The Tumor-Necrosis-Factor-Related Superfamily of Ligands and Receptors

  • David Cosman
Part of the Blood Cell Biochemistry book series (BLBI, volume 7)


This review attempts to summarize recent progress in the discovery of an extensive family of ligands and receptors structurally related to tumor necrosis factor (TNF) and its receptors. The structures of these molecules are discussed, together with what is known of their biology. Because TNF has been studied extensively for a number of years and comprehensively reviewed (Vassilli, 1992; Tracey and Cerami, 1994), this review concentrates on the more recently discovered members of the family and refers to the TNF system for comparison. Likewise, although the low-affinity receptor for nerve growth factor (NGF) is a member of the TNFR family, NGF is not structurally related to TNF and is not discussed. The reader is referred to recent reviews by Bradshaw et al. (1993) and Eide et al. (1993) for more information on NGF and its homolgues, the neurotropins.


Nerve Growth Factor CD40 Ligand CD40L Expression Germinal Center Formation TNFR Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi, M., Watanabe-Fukunaga, R., and Nagata, S., 1993, Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of 1pr mice, Proc. Natl. Acad. Sci. U.S.A. 90: 1756–1760.PubMedCrossRefGoogle Scholar
  2. Agematsu, K., Kobata, T., Sugita, K., Freeman, G. J., Beckmann, M. P., Schlossman, S. E, and Morimoto, C., 1994, Role of CD27 in T cell immune response. Analysis by recombinant soluble CD27, J. Immunol. 153: 1421 1429.Google Scholar
  3. Alderson, M. R., Armitage, R. J., Tough, T. W., Strockbine, L., Fanslow, W. C., and Spriggs, M. K., 1993a, CD40 expression by human monocytes: Regulation by cytokines and activation of monocytes by the ligand for CD40, J. Exp. Med. 178: 669–674.PubMedCrossRefGoogle Scholar
  4. Alderson, M. R., Armitage, R. J., Maraskovsky, E., Tough, T. W., Roux, E., Schooley, K., Ramsdell, F., and Lynch, D. H., 1993b, Fas transduces activation signals in normal human T lymphocytes, J. Exp. Med. 178: 2231–2235.CrossRefGoogle Scholar
  5. Alderson, M. R., Smith, C. A., Tough, T. W., Davis-Smith, T., Armitage, R. J., Falk, B., Roux, E., Baker, E., Sutherland, G. R., Din., W. S., and Goodwin, R. G., 1994, Molecular and biological characterization of human 4–1BB and its ligand, Eur. J. Immunol. 24: 2219–2227.Google Scholar
  6. Allen, R. C., Armitage, R. J., Conley, M. E., Rosenblatt, H., Jenkins, N. A., Copeland, N. G., Bedell, M. A., Edelhoff, S., Disteche, C. M., Simoneaux, D. K., Fanslow, W. C., Belmont, J., Spriggs, M. K., 1993, CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome, Science 259: 990–993.PubMedCrossRefGoogle Scholar
  7. Allen, R. D., Marshall, J. D., Roths, J. B., and Sidman, C. D., 1990, Differences defined by bone marrow transplantation suggest that 1pr and gld are mutations of genes encoding an interacting pair of molecules, J. Exp. Med. 172: 1367–1375.PubMedCrossRefGoogle Scholar
  8. Andreesen, R., Burger, W., Löhr, G. W., and Bross, K. J., 1989, Human macrophages can express the Hodgkin’s cell-associated antigen Ki-1 (CD30), Am. J. Pathol. 134: 187–192.PubMedGoogle Scholar
  9. Armitage, R. J., Fanslow, W. C., Strockbine, L., Sato, T. A., Clifford, K. N., Macduff, B. M., Anderson, D. M., Gimpel, S. D., Davis-Smith, T., Maliszewski, C. R., Clark, E. A., Smith, C. A., Grabstein, K. H., Cosman, D., and Spriggs, M. K., 1992, Molecular and biological characterization of a murine ligand for CD40 Nature 357: 80–82.PubMedCrossRefGoogle Scholar
  10. Armitage, R. J., Macduff, B. M., Spriggs, M. K., and Fanslow, W. C., 1993a, Human B cell proliferation and Ig secretion induced by recombinant CD40 ligand are modulated by soluble cytokines, J. Immunol. 150: 3671–3680.Google Scholar
  11. Armitage, R. J., Tough, T. W., Macduff, B. M., Fanslow, W. C., Spriggs, M. K., Ramsdell, F., and Alderson, M. R., 1993b, CD40 ligand is a T cell growth factor, Eue. J. Immunol. 23: 2326–2331.CrossRefGoogle Scholar
  12. Aruffo, A., Farrington, M., Hollenbaugh, D., Li, X., Milatovich, A., Nonoyama, S., Bajorath, J., Grosmaire, L. S., Stenkamp, R., Neubauer, M., Roberts, R. L., Noelle, R. J., Ledbetter, J. A., Francke, U., and Ochs, H. D., 1993, The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome, Cell 72: 291–300.PubMedCrossRefGoogle Scholar
  13. Baens, M., Chaffanet, M., Cassiman, J.-J., van den Berghe, H., and Marynen, P., 1993, Construction and evaluation of a hncDNA library of human 12p transcribed sequences derived from a somatic cell hybrid, Genomics 16: 214–218.PubMedCrossRefGoogle Scholar
  14. Baker, E., Chen, L. Z., Smith, C. A., Callen, D. F., Goodwin, R., and Sutherland, G.R., 1991, Chromosomal location of the human tumor necrosis factor receptor genes, Cytogenet. Cell Genet. 57: 117–118.PubMedCrossRefGoogle Scholar
  15. Banchereau, J., and Rousset, F., 1991, Growing human B lymphocytes in the CD40 system, Nature 353:678–679. Banchereau, J., de Paoli, P., Vallé, A., Garcia, E., and Rousset, F., 1991, Long-term human B cell lines dependent on interleukin-4 and antibody to CD40, Science 251: 70–72.PubMedCrossRefGoogle Scholar
  16. Banchereau, J., Bazan, F., Blanchard, D., Briere, F., Galizzi, J.-P., van Kooten, C., Liu, Y. J., Rousset, F., and Saeland, S., 1994, The CD40 antigen and its ligand, Annu. Rev. Immunol. 12: 881–992.PubMedCrossRefGoogle Scholar
  17. Banner, D. W., D’Arcy, A., Janes, W., Gentz, R., Schoenfeld, H.-J., Broger, C., Loetscher, H., and Lesslauer, W., 1993, Crystal structure of the soluble human 55 kd TNF receptor-human TNFß complex: Implications for TNF receptor activation, Cell 73: 431–445.PubMedCrossRefGoogle Scholar
  18. Barrett, T. B., Shu, G., and Clark, E. A., 1991, CD40 signaling activates CD11a/CD18 (LFA-1) mediated adhesion in B cells, J. Immunol. 146: 1722–1729.PubMedGoogle Scholar
  19. Baum, P. R., Gayle, R. B., Ramsdell, F., Srinivasan, S., Sorensen, R. A., Watson, M. L., Seldin, M. F., Baker, E., Sutherland, G. R., Clifford, K. N., Alderson, M. R., Goodwin, R. G., and Fanslow, W. C., 1994, Molecular characterization of murine and human OX40/0X40ligand systems: Identification of a human OX40 ligand as the HTLV-1 regulated protein gp34, EMBO J. 13: 3992–4001.PubMedGoogle Scholar
  20. Björck, P., Elenström-Magnusson, C., Rosén, A., Severinson, E., and Paulie, S., 1993, CD23 and CD21 function as adhesion molecules in homotypic aggregation of human B lymphocytes, Eue. J. Immunol. 23: 1771–1775.CrossRefGoogle Scholar
  21. Bossu, P., Singer, G. G., Andres, P., Ettinger, R., Marshak-Rothstein, A., and Abbas, A. K., 1993, Mature CD4+ T lymphocytes from MRL/lpr mice are resistant to receptor-mediated tolerance and apoptosis, J. Immunol. 151: 7233–7239.PubMedGoogle Scholar
  22. Bowen, M. A., Olsen, K. J., Cheng, L., Avila, D., and Podack, E. R., 1993, Functional effects of CD30 on a large granular lymphoma cell line, YT. Inhibition of cytotoxicity, regulation of CD28 and IL-2R, and induction of homotypic aggregation, J. Immunol. 151: 5896–5906.PubMedGoogle Scholar
  23. Bowman, M. R., Crimmins, M. A. V., Yetz-Aldape, J., Kriz, R., Kelleher, K., and Herrmann, S., 1994, The cloning of CD70 and its identification as the ligand for CD27, J. Immunol. 152: 1756–1761.PubMedGoogle Scholar
  24. Bradshaw, R. A., Blundell, T. L., Lapatto, R., McDonald, N. Q., and Murray-Rust, J., 1993, Nerve growth factor revisited, Trends Biochem. Sci. 18: 48–52.PubMedCrossRefGoogle Scholar
  25. Browning, J. L., Androlewicz, M. J., and Ware, C. F., 1991, Lymphotoxin and an associated 33-kDa glycoprotein are expressed on the surface of an activated human T cell hybridoma, J. Immunol. 147: 1230–1237.PubMedGoogle Scholar
  26. Browning, J. L., Ngam-ek, A., Lawton, P., DeMarinis, J., Tizard, R., Chow, E. P., Hession, C., O’Brien-Greco, B., Foley, S. F., and Ware, C. F., 1993, Lymphotoxin 13, a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface, Cell 72: 847–856.PubMedCrossRefGoogle Scholar
  27. Calderhead, D. M., Buhlmann, J. E., van den Eertwegh, A. J. M., Claassen, E., Noelle, R. J., and Fell, H.P., 1993Google Scholar
  28. Cloning of mouse Ox40: A T cell activation marker that may mediate T–B cell interactions, J. Immunol. 151: 5261–5271.Google Scholar
  29. Cambiaggi, A., Cantoni, C., Marciano, S., De Totero, D., Pileri, S., Tazzari, P. L., Stein, H., and Ferrini, S., 1993Google Scholar
  30. Cultured human NK cells express the Ki-1/CD30 antigen, Br. J. Haematol. 85:270–276.Google Scholar
  31. Camerini, D., Walz, G., Loenen, W. A. M., Borst, J., and Seed, B., 1991, The T cell activation antigen CD27 is a member of the nerve growth factor/tumor necrosis factor receptor gene family, J. Immunol. 147: 3165–3169.PubMedGoogle Scholar
  32. Cayabyab, M., Phillips, J. H., and Lanier, L. L., 1994, CD40 preferentially costimulates activation of CD4+ T lymphocytes, J. Immunol. 152: 1523–1531.PubMedGoogle Scholar
  33. Chalupny, N. J., Peach, R., Hollenbaugh, D., Ledbetter, J. A., Farr, A. G., and Aruffo, A., 1992, T-cell activation molecule 4–1BB binds to extracellular matrix proteins, Proc. Natl. Acad. Sci. U.S.A. 89: 10360–10364.PubMedCrossRefGoogle Scholar
  34. Clark, E. A., and Lane, P. J. L., 1991, Regulation of human B-cell activation and adhesion, Annu. Rev. Immunol. 9: 97–127.PubMedCrossRefGoogle Scholar
  35. Clark, E. A., and Ledbetter, J. A., 1986, Activation of human B cells mediated through two distinct cell surface differentiation antigens, Bp35 and Bp50, Proc. Natl. Acad. Sci. U.S.A. 83: 4494 4498.Google Scholar
  36. Clark, E. A., and Ledbetter, J. A., 1994, How B and T cells talk to each other, Nature 367: 425–428.PubMedCrossRefGoogle Scholar
  37. Conley, M. E., 1992, Molecular approaches to analysis of X-linked immunodeficiencies, Annu. Rev. Immunol. 10: 215–238.PubMedCrossRefGoogle Scholar
  38. Cosman, D., 1993, The hematopoietin receptor superfamily, Cytokine 5: 95–106.PubMedCrossRefGoogle Scholar
  39. Crowe, P. D., VanArsdale, T. L., Walter, B. N., Ware, C. F., Hession, C., Ehrenfels, B., Browning, J. L., Din, W. S., Goodwin, R. G., and Smith, C. A., 1994, A lymphotoxin-ß-specific receptor, Science 264: 707–710.PubMedCrossRefGoogle Scholar
  40. Daniel, P. T., and Krammer, P. H., 1994, Activation induces sensitivity toward APO-1 (CD95)-mediated apoptosis in human B cells, J. Immunol. 152: 5624–5632.PubMedGoogle Scholar
  41. de Jong, R., Loenen, W. A. M., Brouwer, M., can Emmerik, L., de Vries, E. F. R., Brost, J., and van Lier, R. A. W., 1991, Regulation of expression of CD27, a T cell-specific member of a novel family of membrane receptors, J. Immunol. 146: 2488–2494.PubMedGoogle Scholar
  42. De Togni, P., Goellner, J., Ruddle, N. H., Streeter, R R., Fick, A., Mariathasan, S., Smith, S. C., Carlson, R., Shornick, L. P., Strauss-Schoenberger, J., Russell, J. H., Karr, R., and Chaplin, D. D., 1994, Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin, Science 264: 703–707.PubMedCrossRefGoogle Scholar
  43. DiSanto, J. R, Bonnefoy, J. Y., Gauchat, S. F., Fischer, A., and de Saint Basile, G., 1993, CD40 ligand mutations in X-linked immunodeficiency with hyper-IgM, Nature 361: 541–543.PubMedCrossRefGoogle Scholar
  44. Durie, F. H., Fava, R. A., Foy, T. M., Aruffo, A., Ledbetter, J. A., and Noelle, R. J., 1993, Prevention of collagen-induced arthritis with an antibody to gp39, the ligand for CD40, Science 261: 1328–1330.PubMedCrossRefGoogle Scholar
  45. Dürkop, H., Latza, U., Hummel, M., Eitelbach, F., Seed, B., and Stein, H., 1992, Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin’s disease, Cell 68: 421–427.PubMedCrossRefGoogle Scholar
  46. Eck, M. J., and Sprang, S. R., 1989, The structure of tumor necrosis factor-ß at 2.6 A resolution. Implications for receptor binding, J. Biol. Chem. 264: 17595–17605.PubMedGoogle Scholar
  47. Eck, M. J., Ultsch, M., Rinderknecht, E., de Vos, A. M., and Sprang, S. R., 1992, The structure of human lymphotoxin (tumor necrosis factor-ß) at 1.9 A resolution, J. Biol. Chem. 267: 2119–2122.PubMedGoogle Scholar
  48. Eide, F. F., Lowenstein, D. H., and Reichardt, L. F., 1993, Neurotrophins and their receptors—current concepts and implications for neurologic disease, Exp. Neurol. 131: 200–214.CrossRefGoogle Scholar
  49. Ellis, T. M., Simms, P. E., Slivnick, D. J., Jack, H.-M., and Fisher, R. I., 1993, CD30 is a signal-transducing molecule that defines a subset of human activated CD45R0+ T cells, J. Immunol. 151: 2380–2389.PubMedGoogle Scholar
  50. Elson, L. H., Shaw, S., Van Lier, R. A. W., and Nutman, T. B., 1994, T cell subpopulation phenotypes in filarial infections: CD27 negativity defines a population greatly enriched for Th2 cells, Int. Immunol. 6: 1003–1009.PubMedCrossRefGoogle Scholar
  51. Fanslow, W. C., Anderson, D., Grabstein, K. H., Clark, E. A., Cosman, D., and Armitage, R. J., 1992, Soluble forms of CD40 inhibit biologic responses of human B cells, J. Immunol. 149: 655–660.PubMedGoogle Scholar
  52. Fanslow, W. C., Clifford, K. N., Seaman, M., Alderson, M. R., Spriggs, M. K., Armitage, R. J., and Ramsdell, F., 1994, Recombinant CD40 ligand exerts potent biologic effects on T cells, J. Immunol. 152: 4262–4269.PubMedGoogle Scholar
  53. Fonatsch, C., Latza, U., Dürkop, H., Rieder, H., and Stein, H., 1992, Assignment of the human CD30 (Ki-1) gene to 1p36, Genomics 14: 825–826.PubMedCrossRefGoogle Scholar
  54. Foy, T. M., Shepherd, D. M., Durie, F. H., Aruffo, A., Ledbetter, J. A., and Noelle, R. J., 1993 In vivo CD40gp39 interactions are essential for thymus-dependent humoral immunity. II. Prolonged suppression of the humoral immune response by an antibody to the ligand for CD40, gp39, J. Exp. Med. 178: 1567–1575.Google Scholar
  55. Foy, T. M., Laman, J. D., Ledbetter, J. A., Aruffo, A., Claassen, E., and Noelle, R. J., 1994, gp39–CD40 interactions are essential for germinal center formation and the development of B cell memory, J. Exp. Med. 180: 157–163.Google Scholar
  56. Froese, P., Lemke, H., Gerdes, J., Haysteen, B., Schwarting, R., Hansen, H., and Stein, H., 1987, Biochemical characterization and biosynthesis of the Ki-1 antigen in Hodgkin-derived and virus-transformed human B and T lymphoid cell lines, J. Immunol. 139: 2081–2087.PubMedGoogle Scholar
  57. Fuchs, P., Strehl, S., Dworzak, M., Himmler, A., and Ambros, P. F., 1992, Structure of the human TNF receptor 1 (p60) gene (TNFR1) and localization to chromosome 12p13, Genomics 13: 219–224.PubMedCrossRefGoogle Scholar
  58. Fuleihan, R., Ramesh, N., Loh, R., Jabara, H., Rosen, R. S., Chatila, T., Fu, S. M., Stamenkovic, I., and Geha, R. S., 1993, Defective expression of the CD40 ligand in X chromosome-linked immunoglobulin deficiency with normal or elevated IgM, Proc. Natl. Acad. Sci. U.S.A. 90: 2170–2173.PubMedCrossRefGoogle Scholar
  59. Fuleihan, R., Ramesh N., Horner A., Ahern, D., Belshaw, R. J., Alberg, D. G., Stamenkovic, I., Harmon, W., and Geha, R. S., 1994, Cyclosporin A inhibits CD40 ligand expression in T lymphocytes, J. Clin. Invest. 93: 1315 1320.Google Scholar
  60. Funakoshi, S., Longo, D. L., Beckwith, M., Conley, D. K., Tsarfaty, G., Tsarfaty, I., Armitage, R. J., Fanslow, W. C., Spriggs, M. K., and Murphy, W. J., 1994, Inhibition of human B-cell lymphoma growth by CD40 stimulation, Blood 83: 2787–2794.PubMedGoogle Scholar
  61. Galy, A. H. M., and Spits, H., 1992, CD40 is functionally expressed on human thymic epithelial cells, J. Immunol. 149: 775–782.PubMedGoogle Scholar
  62. Gauchat, J.-F., Henchoz, S., Mazzei, G., Aubry, J.-P., Brunner, T., Blasey, H., Life, P., Talabot, D., Flores-Romo, L., Thompson, J., Kishi, K., Butterfield, J., Dahinden, C., and Bonnefoy, J.-Y., 1993, Induction of human IgE synthesis in B cells by mast cells and basophils, Nature 365: 340–343.PubMedCrossRefGoogle Scholar
  63. Gillette-Ferguson, I., and Sidman, C. L., 1994, A specific intercellular pathway of apoptotic cell death is defective in the mature peripheral T cells of autoimmune 1pr and gld mice, Eue. J. Immunol. 24: 1181–1185.CrossRefGoogle Scholar
  64. Godfrey, W. R., Buck, D., Harara, M. A., and Engleman, E. G., 1993, Molecular cloning of a cDNA encoding the human homolog of the rat OX40 antigen (abstr.), Tissue Antigen 42: 253.Google Scholar
  65. Godfrey, W. R., Fagnoni, E F., Harara, M. A., Buck, D., and Engleman, E. G., 1994, Identification of a human OX-40 ligand, a costimulator of CD4+ T cells with homology to tumor necrosis factor, J. Exp. Med. 180: 757–762.PubMedCrossRefGoogle Scholar
  66. Goodwin, R. G., Anderson, D., Jerzy, R., Davis, T., Brannan, C. I., Copeland, N. G., Jenkins, N. A., and Smith, C. A., 1991, Molecular cloning and expression of the type 1 and type 2 murine receptors for tumor necrosis factor, Mol. Cell. Biol. 11: 3020–3026.PubMedGoogle Scholar
  67. Goodwin, R. G., Alderson, M. R., Smith, C. A., Armitage, R. J., VandenBos, T., Jerzy, R., Tough, T. W., Schoenborn, M. A., Davis-Smith, T., Hennen, K., Falk, B., Cosman, D., Baker, E., Sutherland, G. R., Grabstein, K. H., Farrah, T., Giri, J. G., and Beckmann, M. P., 1993a, Molecular and biological characterization of a ligand for CD27 defines a new family of cytokines with homology to tumor necrosis factor, Cell 73: 447–456.PubMedCrossRefGoogle Scholar
  68. Goodwin, R. G., Din, W. S., Davis-Smith, T., Anderson, D. M., Gimpel, S. D., Sato, T. A., Maliszewski, C. R., Brannan, C. I., Copeland, N. G., Jenkins, N. A., Farrah, T., Armitage, R. J., Fanslow, W. C., and Smith, C. A., 1993b, Molecular cloning of a ligand for the inducible T-cell gene 4–1BB: A member of an emerging family of cytokines with homology to tumor necrosis factor, Eue. J. Immunol. 23: 2631–2641.CrossRefGoogle Scholar
  69. Gordon, J., Millsum, M. J., Guy, G. R., and Ledbetter, J. A., 1988, Resting B lymphocytes can be triggered directly through the CDw40 (Bp50) antigen, J. Immunol. 140: 1425–1430.PubMedGoogle Scholar
  70. Grabstein, K. H., Maliszewski, C. R., Shanebeck, K., Sato, T. A., Spriggs, M. K., Fanslow, W. C., and Armitage, R. J., 1993, The regulation of T cell-dependent antibody formation in vitro by CD40 ligan and IL-2, J. Immunol. 150: 3141–3147.PubMedGoogle Scholar
  71. Graf, D., Korthäuer, U., Mages, H. W., Senger, G., and Kroczek, R. A., 1992, Cloning of TRAP, a ligand for CD40 on human T cells, Eur. J. Immunol. 22: 3191–3194.PubMedCrossRefGoogle Scholar
  72. Gravestein, L. A., Blom, B., Nolten, L. A., de Vries, E., van der Horst, G., Ossendrop, F., Borst, J., and Loenen, W. A. M., 1993, Cloning and expression of murine CD27: Comparison with 4–1BB, another lymphocyte-specific member of the nerve growth factor receptor family, Eue. J. Immunol. 23: 943–950.CrossRefGoogle Scholar
  73. Green, D. R., and Scott, D. W., 1994, Activation-induced apoptosis in lymphocytes, Cure. Opin. Immunol. 6: 476–487.CrossRefGoogle Scholar
  74. Grimaldi, J. C., Torres, R., Kozak, C. A., Chang, R., Clark, E. A., Howard, M., and Cockayne, D. A., 1992, Genomic structure and chromosomal mapping of the murine CD40 gene, J. Immunol. 149: 3921–3926.PubMedGoogle Scholar
  75. Gruss, H.-J., Boiani, N., Williams, D. E., Armitage, R. J., Smith, C. A., and Goodwin, R. G., 1994, Pleiotropic effects of the CD30 ligand on CD30-expressing cells and lymphoma cell lines. Blood 83: 2045–2056.PubMedGoogle Scholar
  76. Hansen, H., Lemke, H., Bredfeldt, G., Konnecke, I., and Haysteen, B., 1989, The Hodgkin-associated Ki-1 antigen exists in an intracellular and a membrane-bound form, Z. Hoppe Seylers Biol. Chem. 370: 409–416.CrossRefGoogle Scholar
  77. Heath, A. W., Chang, R., Harada, N., Santos-Argumedo, L., Gordon, J., Hannum, C., Campbell, D., Shanafelt, A. B.. Clark, E. A., Torres, R., and Howard, M., 1993, Antibodies to murine CD40 stimulate normal B lymphocytes but inhibit proliferation of B lymphoma cells, Cell. Immunol. 152: 468–480.PubMedCrossRefGoogle Scholar
  78. Hintzen, R. Q., de Jong, R., Hack, C. E., Chamuleau, M., de Vries, E. F. R., ten Berge, I. J. M., Borst, J., and van Lier, R. A. N., 1991a, A soluble form of the human T cell differentiation antigen CD27 is released after triggering of the TCRICD3 complex, J. Immunol. 147: 29–35.PubMedGoogle Scholar
  79. Hintzen, R. Q., van Lier, R. A., Kuijpers, K. C., Baars, P. A., Schaasberg, W., Lucas, C. J., and Polman, C. H., 1991b, Elevated levels of a soluble form of the T cell activation antigen CD27 in cerebrospinal fluid of multiple sclerosis patients, J. Neuroimmunol. 35: 211–217.PubMedCrossRefGoogle Scholar
  80. Hintzen, R. Q., de Jong, R., Lens, S. M. A., Brouwer, M., Baars, P., and van Lier, R. A. W., 1993, Regulation of CD27 expression on subsets of mature T-lymphocytes, J. Immunol. 151: 2426–2435.PubMedGoogle Scholar
  81. Hintzen, R. Q., de Jong, R., Lens, S. M. A., and van Lier, R. A. W., 1994a, CD27: Marker and mediator of T-cell activation? Immunol. Today 15:307–3I1.Google Scholar
  82. Hintzen, R. Q., Lens, S. M. A., Koopman, G., Pals, S. T., Spits, H., and van Lier, R. A. W., 1994b, CD70 represents the human ligand for CD27, Int. Immunol. 6: 477–480.PubMedCrossRefGoogle Scholar
  83. Hintzen, R. Q., Lens, S. M., Beckmann, M. P., Goodwin, R. G., Lynch, D., and van Lier, R. A. W., 1994e, Characterization of the human CD27 ligand, a novel member of the TNF gene family, J. Immunol. 152: 1762 1773.Google Scholar
  84. Holder, M. J., Wang, H., Milner, A. E., Casamayor, M., Armitage, R., Spriggs, M. K., Fanslow, W. C., MacLennan, I. C. M., Gregory, C. D., and Gordon, J., 1993, Suppression of apoptosis in normal and neoplastic human B lymphocytes by CD40 ligand is independent of Bel-2 induction, Eur..1. Immunol. 23: 2368–2371.CrossRefGoogle Scholar
  85. Hollenbaugh, D., Grosmaire, L. S., Kullas, C. D., Chalupny, N. J., Braesch-Anderson, S., Noelle, R. J., Stamenkovic, I., Ledbetter, J. A., and Aruffo, A., 1992, The human T cell antigen gp39, a member of the TNF gene family, is a ligand for the CD40 receptor: Expression of a soluble form of gp39 with B cell costimulatory activity, EMBO J. 11: 4313–4321.PubMedGoogle Scholar
  86. Itoh, N., and Nagata, S., 1993, A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen, J. Biol. Chem. 268: 10932–10937.PubMedGoogle Scholar
  87. Itoh, N., Yonehara, S., Ishii, A., Yonehara, M., Mizushima, S.-I., Sameshima, M., Hase, A., Seto, Y., and Nagata, S., 1991, The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis, Cell 66: 233–243.PubMedCrossRefGoogle Scholar
  88. Iwai, K., Miyawaki, T., Takizawa, T., Konno, A., Ohta, K., Yachie, A., Saki, H., and Taniguchi, N., 1994, Differential expression of bel-2 and susceptibility to anti-Fas-mediated cell death in peripheral blood lymphocytes, monocytes, and neutrophils, Blood 84: 1201–1208.PubMedGoogle Scholar
  89. Jabara, H. H., Fu, S. M., Geha, R. S., and Vercelli, D., 1990, CD40 and IgE: Synergism between anti-CD40 monoclonal antibody and interleukin 4 in the induction of IgE synthesis by highly purified human B cells, J. Exp. Med. 172: 1861–1864.PubMedCrossRefGoogle Scholar
  90. Johnson, D., Lanahan, A., Buck, C. R., Sehgal, A., Morgan, C., Mercer, E., Bothwell, M., and Chao, M., 1986, Expression and structure of the human NGF receptor, Cell 47: 545–554.PubMedCrossRefGoogle Scholar
  91. Jones, E. Y., Stuart, D. I., and Walker, N. P. C., 1989, Structure of tumour necrosis factor, Nature 338:225–228. Kabelitz, D., Pohl, T., and Pechhold, K., 1993, Activation-induced cell death (apoptosis) of mature peripheral T lymphocytes, Immunol. Today 14: 338–339.Google Scholar
  92. Kägi, D., Ledermann, B., Bürki, K., Seiler, P., Odermatt, B., Olsen, K. J., Podack, E. R., Zinkernagel, R. M., and Hengartner, H., 1994a. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforindeficient mice, Nature 369: 31–37.PubMedCrossRefGoogle Scholar
  93. Kägi, D., Vignaux, F., Ledermann, B., Bürki, K., Depraetere, V., Nagata, S., Hengartner, H., and Golstein, P., 1994b, Fas and perform pathways as major mechanisms of T cell-mediated cytotoxicity, Science 265: 528–530.PubMedCrossRefGoogle Scholar
  94. Kawabe, T., Naka, T., Yoshida, K., Tanaka, T., Fujiwara, H., Suematsu, S., Yoshida, N., Kishimoto, T., and Kikutani, H., 1994, The immune responses in CD40-deficient mice: Impaired immunoglobulin class switching and germinal center formation, Immunity 1: 167–178.PubMedCrossRefGoogle Scholar
  95. Kennedy, M. K., Mohler, K. M., Shanebeck, K. D., Baum, P. R., Picha, K. S., Otten-Evans, C. A., Janeway, C. A., Jr., and Grabstein, K. H., 1994, Induction of B cell costimulatory function by recombinant murine CD40 ligand, Eur. J. Immunol. 24: 116–123.PubMedCrossRefGoogle Scholar
  96. Kim, Y.-J., Pollok, K. E., Zhou, A., Shaw, A., Bohlen, J. B., Fraser, M., and Kwon, B. A., 1993, Novel T cell antigen 4–1BB associates with the protein tyrosine kinase p56IckI, J. Immunol. 151: 1255–1262.PubMedGoogle Scholar
  97. Klaus, S. J., Pinchuk, L. M., Ochs, H. D., Law, C.-L., Fanslow, W. C., Armitage, R. J., and Clark, E. A., 1994, Costimulation through CD28 enhances T cell-dependent B cell activation via a CD40–CD40L interaction, J. Immunol. 152: 5643–5652.PubMedGoogle Scholar
  98. Kojima, H., Shinohara, N., Hanaoka, S., Someya-Shirota, Y., Takagaki, Y., Ohno, H., Saito, T., Katayama, T., Yagita, H., Okumura, K., Shinkai, Y., Alt, F. W., Matsuzawa, A., Yonehara, S., and Takayama, H., 1994, Two distinct pathways of specific killing revealed by perforin mutant cytotoxic T lymphocytes, Immunity 1: 357–364.PubMedCrossRefGoogle Scholar
  99. Korthäuer, U., Graf, D., Mages, H. W., Brière, F., Padayachee, M., Malcolm, S., Ugazio, A. G., Notarangelo, L. D., Levinsky, R. J., and Kroczek, R. A., 1993, Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper IgM, Nature 361: 539–541.PubMedCrossRefGoogle Scholar
  100. Krammer, P. H., Behrmann, I., Daniel, P., Dhein, J., and Debatin, K. M., 1994, Regulation of apoptosis in the immune system, Cur Opin. Immunol. 6: 279–289.CrossRefGoogle Scholar
  101. Kriegler, M., Perez, C., DeFay, K., Albert, I., and Lu, S. D., 1988, A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: Ramifications for the complex physiology of TNF, Cell 53: 45–53.PubMedCrossRefGoogle Scholar
  102. Kwekkeboom, J., de Rijk, D., Kasran, A., Barcy, S., de Groot, C., and de Boer, M., 1994, Helper effector function of human T cells stimulated by anti-CD3 mAb can be enhanced by costimulatory signals and is partially dependent on CD40–CD40 ligand interaction, Eur. J. Immunol. 24: 508–517.PubMedCrossRefGoogle Scholar
  103. Kwon, B. S., and Weissman, S. M., 1989, cDNA sequences of two inducible T-cell genes, Proc. Natl. Acad. Sci. U.S.A. 86: 1963–1967.Google Scholar
  104. Kwon, B. S., Kozak, C. A., Kim, K. K., and Pickard, R. T., 1994, Genomic organization and chromosomal localization of the T-cell Antigen 4–1BB, J. Immunol. 152: 2256–2262.PubMedGoogle Scholar
  105. Lafage-Pochitaloff, M., Herman, P., Birg, F., Galizzi, J. P., Simonetti, J., Mannoni, P., and Banchereau, J., 1994, Localization of the human CD40 gene to chromosome 20, bands q12–g13.2, Leukemia 8: 1172–1175.PubMedGoogle Scholar
  106. Lane, P., Traunecker, A., Hubele, S., Inui, S., Lanzavecchia, A., and Gray, D., 1992, Activated human T cells express a ligand for the human B cell-associated antigen CD40 which participates in T cell-dependent activa-tion of B lymphocytes, Eur. J. Immunol. 22: 2573–2578.PubMedCrossRefGoogle Scholar
  107. Lane, P., Brocker, T., Hubele, S., Padovan, E., Lanzavecchia, A., and McConnell, F., 1993, Soluble CD40 ligand can replace the normal T cell-derived CD40 ligand signal to B cells in T cell-dependent activation, J. Exp. Med. 177: 1209–1213.PubMedCrossRefGoogle Scholar
  108. Latza, U., Dürkop, H., Schnittger, S., Ringeling, J., Eitelbach, F., Hummel, M., Fonatsch, C., and Stein, H., 1994, The human OX40 homolog: cDNA structure, expression and chromosomal assignment of the ACT35 antigen, Eue J. Immunol. 24: 677–683.CrossRefGoogle Scholar
  109. Lederman, S., Yellin, M. J., Krichevsky, A., Belko, J., Lee, J. J., and Chess, L., 1992, Identification of a novel surface protein on activated CD4+ T cells that induces contact-dependent B cell differentiation (help), J. Exp. Med. 175: 1091–1101.PubMedCrossRefGoogle Scholar
  110. Lichter, R, Walczak, H., Weitz, S., Behrmann, I., and Krammer, P. H., 1992, The human APO-1 (APT) antigen maps to 10g23, a region that is syntenic with mouse chromosome 19, Genomics 14: 179–180.PubMedCrossRefGoogle Scholar
  111. Liu, Y.-J., Joshua, D. E., Williams, G. T., Smith, C. A., Gordon, J., and MacLennon, I. C. M., 1989, Mechanism of antigen-driven selection in germinal centers, Nature 342: 929–931.PubMedCrossRefGoogle Scholar
  112. Loenen, W. A. M., Gravestein, L. A., Beumer, S., Melief, C. J. M., Hagemeijer, A., and Borst, J., 1992, Genomic organization and chromosomal localization of the human CD27 gene, J. Immunol. 149: 3937–3943.PubMedGoogle Scholar
  113. Loetscher, H., Pan, Y-C. E., Lahm, H.-W., Gentz, R., Brockhaus, M., Tabuchi, H., and Lesslauer, W., 1990, Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor, Cell 61: 351–359.PubMedCrossRefGoogle Scholar
  114. Lynch, D. H., Watson, M. L., Alderson, M. R., Baum, P. R., Miller, R. E., Tough, T., Gibson, M., Davis-Smith, T., Smith, C. A., Hunter, K., Bhat, D., Din, W., Goodwin, R. G., and Seldin, M. F., 1994, The mouse Fas-ligand gene is mutated in gld mice and is part of a TNF family gene cluster, Immunity 1: 131–136.PubMedCrossRefGoogle Scholar
  115. Maliszewski, C. R., Grabstein, K., Fanslow, W. C., Armitage, R., Spriggs, M. K., and Sato, T. A., 1993, Recombinant CD40 ligand stimulation of murine B cell growth and differentiation: Cooperative effects of cytokines, Eur. J. Immunol. 23: 1044–1049.PubMedCrossRefGoogle Scholar
  116. Mallet, S., Fossum, S., and Barclay, A. M., 1990, Characterization of the MRC OX40 antigen of activated CD4 positive T lymphocytes—a molecule related to nerve growth factor receptor, EMBO J. 9: 1063–1068.Google Scholar
  117. Martorell, J., Rojo, I., Vilella, R., Martinez-Caceres, E., and Vives, J., 1990, CD27 induction on thymocytes, J. Immunol. 145: 1356–1363.PubMedGoogle Scholar
  118. Maurer, D., Fischer, G. F., Fae, I., Majdic, O., Stuhlmeier, K., von Jeney, N., Holter, W., and Knapp, W., 1992, IgM and IgG but not cytokine secretion is restricted to the CD27+ B lymphocyte subset, J. Immunol. 148: 37003705.Google Scholar
  119. Mechtersheimer, G., and Moller, P., 1990, Expression of Ki-1 antigen (CD30) in mesenchymal tumors, Cancer 66: 1732–1737.PubMedCrossRefGoogle Scholar
  120. Miura, S., Ohtani, K., Numata, N., Niki, M., Ohbo, K., Ina, Y., Gojobori, T., Tanaka, Y., Tozawa, H., Nakamura, M., and Sugamura, K., 1991, Molecular cloning and characterization of a novel glycoprotein, gp34, that is specifically induced by the human T-cell leukemia virus type I transactivator p40Lax, Mol. Cell. Biol. 11: 1313 1325.Google Scholar
  121. Miyawaki, T., Uehara, T., Nibu, R., Tsuji, T., Yachie, A., Yonehara, S., and Taniguchi, N., 1992, Differential expression of apoptosis-related Fas antigen on lymphocyte subpopulations in human peripheral blood, J. Immunol. 149: 3753–3758.PubMedGoogle Scholar
  122. Mohler, K. M., Sleath, P. R., Fitzner, J. N., Cerretti, D. P., Alderson, M., Derwar, S. S., Torrance, D. S., OttenEvans, C., Greenstreet, T., Weerawarna, K., Kronheim, S. R., Peterson, M., Gerhart, M., Kozlosky, C. J., March, C. J., and Black, R. A., 1994, Protection against a lethal dose of endotoxin by an inhibitor of tumour necrosis factor processing, Nature 370: 218–220.PubMedCrossRefGoogle Scholar
  123. Nishioka, Y., and Lipsky, P. E., 1994, The role of CD40—CD40 ligand interaction in human T cell—B cell collaboration, J. Immunol. 153: 1027–1036.PubMedGoogle Scholar
  124. Noelle, R. J., Roy, M., Shepherd, D. M., Stamenkovic, I., Ledbetter, J. A., and Aruffo, A., 1992, A 39-kDa protein on activated helper T cells binds CD40 and transduces the signal for cognate activation of B cells, Proc. Natl. Acad. Sci. U.S.A. 89: 6550–6554.PubMedCrossRefGoogle Scholar
  125. Nonoyama, S., Hollenbaugh, D., Aruffo, A., Ledbetter, J. A., and Ochs, H. D., 1993, B cell activation via CD40 is required for specific antibody production by antigen-stimulated human B cells, J. Exp. Med. 178: 1097–1102.PubMedCrossRefGoogle Scholar
  126. Ogasawara, J., Watanabe-Fukunaga, R., Adachi, M., Matsuzawa, A., Kasugai, T., Kitamura, Y., Itoh, N., Suda, T., and Nagata, S., 1993, Lethal effect of the anti-Fas antibody in mice, Nature 364: 806–809.PubMedCrossRefGoogle Scholar
  127. Owen-Schaub, L. B., Yonehara, S., Crump, W. L. III, and Grimm, E. A., 1992, DNA fragmentation and cell death is selectively triggered in activated human lymphocytes by Fas antigen engagement, Cell. Immunol. 140: 197–205.PubMedCrossRefGoogle Scholar
  128. Parker, D. C., 1993, T cell-dependent B cell activation, Annu. Rev. Immunol. 11: 331–360.PubMedCrossRefGoogle Scholar
  129. Paterson, D. J., Jefferies, W. A., Green, J. R., Brandon, M. R., Corthesy, P., Puklavec, M., and Williams, A. F., 1987, Antigens of activated rat T lymphocytes including a molecule of 50,000 M r detected only on CD4 positive T blasts, Mol. Immunol. 24: 1281–1290.PubMedCrossRefGoogle Scholar
  130. Peitsch, M. C., and Jongeneel, C. V., 1993, A 3-D model for the CD40 ligand predicts that it is a compact trimer similar to the tumor necrosis factors, Int. Immunol. 5: 233–238.PubMedCrossRefGoogle Scholar
  131. Pennica, D., Nedwin, G. E., Hayflick, J. S., Seeburg, P. H., Derynck, R., Palladino, M. A., Kohr, W. J., Aggarwal, B. B., and Goeddel, D. V., 1994, Human tumour necrosis factor: Precursor structure, expression and homology to lymphotoxin, Nature 312: 724–729.CrossRefGoogle Scholar
  132. Pfeffer, K., Matsuyama, T., Kündig, T. M., Wakeham, A., Kishihara, K., Shahinian, A., Wiegmann, K., Ohashi, P. S., Kronke, M., and Mak, T. W., 1993, Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection, Cell 73: 457–467.PubMedCrossRefGoogle Scholar
  133. Pollok, K. E., Kim, Y.-J., Zhou, A., Hurtado, J., Kim, K. K., Pickard, R. T., and Kwon, B. S., 1993, Inducible T cell antigen 4–1BB. Analysis of expression and function, J. Immunol. 150: 771–781.PubMedGoogle Scholar
  134. Pollok, K. E., Kim, Y.-J., Hurtado, J., Zhou, Z., Kim, K. K., and Kwon, B. S., 1994, 4–1BB T-cell antigen binds to mature B cells and macrophages, and costimulates anti-R-primed splenic B cells, Eur. J. Immunol. 24: 367–374.Google Scholar
  135. Ramsdell, F., Seaman, M., Clifford, K. N., and Fanslow, W. C., 1994a, CD40 ligand acts as a costimulatory signal for neonatal thymic yS T cells, J. Immunol. 152: 2190–2197.PubMedGoogle Scholar
  136. Ramsdell, F., Seaman, M. S., Miller, R. E., Tough, T. W., Alderson, M. R., and Lynch, D. H., 1994b, gld/gld mice are unable to express a functional ligand for Fas, Eur. J. Immunol. 24: 928–933.Google Scholar
  137. Ranheim, E. A., and Kipps, T. J., 1993, Activated T cells induce expression of B7/BB1 on normal or leukemic B cells through a CD40-dependent signal, J. Exp. Med. 177: 925–935.PubMedCrossRefGoogle Scholar
  138. Renshaw, B., Fanslow, W. C. III, Armitage, R. J., Campbell, K. A., Liggitt, D., Wright, B., Davison, B., and Maliszewski, C. R.,1994, Humoral immune responses in CD40 ligand deficient mice, J. Exp Med. 180: 1889 1900.Google Scholar
  139. Rothe, J., Lesslauer, W., Lötscher, H., Lang, Y., Koebel, P., Kontgen, F., Althage, A., Zinkernagel, R., Steinmetz, M., and Bluethmann, H., 1993, Mice lacking the tumour necrosis factor receptor 1 are resistant to TNFmediated toxicity but highly susceptible to infection by Listeria monocytogenes, Nature 364: 798–802.CrossRefGoogle Scholar
  140. Rousset, F., Garcia, E., and Banchereau, J., 1991, Cytokine-induced proliferation and immunoglobulin production of human B lymphocytes triggered through their CD40 antigen, J. Exp. Med. 173: 705–710.PubMedCrossRefGoogle Scholar
  141. Rousset, F., Garcia, E., Defrance, T., Péronne, C., Vezzio, N., Hsu, D.-H., Kastelein, R., Moore, K. W., and Banchereau, J., 1992, Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes, Proc. Natl. Acad. Sci. U.S.A. 89: 1890–1893.PubMedCrossRefGoogle Scholar
  142. Rouvier, E., Luciani, M.-F., and Golstein, P., 1993, Fas involvement in Cat+-independent T cell-mediated cytotoxicity, J. Exp. Med. 177: 195–200.PubMedCrossRefGoogle Scholar
  143. Russell, J. H., Rush, B., Weaver, C., and Wang, R., 1994, Mature T cells of autiommune Ipr/Ipr mice have a defect in antigen-stimulated suicide, Proc. Natl. Acad. Sci. U.S.A. 90: 4409–4413.CrossRefGoogle Scholar
  144. Saeland, S., Moreau, I., Duvert, V., Pandrau, D., and Banchereau, J., 1992, In vitro growth and maturation of human B-cell precursors, Curr. Top. Microbiol. Immunol. 182: 85–94.CrossRefGoogle Scholar
  145. Saeland, S., Duvert, V., Moreau, I., and Banchereau, J., 1993, Human B cell precursors proliferate and express CD23 after CD40 ligation, J. Exp. Med. 178: 113–120.PubMedCrossRefGoogle Scholar
  146. Schall, T. J., Lewis, M., Koller, K. J., Lee, A., Rice, G. C., Wong, G. H. W., Gatanaga, T., Granger, G. A., Lentz, R., Raab, H., Kohr, W. J.. and Goeddel, D. V., 1990, Molecular cloning and expression of a receptor for human tumor necrosis factor, Cell 61: 361–370.PubMedCrossRefGoogle Scholar
  147. Schwab, U., Stein, H., Gerdes, J., Lemke, H., Kirchner, H., Schaadt, M., and Diehl, V., 1982, Production of a monoclonal antibody specific for Hodgkin and Sternberg-Reed cells of Hodgkin’s disease and a subset of normal lymphoid cells, Nature 299: 65–67.PubMedCrossRefGoogle Scholar
  148. Schwarz, H., Tuckwell, J., and Lotz, M., 1993, A receptor induced by lymphocyte activation (11a)—a new member of the human nerve-growth-factor tumor-necrosis-factor receptor family, Gene 134: 295–298.PubMedCrossRefGoogle Scholar
  149. Seldin, M. F., Morse, H. C. III, Reeves, J. P., Scribner, C. L., LeBoeuf, R. C., and Steinberg, A. D., 1988, Genetic analysis of autoimmune gld mice. I. Identification of a restriction fragment length polymorphism closely linked to the gld mutation within a conserved linkage group, J. Exp. Med. 167: 688–693.PubMedCrossRefGoogle Scholar
  150. Singer, G. G., and Abbas, A. K., 1994, The Fas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T cell transgenic mice, Immunity 1: 365–371.PubMedCrossRefGoogle Scholar
  151. Singer, R. A., Balderas, R. S., and McEvilly, R. J.. 1989, Tolerance-related V(3 clonal deletions in normal CD4–8-, TCR-a/ß+ and abnormal Ipr and gld cell populations, J. Exp. Med. 170: 1869–1877.PubMedCrossRefGoogle Scholar
  152. Smith, C. A., Davis, T., Anderson, D., Solam, L., Beckmann. M. P., Jerzy, R., Dower, S. K., Cosman, D., and Goodwin, R. G., 1990. A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins, Science 248: 1019–1023.PubMedCrossRefGoogle Scholar
  153. Smith, C. A., Davis, T., Wignall, J. M., Din, W. S., Farrah, T., Upton, C., McFadden, G., and Goodwin, R. G.,1991, T2 open reading frame from the shope fibroma virus encodes a soluble form of the TNF receptor, Biochem. Biophys. Res. Commun. 176: 335–342.Google Scholar
  154. Smith, C. A., Gruss, H.-J., Davis, T., Anderson, D., Farrah, T., Baker, E., Sutherland, G. R., Brannan, C. I., Copeland, N. G., Jenkins, N. A., Grabstein, K. H., Gliniak, B., McAlister, I. B., Fanslow, W., Alderson, M., Falk, B., Gimpel, S., Gillis, S., Gillis, S., Din, W. S., Goodwin, R. G., and Armitage, R. J.,1993, CD30 antigen, a marker for Hodgkin’s lymphoma, is a receptor whose ligand defines an emerging family of cytokines with homology to TNF, Cell 73: 1349–1360.Google Scholar
  155. Spriggs, M. K., Armitage, R. J., Strockbine, L., Clifford, K. N., Macduff, B. M., Sato, T. A., Maliszewski, C. R., and Fanslow, W. C., 1992, Recombinant human CD40 ligand stimulates B cell proliferation and Immunoglobulin E secretion, J. Exp. Med. 176: 1543–1550.CrossRefGoogle Scholar
  156. Stalder, T., Hahn, S., and Erb, R, 1994, Fas antigen is the major target molecule for CD4+ T cell-mediated cytotoxicity, J. Immunol. 152: 1127–1133.PubMedGoogle Scholar
  157. Stamenkovic, I., Clark, E. A., and Seed, B., 1989, A B-lymphocyte activation molecule related to the nerve growth factor receptor and induced by cytokines in carcinomas, EMBO J. 8: 1403–1410.PubMedGoogle Scholar
  158. Stein, H., Mason, D. Y., Gerdes, J., O’Connor, N., Wainscoat, J., Pallesen, G., Gatter, K., Falini, B., Delsol, G., Lemke, H., Schwarting, R., and Lennert, K., 1985, The expression of the Hodgkin’s disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: Evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells, Blood 66: 848–858.PubMedGoogle Scholar
  159. Suda, T., Takahashi, T., Golstein, P., and Nagata. S., 1993, Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family, Cell 75: 1169–1178.PubMedCrossRefGoogle Scholar
  160. Sugita, K., Torimoto, Y., Nojima, Y., Daley, J. F., Schlossman, S. F., and Morimoto, C., 1991, The 1A4 molecule (CD27) is involved in T cell activation, J. Immunol. 147: 1477–1483.PubMedGoogle Scholar
  161. Sugita, K., Robertson, M. J., Torimoto, Y., Ritz, J., Schlossman, S. F., and Morimoto, C., 1992, Participation of the CD27 antigen in the regulation of IL-2-activated human natural killer cells, J. Immunol. 149: 1199–1203.PubMedGoogle Scholar
  162. Takahashi, T., Tanaka, M., Brannan, C. I., Jenkins, N. A., Copeland, N. G., Suda, T., and Nagata, S., 1994, Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand, Cell 76: 969–976.PubMedCrossRefGoogle Scholar
  163. Tartaglia, L. A., Ayres, T. M., Wong, G. H. W., and Goeddel, D. V., 1993, A novel domain within the 55 kd TNF receptor signals cell death, Cell 74: 845–853.PubMedCrossRefGoogle Scholar
  164. Tozawa, H., Andoh, S., Takayama, Y., Tanaka, Y., Lee, B., Nakamura, H., Hayami, M., and Hinuma, Y., 1988, Species-dependent antigenicity of the 34-kDa glycoprotein found on the membrane of various primate lymphocytes transformed by human T-cell leukemia virus type-I (HTLV-I) and simian T-cell leukemia virus (STLV-I), Int. J. Cancer 41: 231–238.PubMedCrossRefGoogle Scholar
  165. Tracey, K. J., and Cerami, A., 1994, Tumor necrosis factor—a pleiotropic cytokine and therapeutic target, Annu. Rev. Med. 45:491–503. -Google Scholar
  166. Trauth, B. C., Klas, C., Peters, A. M. J., Matzku, S., Möller, P., Falk, W., Debatin, K.-M., and Krammer, R. H., 1989, Monoclonal antibody-mediated tumor regression by induction of apoptosis, Science 245: 301–305.PubMedCrossRefGoogle Scholar
  167. Tsubata, T., Wu, J., and Honjo, T., 1993, B-cell apoptosis induced by antigen receptor crosslinking is blocked by a T-cell signal through CD40, Nature 364: 645–648.PubMedCrossRefGoogle Scholar
  168. Ullrich, A., and Schlessinger, J., 1990, Signal transduction by receptors with tyrosine kinase activity, Cell 61: 203–212.PubMedCrossRefGoogle Scholar
  169. Upton, C., Macen, J. L., Schreiber, M., and McFadden, G., 1991, Myxoma virus expresses a secreted protein with homology to the tumor necrosis factor receptor gene family that contributes to viral virulence, Virology 184: 370–382.PubMedCrossRefGoogle Scholar
  170. Valentine, M. A., and Licciardi, K. A., 1992, Rescue from anti-IgM-induced programmed cell death by the B cell surface proteins CD20 and CD40, Eur. J. Immunol. 22: 3141–3148.PubMedCrossRefGoogle Scholar
  171. van Kooten, C., Gaillard, C., Galizzi, J.-P., Hermann, P., Fossiez, F., Banchereau, J., and Blanchard, D., 1994, B cells regulate expression of CD40 ligand on activated T cells by lowering the mRNA level and through the release of soluble CD40, Eur. J. Immunol. 24: 787–792.PubMedCrossRefGoogle Scholar
  172. van Lier, R. A. W., Borst, J., Vroom, T. M., Klein, H., Van Mourik, P., Zeijlemaker, W. R, and Melief, C. J. M., 1987, Tissue distribution and biochemical and functional properties of Tp55 (CD27), a novel T cell differentiation antigen, J. Immunol. 139: 1589–1596.PubMedGoogle Scholar
  173. Vassalli, P., 1992, The pathophysiology of tumor necrosis factors, Annu. Rev. Immunol. 10: 411–452.PubMedCrossRefGoogle Scholar
  174. Vignaux, F., and Golstein, P., 1994, Fas-based lymphocyte-mediated cytotoxicity against syngeneic activated lymphocytes: A regulatory pathway? Eur. J. Immunol. 24: 923–927.PubMedCrossRefGoogle Scholar
  175. Watanabe-Fukunaga, R., Brannan, C. I., Itoh, N., Yonehara, S., Copeland, N. G., Jenkins, N. A., and Nagata, S., 1992a, The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen, J. Immunol. 148: 1274–1279.PubMedGoogle Scholar
  176. Watanabe-Fukunaga, R., Brannan, C. I., Copeland, N. G., Jenkins, N. A., and Nagata, S., 1992b, Lymphoprolifera-tion disorder in mice explained by defects in Fas antigen that mediates apoptosis, Nature 356: 314–317.PubMedCrossRefGoogle Scholar
  177. Wong, G. H. W., and Goeddel, D. V., 1994, Fas antigen and p55 TNF receptor signal apoptosis through distinct pathways, J. Immunol. 152: 1751–1755.PubMedGoogle Scholar
  178. Xu, J., Foy, T. M., Laman, J. D., Elliott, E. A., Dunn, J. J., Waldschmidt, T. J., Elsemore, J., Noelle, R. J., and Flavell, R. A., 1994, Mice deficient for the CD40 ligand, Immunity 1: 423–431.PubMedCrossRefGoogle Scholar
  179. Yellin, M. J., Sinning, J., Covey, L. R., Sherman, W., Lee, J. J., Glickman-Nir, E., Sippel, K. C., Rogers, J., Cleary, A. M., Parker, M., Chess, L., and Lederman, S., 1994, T lymphocyte T cell-B cell-activating molecule/CD40L molecules induce normal B cells or chronic lymphocytic leukemia B cells to express CD80 (B7/BB-1) and enhance their costimulatory activity, J. Immunol. 153: 666–674.PubMedGoogle Scholar
  180. Yonehara, S., Ishii, A., and Yonehara, N., 1989, A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor, J. Exp. Med. 169: 1747–1756.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • David Cosman
    • 1
  1. 1.Department of Molecular BiologyImmunex Research and Development CorporationSeattleUSA

Personalised recommendations