Apoptosis in Hematopoiesis and Leukemogenesis

  • Rachel S. Chapman
  • Christopher D. Gregory
  • Caroline Dive
Part of the Blood Cell Biochemistry book series (BLBI, volume 7)


The number of cells in any tissue is dependent on the balance between cell gain by proliferation and cell loss by differentiation and/or cell death (Figure 1). The importance of this balancing act is demonstrated particularly well within the hematopoietic system, where it is thought that in the order of billions of cells are produced every day to replace cell loss. Thus, it is reasonable to suggest that defects in this cell-gain—cell-loss balance are likely to contribute to a number of pathologies of the blood. Enhanced survival, restricted differentiation, and uncontrolled proliferation together conspire to promote the development of lymphomas and leukemias.


Programme Cell Death Chronic Myeloid Leukemia Follicular Lymphoma Germinal Center Burkitt Lymphoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J. M., Harris, A. W., Pinkert, C. A., Corcoran, L. M., Alexander, W. S., Cory, S., Palmiter, R. D., and Brinster, R. L., 1985, The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice, Nature 318: 533–538.PubMedGoogle Scholar
  2. Ahuja, H., Bar-Eli, M., Advani, S. H., Benchimol, S., and Cline, M. J., 1989, Alterations in the p53 gene and the clonal evolution of the blast crisis of chronic myelocytic leukemia, Proc. Natl. Acad. Sci. U.S.A. 86: 6783–6787.PubMedGoogle Scholar
  3. Amati, B., Littlewood, T. D., Evan, G. I., and Land, H., 1993, The c-MYC protein induces cell cycle progression and apoptosis through dimerization with MAX, EMBO J. 12: 5083–5087.PubMedGoogle Scholar
  4. Arends, M. J., Morris, R. G., and Wyllie, A. H., 1990, Apoptosis: The role of the endonuclease, Am. J. Pathol. 136: 593–608.PubMedGoogle Scholar
  5. Ascaso, R., Marvel, J., Collins, M. K. L., and Lopez-Rivas, A., 1994, Interleukin-3 and Bc1–2 cooperatively inhibit etoposide-induced apoptosis in a murine pre-B cell line, Eur. J. Immunol. 24: 537–541.PubMedGoogle Scholar
  6. Askew, D. S., Ashmun, R. A., Simmons, B.C., and Cleveland, J. L., 1991, Constitutive c-myc expression in an IL-3- dependant myeloid cell line suppresses cell cycle arrest and accelerates apoptosis, Oncogene 6: 1915–1922.PubMedGoogle Scholar
  7. Baffy, G., Miyashita, T., Williamson, J. R., and Reed, J. C., 1993, Apoptosis induced by withdrawal of interleukin-3 (IL-3) from an IL-3-dependent hematopoietic cell line is associated with repartitioning of intracellular calcium and is blocked by enforced bc1–2 oncoprotein production, J. Biol. Chem. 268: 6511–6519.PubMedGoogle Scholar
  8. Balleari, E., Bason, C., Visani, G., Gobbi, M., Ottaviani, E., and Ghio, R., 1994, Serum levels of granulocyte—macrophage colony-stimulating factor and granulocyte colony-stimulating factor in treated patients with chronic myelogenous leukemia in chronic phase, Haematologica 79: 7–12.PubMedGoogle Scholar
  9. Bansal, N., Houle, A. G., and Melnykovych, G., 1990, Dexamethasone-induced killing of neoplastic cells of lymphoid derivation: Lack of early calcium involvement, J. Cell. Physiol. 143: 105–109.PubMedGoogle Scholar
  10. Barak, Y., Juven, T., Haffner, R., and Oren, M., 1993, mdm2 expression is induced by wild type p53 activity, EMBO J. 12: 461–468.Google Scholar
  11. Barry, M. A., and Eastman, A., 1993, Identification of deoxyribonuclease II as an endonuclease involved in apoptosis, Arch. Biochem. Biophys. 300: 440–450.PubMedGoogle Scholar
  12. Bayle, J. H., Elenbaas, B., and Levine, A. J., 1995, The carboxyl-terminal domain of the p53 protein regulates sequence-specific DNA binding through its nonspecific nucleic acid-binding activity, Proc. Natl. Acad. Sci. U.S.A. 92: 5729–5733.PubMedGoogle Scholar
  13. Bedi, A., Zehnbauer, B. A., Barber, J. P., Sharkis, S. J., and Jones, R. J., 1994, Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia, Blood 83: 2038–2044.PubMedGoogle Scholar
  14. Beere, H. M., Chresta, C. M., Alejo-Herberg, A., Skladanowski, A., Dive, C., Larsen, A. K., and Hickman, J. A., 1995, Investigation of the mechanism of higher order chromatin fragmentation observed in drug-induced apoptosis, Mol. Pharmacol. 47: 986–996.PubMedGoogle Scholar
  15. Benson, R. S. P., Heer, S., Dive, C., and Watson, A. J. M., 1995, Characterization of cell volume loss in CEM-C7A cells during dexamethasone-induced apoptosis, Am. J. Physiol. (in press).Google Scholar
  16. Berard, C., O’Conor, G. T., Thomas, L. B., and Torloni, H., 1969, Histopathological definition of Burkitt’s tumour. Bull. WHO 40: 601–607.Google Scholar
  17. Bissonnette, R. P., Echeverri, F., Mahboubi, A., and Green, D. R., 1992, Apoptotic cell death induced by c-myc is inhibited by bel-2, Nature 359: 552–554.PubMedGoogle Scholar
  18. Blagosklonny, M. V., and Neckers, L. M., 1995, The role of bc1–2 protein and autocrine growth factors in a human follicular lymphoma-derived B-cell line, Eur. Cytokine Network 6: 21–27.Google Scholar
  19. Blick, M., Romero, P., Talpaz, M., Kurzrock, R., Shtalrid, M., Andersson, B., Trujillo, J., Beran, M., and Gutterman, J., 1987, Molecular characteristics of chronic myelogenous leukemia in blast crisis, Cancer Genet. Cytogenet. 27: 349–356.PubMedGoogle Scholar
  20. Boise, L. H., Gonzalez-Garcia, M., Postema, C. E., Ding, L., Lindsten, T., Turka, L. A., Mao, X., Nunez, G., and Thompson, C. B., 1993, bel-x a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death, Cell 74: 1–20.Google Scholar
  21. Borner, C., Martinou, I., Mattamnn, C., Irmler, M., Schaerer, E., Martinou, J. C., and Tschopp, J., 1994, The protein bcl-2alpha does not require membrane attachment, but two conserved domains to suppress apoptosis, J. Cell. Biol. 126: 1059–1068.PubMedGoogle Scholar
  22. Borzillo, G. V., Endo, K., and Tsujimoto, Y., 1992, Bel-2 confers growth and suvival advantage to interleukin 7-dependant early pre-B cells which become factor independant by a multistep process in culture, Oncogene 7: 869–876Google Scholar
  23. Boudreau, N., Sympson, C. J., Werb, Z., and Bissell, M. J., 1995, Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix, Science 267: 891–893.PubMedGoogle Scholar
  24. Brach, M. A., deVos, S., Gruss, H. J., and Herrmann, F., 1992, Prolongation of survival of human polymorphonuclear neutrophils by granulocyte—macrophage colony-stimulating factor is caused by inhibition of programmed cell death, Blood 80: 2920–2924.PubMedGoogle Scholar
  25. Brandt, J. E., Bhalla, K., and Hoffman, R., 1994, Effects of interleukin-3 and c-kit ligand on the suryival of various classes of human hematopoietic progenitor cells, Blood 83: 1507–1514.PubMedGoogle Scholar
  26. Brown, D. G., Sun, X. M., and Cohen, G. M., 1993, Dexamethasone-induced apoptosis involves cleavage of DNA to large fragments prior to internucleosomal fragmentation, J. Biol. Chem. 268: 3037–3039.PubMedGoogle Scholar
  27. Buschle, M., Campana, D., Carding, S. R., Richard, C., Hoffbrand, A. V., Brenner, M. K., 1993, Interferon gamma inhibits apoptotic cell death in B cell chronic lymphocytic leukaemia, J. Exp. Med. 177: 213–218.PubMedGoogle Scholar
  28. Buttyan, R., Zakeri, Z., Lockshin, R., and Wolgemuth, D., 1988, Cascade induction of c fos, c-myc, and heat shock 70K transcripts during regression of the rat ventral prostate gland, Mol. Endocrinol. 2: 650–657.PubMedGoogle Scholar
  29. Buttyan, R., Olsson, C. A., Pintar, J., Chang, C., Bandyk, M., Ng, P., and Sawczuk, I. S., 1989, Induction of the TRPM-2 gene in cells undergoing programmed death, Mol. Cell. Biol. 9: 3473–3481.PubMedGoogle Scholar
  30. Caelles, C., Helmberg, A., and Karin, M., 1994, p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes, Nature 370: 220–223.Google Scholar
  31. Caligaris-Cappio, F., Gottardi, D., Alfarano, A., Stacchini, A., Gregoretti, M. G., Ghia, P., Bertero, M. T., Novarino, A., and Bergui, L., 1993, The nature of the B lymphocyte in B-chronic lymphocytic leukemia, Blood Cells 19: 601–613.PubMedGoogle Scholar
  32. Campana, D., Coustan-Smith, E., Manabe, A., Buschle, M., Raimondi, S. C., Behm, F. G., Ashmun, R., Arico, M., Biondi, A., and Pui, C. H., 1993, Prolonged survival of B-lineage acute lymphoblastic leukemia cells is accompanied by overexpression of bd-2 protein, Blood 81: 1025–1031.PubMedGoogle Scholar
  33. Campos, L., Rouault, J. P., Sabido, O., Oriol, P., Roubi, N., Vasselon, C., Archimbaud, E., Magaud, J. P., and Guyotat, D., 1993, High expression of BCL-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy, Blood 81: 3091–3096.PubMedGoogle Scholar
  34. Campos, L., Sabido, O., Rouault, J. P., and Guyotat, D., 1994, Effects of bcl-2 antisense oligodeoxynucleotides on in vitro proliferation and survival of normal marrow progenitors, Blood 84: 595–600.PubMedGoogle Scholar
  35. Carsetti, R., Kohler, G., and Lamers, M. C., 1995, Transitional B-cells are the target of negative selection in the B-cell compartment, J. Exp. Med. 181: 2129–2140.PubMedGoogle Scholar
  36. Chaouchi, N., Wallon, C., Taieb, J., Auffredou, M. T., Tertian, G., Lemoine, F. M., Delfraissy, J. F., and Vazquez, A., 1994, Interferon-alpha-mediated prevention of in vitro apoptosis of chronic lymphocytic-leukemia B cells—role of bd-2 and c-myc, Clin. Immunol. Immunopathol. 73: 197–204.PubMedGoogle Scholar
  37. Chapman, R. S., Whetton, A. D., and Dive, C., 1994, The suppression of drug-induced apoptosis by activation of v-ABL protein tyrosine kinase, Cancer Res. 54: 5131–5137.PubMedGoogle Scholar
  38. Chapman, R. S., Chresta, C. M., Herberg, A. A., Beere, H. M., Heer, S., Whetton, A. D., Hickman, J. A., and Dive, C., 1995a, Flow cytometric analysis of apoptosis in drug resistant and drug sensitive leukaemic cells; further characterisation of the in situ terminal deoxynucleotidyl transferase (TdT) assay, Cytometry 20: 245–256.PubMedGoogle Scholar
  39. Chapman, R. S., Chresta, C. M., Whetton, A. D., and Dive, C., 1995b, Characterisation of v-Abl protein tyrosine kinase mediated suppression of drug-induced apoptosis, Mol. Pharmacol. 48: 334–343.PubMedGoogle Scholar
  40. Chasty, R. C., Lucas, G. S., Owen-Lynch, P. J., Pierce, A., and Whetton, A. D., 1995, CD34 enriched cells from patients with chronic myeloid leukemia express receptors for but are nonresponsive to macrophage inflammatory protein-1 alpha, Blood 86: 4270–4277.PubMedGoogle Scholar
  41. Cheng, J., Yee, J. K., Yeargin, J., Friedmann, T., and Haas, M., 1992, Suppression of acute lymphoblastic leukemia by the human wild-type p53 gene, Cancer Res. 52: 222–226.PubMedGoogle Scholar
  42. Chervenick, P. A., and Boggs, D. R., 1968, Granulocyte kinetics in chronic myelocytic leukaemia, Semin. Haematol. 1: 24–35.Google Scholar
  43. Chittenden, T., Harrington, E. A., O’Connor, R., Flemington, C., Lutz, R. J., Evan, G. I., and Guild, B., 1995, Induction of apoptosis by the Bcl-2 homologue Bak, Nature 374: 733–736.PubMedGoogle Scholar
  44. Choi, M. S. K., Boise, L. H., Gottschalk, A. R., Quintans, J., Thompson, C. B., and Klaus, G. G. B., 1995, The role of bcl-x(L) in CD40-mediated rescue from anti-mu-induced apoptosis in WEHI-231 B-lymphoma-cells, Eur. J. Immunol. 25: 1352–1357.PubMedGoogle Scholar
  45. Chung, S. W., Ruscetti, S., and Wong, P. M. C., 1988, Formation of factor-independent hematopoietic multilineage colonies after Abelson virus infection, Blood 71: 973–977.PubMedGoogle Scholar
  46. Clarke, A. R., Purdie, C. A., Harrison, D. J., Morris, R. G., Bird, C. C., Hooper, M. L., and Wyllie, A. H., 1993, Thymocyte apoptosis induced by p53-dependent and independent pathways, Nature 362: 849–852.PubMedGoogle Scholar
  47. Cleveland, J. L., and Ihle, J. N., 1995, Contenders in Fas/TNF death signaling, Cell 81: 479–482.PubMedGoogle Scholar
  48. Cleveland, J. L., Dean, M., Rosenberg, N., Wang, J. Y. J., and Rapp, U. R., 1989, Tyrosine kinase oncogenes abrogate IL-3 dependence of muring myeloid cells through signaling pathways involving c-myc: Conditional regulation of c-myc transcription by temperature sensitive v-Abl, Mol. Cell. Biol. 9: 5685–5695.PubMedGoogle Scholar
  49. Cohen, J. J., and Duke, R. C., 1984, Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death, J. Immunol. 132: 38–42.PubMedGoogle Scholar
  50. Cohen, J. J., Duke, R. C., Chervenak, R., Sellins, K. S., and Olson, L. R., 1985, DNA fragmentation in targets of CTL: An example of programmed cell death in the immune system, Adv. Exp. Med. Biol. 184: 493–508.PubMedGoogle Scholar
  51. Cohen, P. L., and Eisenberg, R. A., 1995, Fas/Apo-1: A cell surface receptor that signals apoptosis, in: Apoptosis and the Immune Response ( C. D. Gregory, ed.), pp. 169–186, Wiley-Liss Inc., New York.Google Scholar
  52. Collins, M. K. L., Marvel, J., Malde, P., and Lopez-Rivas, A., 1992, Interleukin 3 protects murine bone marrow cell from apoptosis induced by DNA damaging agents, J. Exp. Med. 176: 1043–1051.PubMedGoogle Scholar
  53. Collins, R. J., Verschuer, L. A., Harmon, B. V., Prentice, R. L., Pope, J. H., and Kerr, J. F. R., 1989, Spontaneous programmed death (apoptosis) of B-chronic lymphocytic leukemia cells following their culture in vitro, Br. J. Haematol. 71: 343–350.PubMedGoogle Scholar
  54. Collins, R. J., Harmon, B. V., Souvlis, T., Pope, J. H., and Kerr, J. F. R., 1991, Effects of cycloheximide on B-chronic lymphocytic leukemic and normal lymphocytes in vitro—induction of apoptosis, Br. J. Cancer 64: 518–522.PubMedGoogle Scholar
  55. Cooper, E. H., Frank, G. L., and Wright, D. H., 1966, Cell proliferation in Burkitt tumours, Eur. J. Cancer 2: 377–384.PubMedGoogle Scholar
  56. Cory, S., 1986, Activation of cellular oncogenes in hematopoietic cells by chromosome translocation, Adv. Cancer Res. 47: 189–234.PubMedGoogle Scholar
  57. Cory, S., 1995, Regulation of lymphocyte survival by the bcl-2 gene family, Annu. Rev. Immunol. 13: 513–543.PubMedGoogle Scholar
  58. Craig, V. A., Mainoufowler, T., and Prentice, A. G., 1993, Effect of interleukin-4 (IL4) and dexamethasone on apoptosis and bcl2 expression in B-chronic lymphocytic-leukemia (B-CLL) in culture, Exp. Hematol. 21: 1090–1096.Google Scholar
  59. Daley, G. Q., and Baltimore, D., 1988, Transformation of an interleukin 3-dependant hematopoietic cell line by the chronic myelogenous leukemia-specific p210bcr/abl protein, Proc. Natl. Acad. Sci. U.S.A. 85: 9312–9316.PubMedGoogle Scholar
  60. Daley, G. Q., and Ben-Neriah, Y., 1991, Implicating the bcr/abl gene in the pathogenesis of Philadelphia chromosome-positive human leukemia, Adv. Cancer Res. 57: 151–184.PubMedGoogle Scholar
  61. Dancescu, M., Rubio-Trujillo, M., Biron, G., Bron, D., Delespesse, G., and Sarfati, M., 1992, Interleukin 4 protects chronic lymphocytic leukemic B cells from death by apoptosis and upregulates Bcl-2 expression, J. Exp. Med. 176: 1319–1326.PubMedGoogle Scholar
  62. Darzynkiewicz, Z., Bruno, S., Del Bino, G., Gorczyca, W., Hotz, M. A., Lassota, P., and Traganos, F., 1992, Features of apoptotic cells measured by flow cytometry, Cytometry 13: 795–808.PubMedGoogle Scholar
  63. De Jong, D., Voetdijk, B. M. H., Beverstock, G. C., Vanommen, G. J. B., Willemze, R., and Kluin, P. M., 1988, Activation of the c-myc oncogene in a precursor B-cell blast crisis of follicular lymphoma, presenting as composite lymphoma, N. Engl. J. Med. 318: 1373–1378.PubMedGoogle Scholar
  64. De Jong, D., Prins, F. A., Mason, D. Y., Reed, J. C., van Ommen, G. B., and Kluin, P. M., 1994, Subcellular localisation of the BCL-2 protein in malignant and normal lymphoid cells, Cancer Res. 54: 256–260.PubMedGoogle Scholar
  65. Delia, D., Aiello, A., Soligo, D., Fontanella, E., Melani, C., Pezzella, F., Pierotti, M. A., and Porta, G. D., 1992, BcI-2 proto-oncogene expression in normal and neoplastic human myeloid cells, Blood 79: 1291–1298.PubMedGoogle Scholar
  66. Delic, J., Morange, M., and Magdelenat, H., 1993, Ubiquitin pathway involvement in human lymphocyte gamma-irradiation-induced apoptosis, Mol. Cell. Biol. 13: 4875–4883.PubMedGoogle Scholar
  67. Deng, G., and Podack, E. R., 1993, Suppression of apoptosis in a cytotoxic T-cell line by interleukin 2-mediated gene transcription and deregulated expression of the proto-oncogene bcl-2, Proc. Natl. Acad. Sci. U.S.A. 90: 2189–2193.PubMedGoogle Scholar
  68. Dive, C., and Hickman, J. A., 1991, Drug–target interactions: Only the first step in the commitment to a programmed cell death, Br. J. Cancer 64: 192–196.PubMedGoogle Scholar
  69. Dive, C., and Wyllie, A. H., 1993. Apoptosis and cancer chemotherapy, in Frontiers in Pharmacology ( J. A. Hickman and T. R. Tritton, eds.), pp. 21–56, Blackwell Scientific, Oxford.Google Scholar
  70. Dive, C., Evans, C. A., and Whetton, A. D., 1992, Induction of apoptosis—new targets for cancer chemotherapy, Semin. Cancer Biol. 3: 417–427.PubMedGoogle Scholar
  71. Donehouer, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A., Jr., Butel, J. S., and Bradley, A., 1992, Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours, Nature 356: 215–221.Google Scholar
  72. Dransfield, I., Buckle, A. M., Savill, J. S., McDowall, A., Haslett, C., and Hogg, N., 1994, Neutrophil apoptosis is associated with a reduction in CD16 (Fc Riii) expression, J. Immunol. 153: 1254–1263.PubMedGoogle Scholar
  73. Dransfield, I., Stocks, S. C., and Haslett, C., 1995, Regulation of cell-adhesion molecule expression and function associated with neutrophil apoptosis, Blood 85: 3264–3273.PubMedGoogle Scholar
  74. Duke. R. C., Chervenak, R., and Cphen J. J., 1984, Endogenous endonuclease-induced DNA fragmentation: An early event in cell mediated cytolysis, Proc. Natl. Acad. Sci. U.S.A. 80: 6361–6365.Google Scholar
  75. Duvall, E., Wyllie, A. H., and Morris, R. G., 1985, Macrophage recognition of cells undergoing programmed cell death (apoptosis), Immunology 56: 351–358.PubMedGoogle Scholar
  76. Earnshaw, W. C., 1995, Nuclear changes in apoptosis, Curr. Opin. Cell. Biol. 7: 337–343.PubMedGoogle Scholar
  77. Eaves, C. J., Cashman, J. D., Wolpe, S. D., and Eaves, A. C., 1993, Unresponsiveness of primitive chronic myeloid leukemia cells to macrophage inflammatory protein lalpha, an inhibitor of primitive normal hematopoietic cells, Proc. Natl. Acad. Sci. U.S.A. 90: 12015–12019.PubMedGoogle Scholar
  78. Edwards, S. N., Buckmaster, A. E., and Tolkovsky, A. M., 1991, The death programme in cultured sympathetic neurones can be suppressed at the post-translational level by nerve growth factor, cyclic AMP, and depolarisation, J. Neurochem. 57: 2140–2143.PubMedGoogle Scholar
  79. Egerton, M., Scollay, R., and Shortman, K., 1990, Kinetics of mature T-cell development in the thymus, Proc. Natl. Acad. Sci. U.S.A. 87: 2579–2582.PubMedGoogle Scholar
  80. EI-Deiry, W. S., Tokino, T., Velculesco, V. E., Levy, D. B., Parsons, R., Trent, J. M., Lin, D., Mercer, W. E., Kinzler, K. W., and Vogelstein, B., 1993, WAF1, a potential mediator of p53 tumour suppression, Cell 75: 817–825.Google Scholar
  81. Ellis, R. E., Jacobson, D. M., and Horvitz, H. R., 1991, Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans, Genetics 129: 79–94.PubMedGoogle Scholar
  82. Emanuel, P. D., Bates, L. J., Castleberry, R. P., Gualtieri, R. J., and Zuckerman, K. S., 1991, Selective hypersensitivity to granulocyte–macrophage colony stimulating factor by juvenile chronic myeloid leukaemia haematopoietic progenitors, Blood 77: 925–929.PubMedGoogle Scholar
  83. Enari, M., Hug, H., and Nagata, S., 1995, Involvement of an ICE-like protease in Fas mediated apoptosis, Nature 375: 78–81.PubMedGoogle Scholar
  84. Evan, G. I., Wyllie, A. H., Gilbert, C. S., Littlewood, T. D., Land, H., Brooks, M., Waters, C. M., Penn, L. Z., and Hancock, D. C., 1992, Induction of apoptosis in fibroblasts by c-myc protein, Cell 69: 119–128.PubMedGoogle Scholar
  85. Evans, C. A., Owen-Lynch, P. J., Whetton, A. D., and Dive, C., 1993, Activation of Abelson tyrosine kinase activity is associated with suppression of apoptosis in hemopoietic cells, Cancer Res. 53: 1735–1738.PubMedGoogle Scholar
  86. Evans, C. A., Lord, J. M., Owen-Lynch, P. J., Johnson, G., Dive, C., and Whetton, A. D., 1995, Suppression of apoptosis by v-ABL protein tyrosine kinase is associated with nuclear translocation and activation of protein kinase C in an interleukin-3 dependent haemopoietic cell line, J. Cell. Sci. 108: 2591–2598.PubMedGoogle Scholar
  87. Evans, D. L., Tilby, M., and Dive, C., 1994, Differential sensitivity to the induction of apoptosis by cisplatin in proliferating and quiescent immature rat thymocytes is independent of the levels of drug accumulation and DNA adduct formation, Cancer Res. 54: 1596–1603.PubMedGoogle Scholar
  88. Fadok, V. A., Voelker, D. R., Campbell, P. A., Cohen, J. J., Bratton, D. L., and Henson, R. M., 1992a, Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages, J. Immunol. 148: 2207–2216.PubMedGoogle Scholar
  89. Fadok, V. A., Savill, J. S., Haslett, C., Bratton, D. L., Doherty, D. E., Campbell, P. A., and Henson, P. M., 1992b, Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells, J. Immunol. 149: 4029–4035.PubMedGoogle Scholar
  90. Fairbairn, L. J., Cowling, G., Reipert, B. M., and Dexter, T. M., 1993, Suppression of apoptosis allows differentiation and development of a multipotent hemopoietic cell line in the absence of added growth factors, Celi 74: 1–10.Google Scholar
  91. Falk, M. H., Hultner, L., Milner, A., Gregory, C. D., and Bornkamm, G. W., 1993, Irradiated fibroblasts protect Burkitt lymphoma cells from apoptosis by a mechanism independent of bd-2, Int. J. Cancer 55: 485–491.PubMedGoogle Scholar
  92. Fanidi, A., Harrington, E. A., and Evan, G. I., 1992, Cooperative interaction between c-myc and bd-2 protooncogenes, Nature 359: 554–556.PubMedGoogle Scholar
  93. Farrow, S. N., White, J. H. M., Martinou, I., Raven, T., Pun, K. T., Grinham, C. J., Martinou, J. C., and Brown, R., 1995, Cloning of a bd-2 homologue by interaction with adenovirus E113 19K, Nature 374: 731–733.PubMedGoogle Scholar
  94. Fearnhead, H. O., Rivett, A. J., Dinsdale, D., and Cohen, G. M., 1995, A pre-existing protease is a common effector of thymocyte apoptosis mediated by diverse stimuli, FEBS Lett. 357: 242–246.PubMedGoogle Scholar
  95. Fernandez-Alnemri, T., Litwack, G., and Alnemri, E. S., 1994, CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-IB-converting enzyme, J. Biol. Chem. 49: 30761–30764.Google Scholar
  96. Fernandez-Alnemri, T., Litwack, G., and Alnemri, E. S., 1995, Mch2, a new member of the apoptotic ced-3/Ice cystein protease gene family, Cancer Res. 55: 2737–2742.Google Scholar
  97. Fernandez-Sarabia, M. J., and Bischoff, J. R., 1993, Bcl-2 associates with the ras-related protein R-ras p23, Nature 366: 274–275.PubMedGoogle Scholar
  98. Fesus, L., Thomazy, V., Autuori, F., Ceru, M. R, Taresa, E., and Piacentini, M., 1989, Apoptotic hepatocytes become insoluble in detergents and chaotropic agents as a result of transglutaminase action, FEBS Lett. 245: 150–154.PubMedGoogle Scholar
  99. Filipski, J., Leblanc, J., Youdale, T., Sikorska, M., and Walker, P. R., 1990, Periodicity of DNA folding in higher order chromatin structures, EMBO J. 9: 1319–1327.PubMedGoogle Scholar
  100. Finke, J., Fritzen, R., Ternes, R, Trivedi, P., Bross, K. J., Lange, W., Mertelsmann, R., and Dolken, G., 1992, Expression of bd-2 in Burkitts lymphoma cell lines—induction by latent Epstein–Barr virus genes, Blood 80: 459–469.PubMedGoogle Scholar
  101. Fisher, T. C., Milner, A. E., Gregory, C. D., Jackman, A. L., Aherne, G. W., Hartley, J. A., Dive, C., and Hickman, J. A., 1993, Bc1–2 modulation of apoptosis induced by anticancer drugs: Resistance to thymidylate stress is independant of classical resistance pathways, Cancer Res. 53: 3321–3326.PubMedGoogle Scholar
  102. Flora, P. K., and Gregory, C. D., 1994, Recognition of apoptotic cells by human macrophages—inhibition by a monocyte/macrophage-specific monoclonal-antibody, Eur. J. Immunol. 24: 2625–2632.PubMedGoogle Scholar
  103. Flora, P. K., and Gregory, C. D., 1995, Recognition pathways in the interaction of macrophages with apoptotic B cells, in Leucocyte Typing V ( Sclossman, et al., eds.), pp. 1675–1677, Oxford University Press, Oxford.Google Scholar
  104. Fluckiger, A. C., Durand, I., and Banchereau, J., 1994, Interleukin-10 induces apoptotic cell death of B-chronic lymphocytic-leukemia cells, J. Exp. Med. 179: 91–99.PubMedGoogle Scholar
  105. Foti, A., Ahuja, H. G., Allen, S. J., Koduru, P., Schuster, M. W., Schulman, R, Bar-Eli, M., and Cline, M. J., 1991, Correlation between molecular and clinical events in the evolution of chronic myelocytic leukemia to blast crisis, Blood 77: 2441–2444.PubMedGoogle Scholar
  106. French, L. E., Wohlwend, A., Sappino, A. P., Tschopp, J., and Schifferli, J. A., 1994, Human clusterin gene expression is confined to surviving cells during in vitro programmed cell death, J. Clin. Invest. 93: 877–884.PubMedGoogle Scholar
  107. Frische, S. M., and Francis, H., 1994, Disruption of epithelial cell matrix interactions induces apoptosis, J. Cell. Biol. 124: 619–626.Google Scholar
  108. Fritsche, M., Haessler, C., and Brandner, G., 1993, Induction of nuclear accumulation of the tumor-suppressor protein p53 by DNA-damaging agents, Oncogene 8: 307–318.PubMedGoogle Scholar
  109. Gaidano, G., Ballerini, P., Gong, J. Z., Inghirami, G., Neri, A., Newcomb, E. W., Magrath, I. T., Knowles, D. M., and Dalla-Favera, R., 1991, p.53 mutations in human lymphoid malignancies: Association with Burkitt lymphoma and chronic lymphocytic leukemia, Proc. Natl. Acad. Sci. U.S.A. 88: 5413–5417.Google Scholar
  110. Gaido, M. L., and Cidlowski, J. A., 1991, Identification, purification, and characterisation of a calcium-dependent endonuclease (NUC18) from apoptotic rat thymocytes, J. Biol. Chem. 266: 18580–18585.PubMedGoogle Scholar
  111. Gauwerky, C. E., Hoxie, J., Nowell, P. C., and Croce, C. M., 1988, Pre-B-cell leukemia with a t(8–14) and a t(14–18) translocation is preceded by follicular lymphoma, Oncogene 2: 431–435.PubMedGoogle Scholar
  112. Gishizky, M. L., and Witte, O. N., 1992, Initiation of deregulated growth of multipotent progenitor cells by bcr-abl in vitro, Science 256: 836–839.PubMedGoogle Scholar
  113. Gorczyca, W., Gong, J., Ardelt, B., Traganos, F., and Darzynkiewicz, Z., 1993, The cell cycle related differences in susceptibility of HL-60 cells to apoptosis induced by various antitumour agents, Cancer Res. 53: 3186–3192.PubMedGoogle Scholar
  114. Gordon, M. Y., Dowding, C. R., Riley, G. P., Goldman, J. M., and Greaves, M. J., 1987, Altered adhesive interactions with marrow stroma of hematopoietic progenitor cells in chronic myeloid leukemia, Nature 328: 342–344.PubMedGoogle Scholar
  115. Gottlieb, E., Haffner, R., von Ruden, T., Wagner, E. F., and Oren, M., 1994, Down regulation of wild-type p53 activity interferes with apoptosis of IL-3 dependent hematopoietic cells following IL-3 withdrawal, EMBO J. 13: 1368–1374.PubMedGoogle Scholar
  116. Gottschalk, A. R., Boise, L. H., Thompson, C. B., and Quintans, J., 1994, Identification of immunosuppressantinduced apoptosis in a murine B-cell line and its prevention by bd-x but not bd-2, Proc. Natl. Acad. Sci. U.S.A. 91: 7350–7354.PubMedGoogle Scholar
  117. Gratiot-Deans, J., Merino, R., Nunez, G., and Turka, L. A., 1994, Bcl-2 expression during T-cell development—early loss and late return occur at specific stages of commitment to differentiation and survival, Proc. Natl. Acad. Sci. U.S.A. 91: 10685–10689.PubMedGoogle Scholar
  118. Gregory, C. D., 1995, Control of apoptosis in human B cells: Implications for neoplasia, in Apoptosis and the Immune Response ( C. D. Gregory, ed.), pp. 257–311, Wiley-Liss Inc., New York.Google Scholar
  119. Gregory, C. D., Dive, C., Henderson, S., Smith, C. A., Williams, G. T., Gordon, J., and Rickinson, A. B., 1991, Activation of Epstein–Barr virus latent genes protects human B cells from death by apoptosis, Nature 349: 612–614.PubMedGoogle Scholar
  120. Gregory, C. D., Tursz, T., Edwards, C. F., Tetaud, C., Talbot, M., Caillou, B., Rickinson, A. B., Lipinski, M., 1987, Identification of a subset of normal B cells with a Burkitt’s lymphoma (BL)-like phenotype, J. Immunol. 139: 313–318.PubMedGoogle Scholar
  121. Haimovitz-Friedman, A., Kan, C. C., Ehleiter, D., Persaud, R. S., McLoughlin, M., Fuks, Z., and Kolesnick, R. N., 1994, Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis, J. Exp. Med. 180: 525–535.PubMedGoogle Scholar
  122. Haldar, S., Jena, N., and Croce, C. M., 1995, Inactivation of Bcl-2 by phosphorylation, Proc. Natl. Acad. Sci. U.S.A. 92: 4507–4511.PubMedGoogle Scholar
  123. Hall, S. E., Savill, J. S., Henson, P. M., and Haslett, C., 1994, Apoptotic neutrophils are phagocytosed by fibroblasts with participation of the fibroblast vitronectin receptor and involvement of a mannose/fucose-specific lectin, J. Immunol. 153: 3218–3227.PubMedGoogle Scholar
  124. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K., and Elledge, S. J., 1993, The p21 Cdk-interacting protein CIPI is a potent inhibitor of G, cyclin-dependent kinases, Cell 75: 805–816.PubMedGoogle Scholar
  125. Harrington, E. A., and Evan, G. I., 1994, Oncogenes and cell death, Curr. Opin. Gen. Dev. 4: 120–129.Google Scholar
  126. Harrington, E. A., Bennett, M. R., Fanidi, A., and Evan, G. I., 1994, c-Myc induced apoptosis in fibroblasts is inhibitied by specific cytokines, EMBO J. 13: 3286–3295.Google Scholar
  127. Harris, A. W., Pinkert, C. A., Crawford, M., Langdon, W. Y., Brinster, R. L., and Adams, J. M., 1988, The E µ myc transgenic mouse—a model for high-incidence spontaneous lymphoma and leukemia of early B-cells, J. Exp. Med. 167: 353–371.PubMedGoogle Scholar
  128. Hartley, S. B., Cooke, M. P., Fulcher, D. A., Harris, A. W., Cory, S., Basten, A., and Goodnow, C. C., 1993, Elimination of self-reactive B lymphocytes proceeds in two stages—arrested development and cell death, Cell 72: 325–335.PubMedGoogle Scholar
  129. Henderson, S., Rowe, M., Gregory, C., Croomcarter, D., Wang, F., Longnecker, R., Kieff, E., and Rickinson, A., 1991, Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein-1 protects infected B-cells from programmed cell death, Cell 65: 1107–1115.PubMedGoogle Scholar
  130. Hengartner, M. O., and Horvitz, H. R., 1994, C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl2, Cell 76: 665–676.Google Scholar
  131. Hermeking, H., and Eick, D., 1994, Mediation of c-Myc-induced apoptosis by p53, Science 265: 2091–2093.PubMedGoogle Scholar
  132. Hickman, J. A., 1992, Apoptosis induced by anticancer drugs, Cancer Metab. Rev. 11: 121–139.Google Scholar
  133. Hockenberry, D., Nunez, G., Milliman, C., Schreiber, R. D., and Korsmeyer, S. J., 1990, Bc1–2 is an inner mitochondrial membrane protein that blocks programmed cell death, Nature 348: 334–336.Google Scholar
  134. Hockenberry, D., Zutter, M., Hickey, W., Nahm, M., and Korsmeyer, S. J., 1991, BCL2 protein is topographically restricted in tissues characterized by apoptotic cell death, Proc. Natl. Acad. Sci. U.S.A. 88: 6961–6965.Google Scholar
  135. Hockenberry, D. M., Oltvai, Z. N., Yin, X., Milliman, C. L., and Korsmeyer, S. J., 1993, Bcl-2 functions in an antioxidant pathway to prevent apoptosis, Cell 75: 241–251.Google Scholar
  136. Hogquist, K. A., Nett, M. A., Unanue, E. R., and Chaplin, D. D., 1991, Interleukin is processed and released during apoptosis, Proc. Natl. Acad. Sci. U.S.A. 88: 8485–8489.PubMedGoogle Scholar
  137. Holder, M. J., Wang, H., Milner, A. E., Casamayor, M., Armitage, R., Spriggs, M. K., Fanslow, W. C., Maclennan, I. C. M., Gregory, C. D., and Gordon, J., 1993, Suppression of apoptosis in normal and neoplastic human B-lymphocytes by CD40 ligand is independent of Bcl-2 induction, Eur. J. Immunol. 23: 2368–2371.PubMedGoogle Scholar
  138. Homburg, C. H. E., Dehaas, M., Vondemborne, A., Verhoeven, A. J., Reutelingsperger, C. P. M., and Roos, D., 1995, Human neutrophils lose their surface Fc Riii and acquire annexin-V binding sites during apoptosis in vitro, Blood 85: 532–540.PubMedGoogle Scholar
  139. Hughes, F. M., and Gorospe, W. C., 1991, Biochemical identification of apotposis (programmed cell death) in granulosa cells: Evidence for a potential mechanism underlying follicular atresia, Endocrinology 129: 2415–2422.PubMedGoogle Scholar
  140. Hussain, S. P., Aguilar, F., and Cerutti, P., 1994, Mutagenesis of codon 248 of the human p53 tumor suppressor gene by N-ethyl-N-nitrosourea, Oncogene 9: 13–18.PubMedGoogle Scholar
  141. Iemura, A., Tsai, M., Ando, A., Wershil, B., and Galli, S. J., 1994, The c-kit ligand, stem cell factor, promotes mast cell survival by suppressing apoptosis, Am. J. Pathol. 144: 321–328.PubMedGoogle Scholar
  142. Imamura, J., Miyoshi, I., and Koeffler, H. P., 1994, p53 in hematologic malignancies, Blood 84: 2414–2421.Google Scholar
  143. Jacobson, M. D., and Raff, M. C., 1995, Programmed cell death and bcl-2 protection in very low oxygen, Nature 374: 814–816.PubMedGoogle Scholar
  144. Jacobson, M. D., Burne, J. F., King, M. P., Miyashita, T., Reed, J. C., and Raff, M. C., 1993, Bc1–2 blocks apoptosis in cells lacking mitochondrial DNA, Nature 361: 365–369.PubMedGoogle Scholar
  145. Jacobson, M. D., Burne, J. F., and Raff, M. C., 1994, Programmed cell death and Bcl-2 protection in the absence of a nucleus, EMBO J. 13: 1899–1910.PubMedGoogle Scholar
  146. Jarvis, W. D., Kolesnick, R. N., Fornari, F. A., Traylor, R. S., Gewirtz, D. A., and Grant, S., 1994a, Induction of apoptotic DNA damage and cell death by activation of the sphingomyelin pathway, Proc. Natl. Acad. Sci. U.S.A. 91: 73–77.PubMedGoogle Scholar
  147. Jarvis, W. D., Turner, A. J., Povriack, L. F., Traylor, R. S., and Grant, S., 1994b, Induction of apoptotic DNA fragmentation and cell death in HL-60 human promyelocytic leukemia cells by pharmacological inhibitors of protein kinase C, Cancer Res. 54: 1707–1714.PubMedGoogle Scholar
  148. Johnson, P. W. M., Watt, S. M., Betts, D. R., Davies, D., Jordan, S., Norton, A. J., and Lister, T. A., 1993, Isolated follicular lymphoma cells are resistant to apoptosis and can be grown in vitro in the CD40 stromal cell system, Blood 82: 1848–1857.PubMedGoogle Scholar
  149. Kabarowski, J. H. S., Allen, P. B., and Weidemann, L. M., 1994, A temperature sensitive p210 BCR-ABL mutant defines the primary consequences of BCR-ABL tyrosine kinase expression in growth factor dependent cells, EMBO J. 13: 5887–5895.PubMedGoogle Scholar
  150. Kamens, J., Paskind, M., Hugunin, M., Talanian, R. V., Allen, H., Banach, D., Bump, N., Hackett, M., Johnston, C. G., Li, P., Mankovich, J. A., Terranove, M., and Ghayur, T., 1995, Identification and characterization of ICH-2, a novel member of the interleukin-IB-converting enzyme family of cystein proteases,. 1. Biol. Chem. 270: 15250–15256.Google Scholar
  151. Kamesaki, S., Kamesaki, H., Jorgensen, T. J., Tanizawa, A., Pommier, T., and Crossman, J., 1993, Bel-2 protein inhibits etoposide induced apoptosis throught its effects subsequent to topoisomerase II-induced DNA strand breaks and repair, Cancer Res. 53: 4251–4256.PubMedGoogle Scholar
  152. Kantarjian, H. M., Keating, M. J., Talpaz, M., Walters, R. S., Smith, T. L., Cork, A., McCredie, K. B., and Freireich, E. J., 1987, Chronic myelogenous leukaemia in blast crisis, Am. J. Med. 83: 445–454.Google Scholar
  153. Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B., and Craig, R. W., 1991, Participation of p53 in the cellular response to DNA damage, Cancer Res. 51: 6304–6311.PubMedGoogle Scholar
  154. Kerr, J. F. K., and Searle, J., 1973, Deletion of cells by apoptosis during castration-induced involution of the rat prostate, Virchows Arch. Biol. 13: 87–102.Google Scholar
  155. Kerr, J. F. K., Wyllie, A. H., and Currie, A. R., 1972, Apoptosis: A basic biological phenomenon with wide ranging implications in tissue kinetics, Br. J. Cancer 26: 239–257.PubMedGoogle Scholar
  156. Kessel, D. (ed.), 1989, Resistance to Antineoplastic Drugs, CRC press, Boca Raton, FL.Google Scholar
  157. Kiefer, M. C., Brauer, M. J., Powers, V. C., Wu, J. J., Umansky, S. R., Tornei, L. D., and Barr, P. J., 1995, Modulation of apoptosis by the widely distributed Bel-2 homologue Bak, Nature 374: 736–739.PubMedGoogle Scholar
  158. Kinoshita, T., Yokota, T., Arai, K., and Miyajima, A., 1995, Regulation of Bel-2 expression by oncogenic Ras protein in hematopoietic cells, Oncogene 10: 2207–2212.PubMedGoogle Scholar
  159. Kipreos, E. T., Lee, G. J., and Wang, J. Y. J., 1987, Isolation of temperature-sensitive tyrosine kinase mutants of vabl oncogene by screening with antibodies for phosphotyrosine, Proc. Natl. Acad. Sci. U.S.A. 84: 1345–1349.PubMedGoogle Scholar
  160. Kisielow, P., 1995, Apoptosis in intrathymic T-cell development, in Apoptosis and the Immune Response ( C. D. Gregory, ed.), pp. 13–53, Wiley-Liss, New York.Google Scholar
  161. Kizaki, H., Tadakuma, T., Odaka, C., Muramatsu, J., and Ishimura, Y., 1989, Activation of a suicide process of thymocytes through DNA fragmentation by calcium ionophores and phorbol esters, J. Immunol. 143: 1790–1794.PubMedGoogle Scholar
  162. Kobayashi, R., Rassenti, L. Z., Meisenholder, G., Carson, D. A., and Kipps, T. J., 1993, Autoantigen inhibits apop- tosis of a human B cell leukemia that produces pathogenic rheumatoid factor, J. Immunol. 151: 7273–7283.PubMedGoogle Scholar
  163. Koeffler, H. P., and Golde, D. W., 1981, Chronic myelogenous leukemia—new concepts, New Engl. J. Med. 304: 1201–1207.PubMedGoogle Scholar
  164. Kolesnick, R., and Golde, D. W., 1994, The sphingomyelin pathway in tumour necrsosi factor and interleukin-1 signalling, Cell 77: 325–328.PubMedGoogle Scholar
  165. Koury, M. J., 1992, Programmed cell death (apoptosis) in hematopoiesis, Exp. Hematol. 20: 391–394.PubMedGoogle Scholar
  166. Koury, M. J., and Bondurant, M. C., 1990, Erythropoietin retards DNA breakdown and prevents programmed cell death in erythroid progenitor cells, Science 248: 378–381.PubMedGoogle Scholar
  167. Krajewski, S., Tanaka, S., Takayama, S., Schibler, M. J., Fenton, W., and Reed, J. C., 1993, Investigation into the subcellular distribution of the bd-2 oncoprotein: Residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes, Cancer Res. 53: 4701–4714.PubMedGoogle Scholar
  168. Krajewski, S., Krajewski, M., Shabaik, A., Miyashita, T., Wang, H. G., and Reed, J. C., 1994a, Immunohictochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bel-2, Am. J. Pathol. 145: 1323–1336.PubMedGoogle Scholar
  169. Krajewski, S., Krajewski, M., Shabaik, A., Wang, H. G., Irie, S., Fong, L., and Reed, J. C., 1994b, Immunohistochemical analysis of in vivo patterns of Bel-X expression, Cancer Res. 54: 5501–5507.PubMedGoogle Scholar
  170. Lam, M., Dubyak, G., Chen, L., Nunez, G., Miesfeld, R. L., and Distelhorst, C. W., 1994, Evidence that BCL-2 represses apoptosis by regulating endoplasmic reticulum-associated Cat+ fluxes, Proc. Natl. Acad. Sci. U.S.A. 91: 6569–6573.PubMedGoogle Scholar
  171. Lane. D. P., 1992, p.53, guardian of the genome, Nature 358: 15–16.Google Scholar
  172. Laneuville, R, Sun, G., Timm, M., and Vekemans, M., 1992, Clonal evolution in a myeloid cell line transformed to interleukin-3 independant growth by retroviral transduction and expression of p210, Blood 80: 1788–1797.PubMedGoogle Scholar
  173. Langdon, W. Y., Harris, A. W., Cory, S., and Adams, J. M., 1986, The c-myc oncogene perturbs B-lymphocyte development in E µ myc transgenic mice, Cell 47: 11–18.PubMedGoogle Scholar
  174. Lazebnik, Y. A., Cole, S., Cooke, C. A., Nelson, W. G., and Earnshaw, W. C., 1993, Nuclear events of apoptosis in vitro in cell-free mitotic extracts: A model system for analysis of the active phase of apoptosis, J. Cell. Biol. 123: 7–22.PubMedGoogle Scholar
  175. Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G., and Earnshaw, W. C., 1994, Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE, Nature 371: 346–347.PubMedGoogle Scholar
  176. Lee, S., Elenbaas, B., Levine, A., and Griffith, J., 1995, p53 and its 14kDa C-terminal domain recognize primary DNA damage in the form of insertion/deletion mismatches, Cell 81: 1013–1020.Google Scholar
  177. Lennon, S. V., Kilfeather, S. A., Hallett, M. B., Campbell, A. K., and Cotter, T. G., 1992, Elevations in cytosolic free Cat+ are not required to trigger apoptosis in human leukaemia cells, Clin. Exp. Immunol. 87: 465–471.PubMedGoogle Scholar
  178. Leoncini, L., Delvecchio, M. T., Spina, D., Megha, T., Barbini, P., Sabattini, E., Pileri, S., Tosi, P., Kraft, R., Laissue, J. A., and Cottier, H., 1995, Presence of the bc1–2 protein and apoptosis in non-Hodgkin lymphomas with diffuse growth-pattern, Int. J. Cancer 61: 826–831.PubMedGoogle Scholar
  179. Levine, A. J., Chang, A., Dittmer, D., Notterman, D. A., Silver, A., Thorn, K., Welsh, D., and Wu, M., 1994a, The p53 tumor suppressor gene, J. Lab. Clin. Med. 123: 817–823.PubMedGoogle Scholar
  180. Levine, A. J., Perry, M. E., Chang, A., Silver, A., Dittmer, D., Wu, M., and Welsh, D., 1994b, The 1993 Walter Hubert lecture: The role of the p53 tumour-suppressor gene in tumorigenesis, Br. J. Cancer 69: 409–416.PubMedGoogle Scholar
  181. Li, F. R, Fraumeni, J. F., Mulvihill, J. J., Blattner, W. A., Dreyfus, M. G., Tucker, M. A., and Miller, R. M., 1988, A cancer family syndrome in twenty four kindreds, Cancer Res. 48: 4358–5362.Google Scholar
  182. Li, R, Allen, H., Banerjee, S., Franklin, S., Herzog, L., Johnston, C., McDowell, J., Paskind, M., Rodman, L., Salfeld, J., Towne, E., Tracey, D., Wardwell, S., Wei, F. Y., Wong, W., Kamen, R., and Seshadri, T., 1995, Mice deficient in IL-1B-converting enzyme are defective in production of mature IL-1B and resistant to endotoxic shock, Cell 80: 401–411.PubMedGoogle Scholar
  183. Lin, E. Y., Orlofsky, A., Berger, M. S., and Prystowsky, M. B., 1993, Characterisation of Al, a novel hemopoieticspecific early resonse gene with sequence similarity to bd-2, J. Immunol. 151: 1979–1988.Google Scholar
  184. Lin, J., Chen, J., Elenbaas, B., and Levine, A. J., 1994, Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55kd protein, Genes. Dey. 8: 1235–1246.Google Scholar
  185. Liu, Y. J., Joshua, D. E., Williams, G. T., Smith, C. A., Gordon, J., and Maclennan, I. C. M., 1989, Mechanism of antigen-driven selection in germinal centers, Nature 342: 929–931.PubMedGoogle Scholar
  186. Liu, Y. J., Mason, D. Y., Johnson, G. D., Abbot, S., Gregory, C. D., Hardie, D. L., Gordon, J., and Maclennan, I. C. M., 1991, Germinal center cells express Bel-2 protein after activation by signals which prevent their entry into apoptosis, Eur. J. Immunol. 21: 1905–1910.PubMedGoogle Scholar
  187. Liu, Y. J., Johnson, G. D., Gordon, J., and Maclennan, I. C. M., 1992, Germinal centers in T cell-dependent antibody responses, Immunol. Today 13: 17–21.PubMedGoogle Scholar
  188. Liu, Z. G., Smith, S. W., McLaughlin, K. A., Schwartz, L. M., and Osborne, B. A., 1994, Apoptotic signals delivered through the T-cell receptor of a T-cell hybrid require the immediate-early gene nur77, Nature 367: 281–284.Google Scholar
  189. Long, B. W., Witte, R. L., Abraham, G. N., Gregory, S. A., and Plate, J. M. D., 1995, Apoptosis and interleukin-7 gene-expression in chronic B-lymphocytic leukemia-cells, Proc. Natl. Acad. Sci. U.S.A. 92: 1416–1420.PubMedGoogle Scholar
  190. Lotem, J., and Sachs, L., 1992, Hematopoietic cytokines inhibit apoptosis induced by transforming growth factor betal and cancer chemotherapy compounds in myeloid leukemia cells, Blood 80: 1750–1757.PubMedGoogle Scholar
  191. Lotem, J., and Sachs, L., 1993a, Hematopoietic cells from mice deficient in wild-type p.53 and more resistant to induction of apoptosis by some agents, Blood 82: 1092–1096.PubMedGoogle Scholar
  192. Lotem, J., and Sachs, L., 1993b, Regulation by bel-2, c-myc and p53 of susceptibility to induction of apoptosis by heat shock and cancer chemotherapy compounds in differentiation-competent and -defective myeloid leukemia cells, Cell Growth Differ. 4: 41–47.PubMedGoogle Scholar
  193. Lowe, S. W., Schmitt, E. M., Smith, S. W., Osbome, B. A., and Jacks, T., 1993, P53 is required for radiation-induced apoptosis in mouse thymocytes, Nature 362: 847–849.PubMedGoogle Scholar
  194. Lowe, S. W., Bodis, S., McClatchey, A., Remington, L., Ruley, H. E., Fisher, D. E., Housman, D. E., and Jacks, T., 1994a, P53 status and the efficacy of cancer therapy in vivo, Science 266: 807–810.Google Scholar
  195. Lucas, M., Solano, F., and Sanz, A., 1991, Induction of programmed cell death (apoptosis) in mature lymphocytes, FEBS Lett. 279: 19–20.PubMedGoogle Scholar
  196. MacDonald, H. R., and Lees, R. K., 1990, Programmed cell death of autoreactive thymocytes, Nature 343: 642–644.PubMedGoogle Scholar
  197. MacLennan, I. C. M., 1994, Germinal centers, Annu. Rev. Immunol. 12: 117–139.PubMedGoogle Scholar
  198. Malissen, B., and Schmitt-Verhulst, A. M., 1993, Transmembrane signalling through the T-cell-receptor–CD3 complex, Curr. Opin. Immunol. 5: 324–333.PubMedGoogle Scholar
  199. Manabe, A., Murti, K. G., Coustan-Smith, E., Kumagai, M., Behm, F. G., Raimondi, S. C., and Campana, D., 1994, Adhesion-dependent survival of normal and leukemic human B lymphoblasts on bone marrow stromal cells, Blood 83: 758–766.PubMedGoogle Scholar
  200. Manome, Y., Datta, R., Taneja, N., Shafman, T., Bump, E., Hass, R., Weichselbaum, R., and Kufe, D., 1993, Coinduction of c-jun gene expression and internucleosomal DNA fragmentation by ionizing radiation, Biochemistry 32: 10607–10613.PubMedGoogle Scholar
  201. Mapara, M. Y., Sargon, R., Zugck, C., Dohner, H., Ustaoglu, F., Jonker, R. R., Krammer, P. H., and Dorken, B., 1993, Apo-1 mediated apoptosis or proliferation in human chronic B-lymphocytic leukemia—correlation with bd-2 oncogene expression, Eur. J. Immunol. 23: 702–708.PubMedGoogle Scholar
  202. Martin, S. J., Lennon, S. V., Bonham, A. M., and Cotter, T. G., 1990, Induction of apoptosis (programmed cell death) in human leukaemic HL-60 cells by inhibition of RNA or protein synthesis, J. Immunol. 145: 1859–1867.PubMedGoogle Scholar
  203. Marvel, J., Perkins, G. R., Lopez-Rivas, A., and Collins, M. K. L., 1994, Growth factor starvation of bcl-2 overexpressing murine bone marrow cells induced refractoriness to IL-3 stimulation of proliferation, Oncogene 9: 1117–1122.PubMedGoogle Scholar
  204. Mashal, R., Shtalrid, M., Talpaz, M., Kantarjian, H., Smith, L., Beran, M., Trujillo, J., Gutterman, J., and Deisseroth, A., 1990, Rearrangement and expression of p53 in the chronic phase and blast crisis of chronic myelogenous leukemia, Blood 75: 180–189.PubMedGoogle Scholar
  205. Maung, Z. T., MacLean, E. R., Reid, M. M., Pearson, A. D. J., Procter, S. J., Hamilton, P. J., and Hall, A. G., 1994, The relationship between bd-2 expression and response to chemotherapy in acute leukemia, Br. J. Haematol. 88: 105–109.PubMedGoogle Scholar
  206. May, W. S., Tyler, G. P, Ito, T., Armstrong, D. K., Qatsha, K. A., and Davidson, N. E., 1994, Interleukin-3 and bryostatin-1 mediate hyperphosphorylation of bd-2 in association with suppression of apoptosis, J. Biol. Chem. 269: 26865–26870.Google Scholar
  207. McCarthy, D. M., Goldman, J. M., Rassool, F. V., Graham, S. V., and Birnie, G. D., 1984, Genomic alterations involving the c-myc proto-oncogene locus during the evolution of a case of chronic granulocytic leukaemia, Lancet 2: 1362–1365.PubMedGoogle Scholar
  208. McConkey, D. J., Nicotera, P., Hartzell, P., Bellomo, G., Wyllie, A. H., and Orrenius, S., 1989, Glucocorticoids activate a suicide process in thymocytes through an elevation of cytosolic calcium concentration, Arch. Biochem. Biophys. 259: 365–370.Google Scholar
  209. McConkey, D. J., Hartzell, P., Chow, S. C., Orrenius, S., and Jondal, M., 1990, Interleukin 1 inhibits T cell receptor-mediated apoptosis in immature thymocytes, J. Biol. Chem. 265: 3009–3011.PubMedGoogle Scholar
  210. McConkey, D. J., Aguilar-Santelises, M., Hartzell, P., Eriksson, I., Mellstedt, H., Orrenius, S., and Jondal, M., 1991, Induction of DNA fragmentation in chronic B-lymphocytic leukemia cells, J. Immunol. 146: 1072–1076.PubMedGoogle Scholar
  211. McDonnell, T. J., and Korsmeyer, S. J., 1991, Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14, 18), Nature 349: 254–256.PubMedGoogle Scholar
  212. McDonnell, T. J., Deane, N., Platt, F. M., Nunez, G., Jaeger, U., McKearn, J. P., and Korsmeyer, S. J., 1989, Bel-2immunoglobulin transgenic mice demonstrate extended B-cell survival and follicular lymphoproliferation, Cell 57: 79–88.PubMedGoogle Scholar
  213. McDonnell, T. J., Nunez, G., Platt, F. M., Hockenberry, D., London, L., McKearn, J. P., and Korsmeyer, S. J., 1990, Deregulated bcl-2-immunoglobulin transgene expands a resting but responsive immunoglobulin-M and immunoglobulin-D-expressing B-cell population, Mol. Cell. Biol. 10: 1901–1907.PubMedGoogle Scholar
  214. McGahon, A., Bissonnette, R. P., Schmitt, M., Cotter, K. M., Green, D. R., and Cotter, T. G., 1994, BCR-ABL maintains resistance of chronic myelogenous leukemia cells to apoptotic cell death, Blood 83: 1179–1187.PubMedGoogle Scholar
  215. McLaughlin, J., Chianese, E., and Witte, O. N., 1987, In vitro transformation of immature hematopoietic cells by the P210 BCR/ABL oncogene product of the Philadelphia chromosome, Proc. Natl. Acad. Sci. U.S.A. 84: 6558–6562.Google Scholar
  216. McWhirter, J. R., and Wang, J. Y. J., 1993, An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukaemias, EMBO J. 12: 1533–1546.PubMedGoogle Scholar
  217. Mekori, Y. A., Oh, C. K., and Metcalfe, D. D., 1993, IL-3-dependent murine mast cells undergo apoptosis on removal of IL-3, J. Immunol. 151: 3775–3784.PubMedGoogle Scholar
  218. Meredith, J. E., Fazeli, B., and Schwartz, M., 1993, The extracellular matrix as a cell survival factor, Mol. Biol. Cell 4: 953–961.PubMedGoogle Scholar
  219. Merino, R., Ding, L. Y., Veis, D. J., Korsmeyer, S. J., and Nunez, G., 1994, Developmental regulation of the Bc1–2 protein and susceptibility to cell death in B lymphocytes, EMBO J. 13: 683–691.PubMedGoogle Scholar
  220. Milner, A. E., Johnson, G. D., and Gregory, C. D., 1992, Prevention of programmed cell death in Burkitt lymphoma cell lines by bcl-2-dependent and bcl-2-independent mechanisms, Int. J. Cancer 52: 636–644.PubMedGoogle Scholar
  221. Milner, A. E., Grand, R. J. A., Waters, C. M., and Gregory, C. D., 1993, Apoptosis in Burkitt-lymphoma cells is driven by c-myc, Oncogene 8: 3385–3391.Google Scholar
  222. Milner, J., 1995, Flexibility: the key to p53 function, Trends Biochem. Sci. 20: 49–51.PubMedGoogle Scholar
  223. Miura, M., Zhu, H., Rotello, R., Hartweig, E. A., and Yuan, J., 1993, Induction of apoptosis in fibroblasts by IL-1B- converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3, Cell 75: 653–660.Google Scholar
  224. Miyashita, T., and Reed, J. C., 1992, bd-2 gene transfer increases relative resistance of 549.1 and WEHI7.2 lymphoid cells to cell death and DNA fragmentation induced by glucocorticoids and multiple chemotherapeutic drugs, Cancer Res. 52: 5407–5411.Google Scholar
  225. Miyashita, T., and Reed, J. C., 1993, Bc1–2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line, Blood 81: 151–157.PubMedGoogle Scholar
  226. Miyashita, T., Harigai, M., Hanada, M., and Reed, J. C., 1994a, Identification of ap53-dependent negative response element in the bd-2 gene, Cancer Res. 54: 3131–3135.PubMedGoogle Scholar
  227. Miyashita, T., Krajewski, S., Krajewski, M., Wang, H. G., Lin, H. K., Liebermann, D., Hoffman, B., and Reed, J. C., I994b, Tumor suppressor p53 is a regulator of bd-2 and bax gene expression in vitro and in vivo, Oncogene 9:1799–1805.Google Scholar
  228. Möller, P., Henne, C., Leithauser, F., Eichelmann, A., Schmidt, A., Bruderlein, S., Dhein, J., Krammer, P. H., 1993, Co-regulation of the APO-1 antigen with intercellular adhesion molecule 1 (CD54) in tonsillar B cells and coordinate PTO, Blood 81: 2067–2075.PubMedGoogle Scholar
  229. Monaghan, P., Robertson, D., Amos, T. A. S., Dyer, M. J. S., Mason, D. Y., and Greaves, M. F., 1992, Ultrastructural localization of BCL-2 protein, J. Histochem. Cytochem. 40: 1819–1825.PubMedGoogle Scholar
  230. Moore, N. C., Anderson, G., Williams, G. T., Owen, J. J. T., and Jenkinson, E. J., 1994, Developmental regulation of bd-2 expression in the thymus, Immunology 81: 115–119.PubMedGoogle Scholar
  231. Motoyama, N., Wang, F. P., Roth, K. A., Sawa, H., Nakayama, K., Nakayama, K., Negishi, I., Senju, S., Zhang, Q., Fujii, S., and Loh, D. Y., 1995, Massive cell death of immature hematopoietic cells and neurons in bclx-deficient mice, Science 267: 1506–1510.PubMedGoogle Scholar
  232. Nakai, M., Takeda, A., Cleary, M. L., and Endo, T., 1993, The bd-2 protein is inserted into the outer membrane but not the inner membrane of rat liver mitochondria in vitro, Biochem. Biophys. Res. Commun. 196: 233–239.Google Scholar
  233. Nakayama, K., Nakayama, K., Negishi, I., Kuida, K., Shinkai, Y., Louie, M. C., Fields, L. E., Lucas, P. J., Stewart, V., Alt, E W., and Loh, D. Y., 1993, Disappearance of the lymphoid system in Bd-2 homozygous mutant chimeric mice, Science 261: 1584–1588.PubMedGoogle Scholar
  234. Negata, S., and Golstein, P., 1995, The fas death factor, Science, 267: 1449–1455.Google Scholar
  235. Nelson, W. G., and Kastan, M. B., 1994, DNA strand breaks: The DNA template alterations that trigger p53-dependent DNA damage response pathways, Mol. Cell Biol. 14: 1815–1823.PubMedGoogle Scholar
  236. Newmeyer, D. D., Farschon, D. M., and Reed, J. C., 1994, Cell-free apoptosis in Xenopus egg extracts: Inhibition by Bc1–2 and requirement for an organelle fraction enriched in mitochondria, Cell 79: 353–364.PubMedGoogle Scholar
  237. Nguyen, M., Branton, P. E., Walton, P. A., Oltvai, Z. N., Korsmeyer, S. J., and Shore, G. C., 1994, Role of membrane anchor domain of Bc1–2 in suppression of apoptosis caused by E1B-defective adenovirus, J. Biol. Chem. 269: 16521–16524.PubMedGoogle Scholar
  238. Nicholson, D. W., Ali, A., Thornberry, N. A., Vaillancourt, J.P., Ding, C. K., Gallant, M., Gareau, Y., Griffin, P. R., Labelle, M., Lazebnik, Y. A., Munday, N. A., Raju, S. M., Smulson, M. E., Yamin, T. T., Yu, V. L., and Miller, D. K., 1995, Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis, Nature 376: 37–43.PubMedGoogle Scholar
  239. Ning, Z. Q., and Murphy, J. J., 1993, Calcium ionophore-induced apoptosis of human B cells is preceeded by the induced expression of early response genes, Eur. J. Immunol. 23: 3369–3372.PubMedGoogle Scholar
  240. Nishimura, Y., Ishii, A., Kobayashi, Y., Yamasaki, Y., and Yonehara, S., 1995, Expression and function of mouse Fas antigen on immature and mature T-cells, J. Immunol. 154: 4395–4403.PubMedGoogle Scholar
  241. Nisitani, S., Tsubata, T., Murakami, M., Okamoto, M., and Honjo, T., 1993, The bd-2 gene product inhibits clonal deletion of self-reactive B lymphocytes in the periphery but not in the bone marrow, J. Exp. Med. 178: 1247–1254.PubMedGoogle Scholar
  242. Nosseri, C., Coppola, S., and Ghibelli, L., 1994, Possible involvement of poly(ADP-ribosyl) polymerase in triggering stress-induced apoptosis, Exp. Cell. Res. 212: 367–373.PubMedGoogle Scholar
  243. Nunez, G., London, L., Hockenberry, D., Alexander, M., McKearn, J. P., and Korsmeyer, S. J., 1990, Deregulated Bc1–2 gene expression selectively prolongs survival of growth factor deprived hemopoietic cell lines, J. lmmunol. 144: 3602–3610.Google Scholar
  244. Nunez, G., Hockenbery, D., McDonnell, T. J., Sorensen, C. M., and Korsmeyer, S. J.,1991, Bel-2 maintains B-cell memory, Nature 353: 71–73.Google Scholar
  245. Obeid, L. M., Linardic, C. M., Karolak, L. A., and Hannun, Y. A., 1993, Programmed cell death induced by ceramide, Science 259: 1769–1771.PubMedGoogle Scholar
  246. Oberhammer, F., Fritsch, G., Schmied, M., Pavelka, M., Printz, D., Purchio, T., Lassmann, H., and Schulte-Hermann, R., I993a, Condensation of the chromatin at the membrane of an apoptotic nucleus is not associated with activation of an endonuclease, J. Cell. Sci. 104: 317–326.Google Scholar
  247. Oberhammer, F., Wilson, J. W., Dive, C., Morris, 1. D., and Hickman, J. A., 1993b, Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kilobase fragments prior to or in the absence of internue]eosomal fragmentation, EMBO J. 12: 3679–3684.Google Scholar
  248. Oberhammer, F., Hochegger, K., Froschl, G., Tiefenbacher, R., and Pavelka, M., 1994, Chromatin condensation during apoptosis is accompaied by degradation of lamin A+C, without enhanced activation of cdc2 kinase, J. Cell. Biol. 126: 827–837.PubMedGoogle Scholar
  249. O’Conor, G.T., 1961, Malignant lymphoma in African Children. Il. Pathological entity, Cancer 14: 270–283.PubMedGoogle Scholar
  250. Ogasawara, J., Suda, T., and Nagata, S., 1995, Selective apoptosis of CD4+CD8+ thymocytes by the anti fas antibody, J. Exp. Med. 181: 485–491.PubMedGoogle Scholar
  251. Oliver, F. J., Marvel, J., Collins, M. K. L., and Lopez-Rivas, A., 1993, Bel-2 oncogene protects a bone marrow-derived pre-B cell line from 5’-fluor,2’-deoxyuridine-induced apoptosis, Biochem. Biophys. Res. Commun. 194: 126–132.Google Scholar
  252. Oltvai, Z. N., and Korsmeyer, S. J., 1994, Checkpoints of duelling dimers foil death wishes, Cell 79: 189–192.PubMedGoogle Scholar
  253. Oltvai, Z. N., Milliman, C. L., and Korsmeyer, S. J., 1993, Bel-2 heterodimerises in vivo with a conserved homolog, bax, that accelerates programmed cell death, Cell 74: 609–619.Google Scholar
  254. Osmond, D. G., Ricovargas, S., Valenzona, H., Fauteux, L., Liu, L., Janani, R., Lu, L., and Jacobsen, K., 1994, Apoptosis and macrophage-mediated cell deletion in the regulation of B-lymphopoiesis in mouse bone-marrow, lmmunol. Rev. 142: 209–230.Google Scholar
  255. Otani, H., Erdos. M., and Leonard, W. J., 1993, Tyrosine kinase(s) regulate apoptosis and bel-2 expression in a growth factor-dependent cell line, J. Biol. Chem. 268: 22733–22736.Google Scholar
  256. Otsuka, T., Eaves, C. J., Humphries, R. K., Hogge, D. E., and Eaves, A. C., 1991, Lack of evidence for abnormal autocrine or paracrine mechanisms underlying the uncontrolled proliferation of primitive chronic myeloid leukemia progenitor cells, Leukemia 5: 861–868.PubMedGoogle Scholar
  257. Owen, P. J., Musk, P., Evans, C. A., and Whetton, A. D., 1993, Cellular signaling events elicited by v-abl associated with growth factor independence in an IL-3 dependent cell line, J. Biol. Chem. 268: 15696–15703.PubMedGoogle Scholar
  258. Owen-Lynch. P. J., Wong, A. K. Y., and Whetton, A. D., 1995, v-AbI mediated apoptotic suppression is associated with SHC phosphorylation without concomitant MAP kinase activation, J. Biol. Chem. 270: 5956–5962.Google Scholar
  259. Owens, G. P., and Cohen, J. J., 1992, Identification of genes involved in programmed cell death, Cancer Metab. Rev. 11: 149–156.Google Scholar
  260. Peitsch, M. C., Polzar, B., Stephan, H., Crompton, T., MacDonald, H. R., Mannherz, H. G., and Tschopp, J., 1993, Characterization of the endogenous deoxyribonuclease involved in nuclear DNA degradation during apoptosis (programmed cell death), EMBO J. 12: 371–377.PubMedGoogle Scholar
  261. Pendergast, A. M., Quilliam, L. A., Cripe, L. D., Bassing, C. H., Dai, Z., Li, N., Batzer, A., Rabun, K. M., Der, C. J., Schlessinger, J., and Gishizky, M. L., 1993, BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein, Cell 75: 175–185.PubMedGoogle Scholar
  262. Pesce, M., Farrace, M. G., Piacentini, M., Dolci, S., and De Felici, M., 1993, Stem cell factor and leukemia inhibitory factor promote primordial germ cell survival by suppressing programmed cell death (apoptosis), Development 118: 1089–1094.PubMedGoogle Scholar
  263. Pezzella, F., Tse, A. G. D., Cordell, J. L., Pulford, K. A. F., Gatter, K. C., and Mason, D. Y., 1990, Expression of the bel-2 oncogene protein is not specific for the 14–18 chromosomal translocation, Am. J. Pathol. 137: 225–232.PubMedGoogle Scholar
  264. Pezzella, F., Jones, M., Ralfkiaer, E., Ersboll, J., Gatter, K. C. and Mason, D. Y., 1992, Evaluation of bc1–2 protein expression and 14–18 translocation as prognostic markers in follicular lymphoma, Br. J. Cancer 65: 87–89.PubMedGoogle Scholar
  265. Pfeffer, K., Matsuyama, T., Kundig, T. M., Wakeham, A., Kishihara, T., Shahinian, A., Wiegmann, K., Ohashi, P. S., Kronke, M., and Mak, T. M., 1993, Mice defiecient for the 55 kD tumour necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection, Cell 73: 457–467.PubMedGoogle Scholar
  266. Piris, M. A., Pezzella, F., Martinezmontero, J. C., Orradre, J. L., Villuendas, R., Sanchezbeato, M., Cuena, R., Cruz, M. A., Martinez, B., Garrido, M. C., Gatter, K., Aiello, A., Delia, D., Giardini, R., and Rilke, F., 1994, P53 and bc1–2 expression in high-grade B-cell lymphomas—correlation with survival-time, Br. J. Cancer 69: 337–341.PubMedGoogle Scholar
  267. Platt, N., and Gordon, S., 1995, Role of murine scavenger receptor in the recognition of apoptotic thymocytes by macrophages, J. Cell. Biochem. (Suppl.) 19B: 300.Google Scholar
  268. Pongracz, J., Johnson, G. D., Crocker, J., Burnett, D., and Lord, J. M.,1994, The role of protein kinase C in myeloid cell apoptosis, Biochem. Soc. Trans. 22: 593–597.Google Scholar
  269. Prokocimer, M., and Rotter, V., 1994, Structure and function of p53 in normal cells and their aberrations in cancer cells: Projection on the hematologic lineages, Blood 84: 2391–2411.PubMedGoogle Scholar
  270. Puil, L., Liu, J., Gish, G., Mbamalu, G., Bowtell, D., Pelicci, P. G., Arlinghaus, R., and Pawson, T., 1994, Bc-Abl oncoproteins bind directly to activators of the Ras signalling pathway, EMBO J. 13: 764–773.PubMedGoogle Scholar
  271. Pulendran, B., Kannourakis, G., Nouri, S., Smith, K. G. C., and Nossal, G. J. V., 1995, Soluble antigen can cause enhanced apoptosis of germinal-center B cells, Nature 375: 331–334.PubMedGoogle Scholar
  272. Raff, M. C., 1992, Social controls on cell survival and cell death, Nature 356: 397–400.PubMedGoogle Scholar
  273. Rajotte, D., Haddad, P., Haman, A., Cragoe E. J., Jr., and Hoang, T., 1992, Role of protein kinase C and the Na+/H+ antiporter in suppression of apoptosis by granulocyte-macrophage colony-stimulating factor and interleukin-3, J. Biol. Chem. 267: 9980–9987.PubMedGoogle Scholar
  274. Rathmell, J. C., Cooke, M. P., Ho, W. Y., Grein, J., Townsend, S. E., Davis, M. M., and Goodnow, C. C., 1995, CD95 (fas) dependent elimination of self-reactive B-cells upon interaction with CD(+) T-cells, Nature 376: 181–184.PubMedGoogle Scholar
  275. Reed, J. C., 1994, BCL-2 and the regulation of programmed cell death, J. Cell. Biol. 124: 1–6.PubMedGoogle Scholar
  276. Ren, Y., Silverstein, R. L., Allen, J., and Savill, J., 1995, CD36 gene-transfer confers capacity for phagocytosis of cells undergoing apoptosis, J. Exp. Med. 181: 1857–1862.PubMedGoogle Scholar
  277. Renschler, M. F., Bhatt, R. R., Dower, W. J., and Levy, R., 1994, Synthetic peptide ligands of the antigen binding receptor induce programmed cell death in a human B cell lymphoma, Proc. Natl. Acad. Sci. U.S.A. 91: 3623–3627.PubMedGoogle Scholar
  278. Reynolds, J. E., Yang, T., Qian, L., Jenkinson, J. D., Zhou, P., Eastman, A., and Craig, R. W., 1994, Mc1–1, a member of the Bel-2 family, delays apoptosis induced by c-Myc overexpression in chinese hamster ovary cells, Cancer Res. 54: 6348–6352.PubMedGoogle Scholar
  279. Rodriguez-Tarduchy, G., and Lopez-Rivas, A., 1989, Phorbol esters inhibit apoptosis in IL-2-dependent T lymphocytes, Biochem. Biophys. Res. Commun. 164: 1069–1075.PubMedGoogle Scholar
  280. Rodriguez-Tarduchy, G., Malde, P., Lopez-Rivas, A., and Collins, M. K. L., 1992, Inhibition of apoptosis by calcium ionophores in IL-3 dependant bone marrow cells is dependant upon production of IL-4, J. Immunol. 146: 1416–1422.Google Scholar
  281. Rolink, A., and Melchers, F., 1993, Generation and regeneration of cells of the B-lymphocyte lineage, Curr. Opin. Immunol. 5: 207–217.PubMedGoogle Scholar
  282. Rothstein, T. L., Wang, J. K. M., Panka, D. J., Foote, L. C., Wang, Z. H., Stanger, B., Cui, H., Ju, S. T., and Marshakrothstein, A., 1995, Protection against fas-dependent Thl-mediated apoptosis by antigen receptor engagement in B-cells, Nature 374: 163–165.PubMedGoogle Scholar
  283. Ryan, J. J., Danish, R., Gottlieb, C. A., and Clarke, M. F., 1993, Cell cycle analysis of p53-induced cell death in murine erythroleukemia cells, Mol. Cell. Biol. 13: 711–719.PubMedGoogle Scholar
  284. Ryan, J. J., Prochownik, E., Gottlieb, C. A., Apel, I. J., Merino, R., Nunez, G., and Clarke, M. F., 1994, c-mye and bel-2 modulate p53 function by altering p53 subcellular trafficking during the cell cycle, Proc. Natl. Acad. Sci. U.S.A. 91: 5878–5882.Google Scholar
  285. Sachs, L., and Lotem, J., 1993, Control of programmed cell death in normal and leukemic cells: New implications for therapy, Blood 82: 15–21.PubMedGoogle Scholar
  286. Sato, T., Hanada, M., Bodrug, S., Irie, S., Iwama, N., Boise, L. H., Thompson, C. B., Golemis, E., Fong, L., Wang, H. G., and Reed, J. C., 1994, Interactions among members of the bc1–2 protein family analyzed with a yeast two-hybrid system, Proc. Natl. Acad. Sci. U.S.A. 91: 9238–9242.PubMedGoogle Scholar
  287. Savill, J., Hogg, N., Ren, Y., and Haslett, C., 1992, Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis, J. Clin. Invest. 90: 1513–1522.PubMedGoogle Scholar
  288. Savill, J., Fadok, V., Henson, P., and Haslett, C., 1993, Phagocyte recognition of cells undergoing apoptosis, Immunol. Today 14: 131–137.PubMedGoogle Scholar
  289. Sawyers, C. L., Callahan, W., and Witte, O. N., 1992, Dominant negative MYC blocks transformation by ABL oncogenes, Cell 70: 901–910.PubMedGoogle Scholar
  290. Sawyers, C. L., McLaughlin, J., and Witte, O. N., 1995, Genetic requirement for ras in the transformation of fibroblasts and hematopoietic cells by the bcr-abl oncogene, J. Exp. Med. 181: 307–313.PubMedGoogle Scholar
  291. Schena, M., Gottardi, D., Ghia, P., Larsson, L. G., Carlsson, M., Nilsson, K., and Caligariscappio, F., 1993, The role of bd-2 in the pathogenesis of B-chronic lymphocytic leukemia, Leukemia Lymphoma 11: 173–179.PubMedGoogle Scholar
  292. Selvakumaran, M., Lin, H. K., Miyashita, T., Wang, H. G., Krajewski, S., Reed, J. C., Hoffman, B., and Liebermann, D., 1994, Immediate early up-regulation of btu expression by p53 but not TGFBI: A paradigm for distinct apoptotic pathways, Oncogene 9: 1791–1798.PubMedGoogle Scholar
  293. Sentman, C. L., Shutter, J. R., Hockenberry, D., Kanagawa, O., and Korsmeyer, S. J., 1991, bd-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes, Cell 67: 879–888.Google Scholar
  294. Shokat, K. M., and Goodnow, C. C., 1995, Antigen-induced B-cell death and elimination during germinal-center immune-responses, Nature 375: 334–338.PubMedGoogle Scholar
  295. Sikora, E., Grassilli, E., Bellesia, E., Troiano, L., and Franceschi, C., 1993a, Studies of the relationship between cell proliferation and cell death. III. AP-1 DNA-binding activity during concanavalin A-induced proliferation or dexamethasone-induced apoptosis of rat thymocytes, Biochem. Biophys. Res. Commun. 192: 386–391.PubMedGoogle Scholar
  296. Sikora, E., Grassilli, E., Radziszewska, E., Bellesia, E., Barbieri, D., and Franceschi, C., 1993b, Transcription factors DNA-binding activity in rat thymocytes undergoing apoptosis after heatshock or dexamethasone treatment, Biochem. Biophys. Res. Commun. 197: 709–715.PubMedGoogle Scholar
  297. Smeyne, R. J., Vendrell, M., Hayward, M., Baker, S. J., Miao, G. G., Schilling, K., Robertson, L. M., Curran, T., and Morgan, J. I., 1993, Continuous c-fos expression precedes programmed cell death in vivo, Nature 363: 166–169.Google Scholar
  298. Smith, M. L., Chen, I. T., Zhan, Q., Bae, I., Chen, C. Y., Gilmer, T. M., Kastan, M. B., O’Connor, P. M., and Fornace A. J., Jr., 1994, Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen, Science 266: 1376–1380.PubMedGoogle Scholar
  299. Steller, H., 1995, Mechanisms and genes of cellular suicide, Science 267: 1445–1449.PubMedGoogle Scholar
  300. Stewart, N., Hicks, G. G., Paraskevas, F., and Mowat, M., 1995, Evidence for a second cell cycle block at G2IM by p53, Oncogene 10: 109–115.Google Scholar
  301. Strasser, A., Harris, A. W., Bath, M. L., and Cory, S., 1990, Novel primitive tumours induced in transgenic mice by cooperation between myc and bd-2, Nature 348: 331–333.Google Scholar
  302. Strasser, A., Whittingham, S., Vaux, D. L., Bath, M. L., Adams, J. M., Cory, S., and Harris, A. W., 1991, Enforced bcl-2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease, Proc. Natl. Acad. Sci. U.S.A. 88: 8661–8665.PubMedGoogle Scholar
  303. Strasser, A., Harris, A. W., and Cory, S., 1993, E µ —bcl-2 transgene facilitates spontaneous transformation of early pre-B and immunoglobulin-secreting cells but not T cells, Oncogene 8: 1–9.Google Scholar
  304. Strasser, A., Harris, A. W., von Boehmer, H., and Cory, S., 1994a, Positive and negative selection of T-cells in T-cell receptor transgenic mice expressing a bd-2 transgene, Proc. Natl. Acad. Sci. U.S.A. 91: 1376–1380.PubMedGoogle Scholar
  305. Strasser, A., Harris, A. W., Corcoran, L. M., and Cory, S., 1994b, Bel-2 expression promotes B-lymphoid but not T-lymphoid development in scid mice, Nature 368: 457–460.PubMedGoogle Scholar
  306. Strasser, A., Harris, A. W., Jacks, T., and Cory, S., 1994e, DNA damage can induce apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by bcl-2, Cell 79: 329–339.Google Scholar
  307. Sun, X. M., and Cohen, G. M., 1994, Mgt’-dependent cleavage of DNA into kilobase pair fragments is responsible for the initial degradation of DNA in apoptosis, J. Biol. Chem. 269: 14857–14860.PubMedGoogle Scholar
  308. Szczylik, C., Skorski, T., Nicolaides, N. C., Manzella, L., Malaguarnera, L., Venturelli, D., Gewirtz, A. M., and Calabretta, B., 1991, Selective inhibition of leukemia cell proliferation by BCR-ABL antisense oligodeoxynucleotides, Science 253: 562–565.PubMedGoogle Scholar
  309. Takayama, S., Sato, T., Krajewski, S., Kochel, K., Irie, S., Milian, J. A., and Reed, J. C., 1995, Cloning and functional analysis of BAG-1: A novel Bcl-2-binding protein with anti-cell death activity, Cell 80: 279–284.PubMedGoogle Scholar
  310. Tanaka, S., Saito, K., and Reed, J. C., 1993, Structure-function analysis of the BCL-2 oncoprotein, J. Biol. Chem. 268: 10920–10926.PubMedGoogle Scholar
  311. Tauchi, T., Boswell, H. S., Leibowitz, D., and Broxmeyer, H. E., 1994, Coupling between p210n“-°1’1 and Shc and Grb-2 adaptor proteins in hematopoietic cells permits growth factor receptor-independent link to ras activation pathway, J. Exp. Med. 179: 167–175.PubMedGoogle Scholar
  312. Tewari, M., Dixit, V. M., 1995, Fas-and tumor necrosis factor induced apoptosis is inhibited by the pox virus crmA gene product, J. Biol. Chem. 270: 3255–3260.PubMedGoogle Scholar
  313. Tewari, M., Quan, L. T., O’Rourke, K., DesNoyers, S., Zheng, Z., Seidler, D. R., Poirier, G. G., Salvesen, G. S., and Dixit, V. M., 1995, Yama/CPP32B, a mammalian homolog of CED-3, is a crmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase, Cell 81: 801–809.PubMedGoogle Scholar
  314. Tsubata, T., 1995, B-1 B cells (Ly-1 or CDS+ B cells), apoptosis and autoimmunity, in Apoptosis and the Immune Response ( C. D. Gregory, ed.), pp. 217–256, Wiley-Liss, New York.Google Scholar
  315. Ucker, D. S., Obermiller, P. S., Eckhart, W., Apgar, J. R., Berger, N. A., and Meyers, J., 1992, Genome digestion is a dispensible consequence of physiological cell death mediated by cytotoxic T-lymphocytes, Mol. Cell. Biol. 12: 3060–3069.PubMedGoogle Scholar
  316. Vanhaesebroeck, B., Reed, J. C., Valck, D. D., Grooten, J., Miyashita, T., Tanaka, S., Beyaert, R., Van Roy, F., and Fiers, W., 1993, Effect of bd-2 proto-oncogene expression on cellular sensitivity to tumor necrosis factor-mediated cytotoxicity, Oncogene 8: 1075–1081.PubMedGoogle Scholar
  317. Vaux, D. L., Weissman, I. L., and Kim, S. K., 1992, Prevention of programmed cell death in Caenorhabditis elegans by human bc1–2, Science 258: 1955–1957.Google Scholar
  318. Veis, D. J., Sorensen, C. M., Shutter, J. R., and Korsmeyer, S. J., 1993a, BcI-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair, Cell 75: 229–240.PubMedGoogle Scholar
  319. Veis, D. J., Sentman, C. L., Bach, E. A., and Korsmeyer, S. J., 1993b, Expression of the Bc1–2 protein in murine and human thymocytes and in peripheral T-lymphocytes, J. Immunol. 151: 2546–2554.PubMedGoogle Scholar
  320. Von Boehmer, H., Teh, H.-S., and Kisielow, P., 1989, The thymus selects the useful, neglects the useless and destroys the harmful, Immunol. Today 10: 57–61.Google Scholar
  321. Vuist, W. M., Levy, R., and Maloney, D. G., 1994, Lymphoma regression induced by monoclonal anti-idiotypic antibodies correlates with their ability to induce 1g signal transduction and is not prevented by tumor expression of high levels of bel 2 protein, Blood 83: 899–906.PubMedGoogle Scholar
  322. Wagner, A. J., Small, M. B., and Hay, N., 1993, Myc-mediated apoptosis is blocked by ectopic expression of Bel-2, Mol. Cell. Biol. 13: 2432–2440.PubMedGoogle Scholar
  323. Walker, N. I., Bennett, R. E., and Kerr, J. F. K., 1989, Cell death by apoptosis during involution of the lactating breast in mice and rats, Am. J. Pathol. 185: 19–32.Google Scholar
  324. Walker, P. R. C., Smith, T., Youdale, J., Leblanc, J. F., Whitfield, J. F., and Sikorska, M., 1991, Topoisomerase II-reactive drugs induce apoptosis in thymocytes, Cancer Res. 51: 1078–1085.PubMedGoogle Scholar
  325. Walton, M. I., Whysong, D., O’Connor, P. M., Hockenberry, D., Korsmeyer, S. J., and Kohn, K. W., 1993, Constitutive expression of human bcl-2 modulates nitrogen mustard and camtothecin induced apoptosis, Cancer Res. 53: 1853–1861.PubMedGoogle Scholar
  326. Wang, H. G., Miyashita, T., Takayama, S., Sato, T., Torigoe, T., Krajewski, S., Tanaka, S., Hovey, L., Troppmair, J., Rapp, U. R., and Reed, J. C., 1994, Apoptosis regulation by interaction of Bel-2 protein and raf-1 kinase, Oncogene 9: 2751–2756.PubMedGoogle Scholar
  327. Wang, L., Miura, M., Bergeron, L., Zhu, H., and Yuan, J., 1994, Ich-1, an Ice%ed-3-related gene, encodes both positive and negative regulators of programmed cell death, Cell 78: 739–750.Google Scholar
  328. Weaver, V. M., Lach, B., Walker, P. R., and Sikorska, M., 1993, Role of proteolysis in apoptosis: Involvement of serine proteases in internucleosomal DNA fragmentation in thymocytes, Biochem. Cell. Biol. 71: 488–500.PubMedGoogle Scholar
  329. Whyte, M., and Evan, G., 1995, The last cut is the deepest, Nature 376: 17–18.PubMedGoogle Scholar
  330. Williams, G. T., Smith, C. A., Spooncer, E., Dexter, T. M., and Taylor, D. R., 1990, Haemopoietic colony stimulating factors promote cell survival by suppressing apoptosis, Nature 343: 76–79.PubMedGoogle Scholar
  331. Wood, A. C., Waters, C. M., Garner, A., and Hickman, J. A., 1994, Changes in c-myc expression and the kinetics of dexamethasone-induced programmed cell death (apoptosis) in human lymphoid leukaemia cells, Br. J. Cancer 69: 663–669.PubMedGoogle Scholar
  332. Woronicz, J. D., Calnan, B., Ngo, V., and Winoto, A., 1994, Requirement for the orphan steroid receptor nur77 in apoptosis of T-cell hybridomas, Nature 367: 277–281.PubMedGoogle Scholar
  333. Wyllie, A. H., 1980, Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation, Nature 284: 555–556.PubMedGoogle Scholar
  334. Wyllie, A. H., 1987, Apoptosis: Cell death under homeostatic control, Arch. Toxicol. (Suppl.) 11: 3–10.Google Scholar
  335. Wyllie, A. H., 1992, Apoptosis and the regulation of cell numbers in normal and neoplastic tissues: An overview, Cancer and Metastasis Reviews 11: 95–103.PubMedGoogle Scholar
  336. Wyllie, A. H., Kerr, J. F. R., and Currie, A. R.,1980, Cell death: The significance of apoptosis, Int. Rev. Cytology 68: 251–306.Google Scholar
  337. Yang, E., Zha, J., Jockei, J., Boise, L. H., Thompson, C. B., and Korsmeyer, S. J., 1995, Bad, a heterodimeric partner for Bel-xL and bd-2, displaces bax and promotes cell death, Cell 80: 285–291.PubMedGoogle Scholar
  338. Yao, R., and Cooper, G. M., 1995, Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor, Science 267: 2003–2006.PubMedGoogle Scholar
  339. Yin, X. M., Oltval, Z. N., and Korsmeyer, S. J., 1994, BH1 and BH2 domains of Bc1–2 are required for inhibition of apoptosis and heterodimerization with Bax, Nature 369: 321–323.PubMedGoogle Scholar
  340. Yonish-Rouach, D., Resnitzky, D., Lotem, J., Sachs, L., Kimchi, A., and Oren, M., 1991, Wild-type p53 induces apoptosis of myeloid leukaemia cells that is inhibited by interleukin-6, Nature 352: 345–347.PubMedGoogle Scholar
  341. Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M., and Horvitz, H. R., 1993, The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-IB-converting enzyme, Cell 75: 641–652.PubMedGoogle Scholar
  342. Yunis, J. J., Frizzera, G., Oken, M. M., McKenna, J., Theologides, A., and Amesen, M., 1987, Multiple recurrent genomic defects in follicular lymphoma—a possible model for cancer, N. Engl. J. Med. 316: 79–84.PubMedGoogle Scholar
  343. Zambetti, G. P., and Levine, A. J., 1993, A comparison of the biological activitites of wild-type and mutant p53, FASEB J. 7: 855–865.Google Scholar
  344. Zhan, Q., Fan, S., Bae, I., Guillouf, C., Liebermann, D. A., O’Connor, P. M., and Fornace A. J., Jr., 1994, Induction of bax by genotoxic stress in human cells correlates with normal p53 status and apoptosis, Oncogene 9: 3743–3751.PubMedGoogle Scholar
  345. Zhivotovsky, B., Wade, D., Gahm, A., Orrenius, S., and Nicotera, P., 1994, Formation of 50kbp chromatin fragments in isolated liver nuclei is mediated by protease and endonuclease activation, FEBS Lett. 351: 150–154.PubMedGoogle Scholar
  346. Zhu, Y. M., Bradbury, D., and Russell, N., 1993, Expression of different conformations of p53 in the blast cells of acute myeloblastic leukaemia is related to in vitro growth characteristics, Br. J. Cancer 68: 851–855PubMedGoogle Scholar
  347. Zhu, Y. M., Bradbury, D. A., and Russell, N. H., 1994, Wild-type p53 is required for apoptosis induced by growth factor deprivation in factor-dependent leukaemic cells, Br. J. Cancer 69: 468–472.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Rachel S. Chapman
    • 1
  • Christopher D. Gregory
    • 2
  • Caroline Dive
    • 1
  1. 1.Molecular Pharmacology Group, School of Biological SciencesUniversity of ManchesterManchesterUK
  2. 2.Department of Immunology, School of MedicineUniversity of BirminghamBirminghamUK

Personalised recommendations