholar
  47. Vieira, P., Dewaalmalefyt, R., Dang, M. N., Johnson, K. E., Kastelein, R., Fiorentino, D. F., Devries, J. E., Roncarolo, M. G., Mosmann, T. R., and Moore, K. W., 1991, Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones—homology to Epstein-Barr virus open reading frame BCRFI, Proc. Natl. Acad. Sci. U.S.A. 88: 1172–1176.PubMedCrossRefGoogle Scholar
  48. Wang, Z. E., Zheng, S. C., Corry, D. B., Dalton, D. K., Seder, R. A., Reiner, S. L., and Locksley, R. M., 1994, Interferon-gamma-independent effects of interleukin-12 administered during acute or established infection due to Leishmania major, Proc. Natl. Acad. Sci. U.S.A. 91: 12932–12936.PubMedCrossRefGoogle Scholar
  49. Watling, D., Guschin, D., Muller, M., Silvennoinen, O., Witthuhn, B. A., Quelle, F. W., Rogers, N. C., Schindler, C., Stark, G. R., Ihle, J. N., and Kerr, I. M., 1993, Complementation by the protein-tyrosine kinase Jak2 of a mutant-cell line defective in the interferon-gamma signal-transduction pathway, Nature 366: 166–170.PubMedCrossRefGoogle Scholar
  50. Webernordt, R. M., Greenlund, A. C., Darnell, J. E., and Schreiber, R. D., 1994, IL-10 induces STAT1 and STAT3 activation in cells, Blood 84: A223.Google Scholar
  51. Witthuhn, B. A., Quelle, F. W., Silvennoinen, O., Yi, T. L., Tang, B., Miura, O., and Ihle, J. N., 1993, Jak2 associates with the erythropoietin receptor and is tyrosine-phosphorylated and activated following stimulation with erythropoietin, Cell 74: 227–236.PubMedCrossRefGoogle Scholar
  52. Witthuhn, B. A., Silvennoinen, O., Miura, O., Lai, K. S., Cwik, C., Liu, E. T., and Ihle, J. N., 1994, Involvement of the Jak-3 Janus kinase in signaling by interleukin-2 and interleukin-4 in lymphoid and myeloid cells, Nature 370: 153–157.PubMedCrossRefGoogle Scholar
  53. Zeng, Y. X., Takahashi, H., Shibata, M., and Hirokawa, K., 1994, Jak3 Janus kinase is involved in interleukin-7 signal pathway, FEBS Lett. 353: 289–293.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Mike Salmon
    • 1
  • Darrell Pilling
    • 1
  • Clair Mappin
    • 1
  • Arne N. Akbar
    • 2
  1. 1.Department of RheumatologyThe University of BirminghamBirminghamUK
  2. 2.Department of Clinical ImmunologyThe Royal Free HospitalLondonUK

Personalised recommendations