Stem Cell Factor

  • Ian K. McNiece
  • Robert A. Briddell
Part of the Blood Cell Biochemistry book series (BLBI, volume 7)


The production of mature hematopoietic cells is a tightly regulated process involving many intermediate cell types and regulatory proteins. A specific group of glycoproteins called colony-stimulating factors (CSFs) have been identified, and these CSFs interact with their respective target cells in each of the hematopoietic lineages to give rise to mature cells.


Mast Cell Nonhuman Primate Stem Cell Factor Peripheral Blood Progenitor Cell Autologous Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D. M., Lyman, S. D., Baird, A., Wignall, J. M., Eisenman, J., Rauch, C., March, C. J., Boswell, H. S., Gimpel, S. D., Cosman, D., and Williams, D. E., 1990, Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms, Cell 63: 225–233.CrossRefGoogle Scholar
  2. Andrews, R., G., Knitter, G. H., Bartelmez, S. H., Langely, K. E., Farrar, D., Hendren, R. W., Appelbaum, F. R., Bernstein, I. D., and Zsebo, K. M., 1991, Recombinant human stem cell factor, a c-kit ligand, stimulates hematopoiesis in nonhuman primates, Blood 78: 1975–1980.Google Scholar
  3. Andrews, R. G., Bartelmez, S. H., Knitter, G. H., Myerson, D., Bernstein, I. D., Appelbaum, F. R., and Zsebo, K. M., 1992a, A c-kit ligand, recombinant human stem cell factor, mediates reversible expansion of multiple CD34+ colony-forming cell types in blood and marrow of baboons, Blood 80: 920–927.PubMedGoogle Scholar
  4. Andrews, R. G., Bensinger, W. I., Knitter, G. H., Bartelmez, S. H., Longin, K., Bernstein, I. D., Appelbaum, F. R., and Zsebo, K. M., 1992b. The ligand for c-kit, stem cell factor, stimulates the circulation of cells that engraft lethally irradiated baboons, Blood 80: 2715–2720.PubMedGoogle Scholar
  5. Andrews, R. G., Briddell, R. A., Knitter, G. H., Opie, T., Bronsden, M., Myerson, D., Appelbaum, F. R., and McNiece, I. K., 1994, In vivo synergy between recombinant human stem cell factor and recombinant human granulocyte colony-stimulating factor in baboons: Enhanced circulation of progenitor cells, Blood 84 (3): 800–810.Google Scholar
  6. Avraham, H., Vannier, E., Cowley, S., Jiang, S. X., Chi, S., Dinarello, C. A., Zsebo, K. M., and Groopman, J. E., 1992, Effects of the stem cell factor, c-kit ligand, on human megakaryocytic cells, Blood 79: 365–371.PubMedGoogle Scholar
  7. Bernstein, I. D., Andrews, R. G., and Zsebo, K. M., 1991, Recombinant human stem cell factor enhances the formation of colonies by CD34+ and CD34+ lin-cells, and the generation of colony-forming cell progeny from CD34+ lin-cells cultured with interleukin-3, granulocyte-colony stimulating factor, or granulocyte-macrophage colony-stimulating factor, Blood 77: 2316–2321.PubMedGoogle Scholar
  8. Bernstein, S. E., 1970, Tissue transplantations as an analytical and therapeutic tool in hereditary anemias, Am. J. Surg. 119: 448–452.PubMedCrossRefGoogle Scholar
  9. Bodine, D. M., Karlsson, S., and Nienhuis, A. W., 1989, Combination of interleukins 3 and 6 preserves stem cell function in culture and enhances retrovirus-mediated gene transfer into hematopoietic stem cells, Proc. Natl. Acad. Sci. U.S.A. 86: 8897–8901.PubMedCrossRefGoogle Scholar
  10. Bodine, D.M., McDonough, K. T., Brandt, S. J., Ney, P. A., Aricola, B., Byrne, E., and Nienhuis, A. W., 1990, Development of a high-titer retrovirus producer cell line capable of gene transfer into rhesus monkey hematopoietic stem cells, Proc. Natl. Acad. Sci. U.S.A. 87: 3738–3744.PubMedCrossRefGoogle Scholar
  11. Bodine, D.M., Mcdonough, K. T., Seidel, N. E., and Nienhuis, A. W., 1991, Survival and retrovirus infection of murine hematopoietic stem cells in vitro: Effects of 5-FU and method of infection, Exp. Hematol. 19: 206–212.PubMedGoogle Scholar
  12. Bodine, D. M., Orlic, D., Birkett, N. C., Seidel, N. E., and Zsebo, K. M., 1992, Stem cell factor increases colony-forming unit-spleen number in vitro in synergy with interleukin-6, and in vivo in SI/Sl-d mice as a single factor, Blood 79: 913–919.PubMedGoogle Scholar
  13. Bodine, D. M., Seidel, N. E., Zsebo, K. M., and Orlic, D., 1993, In vivo administration of stem cell factor to mice increases the absolute number of pluripotent hematopoietic stem cells, Blood 82: 445–455.Google Scholar
  14. Briddell, R. A., Bruno, E., Cooper, R. J., Brandt, J. E., and Hoffman, R., 1991, Effect of c-kit ligand on in vitro human megakaryocytopoiesis, Blood 78: 2854–2859.PubMedGoogle Scholar
  15. Briddell, R. A., Hartley, C. A., Smith, K. A., and McNiece, I. K., 1993, Recombinant rat stem cell factor synergizes with recombinant human granulocyte colony-stimulating factor in vivo in mice to mobilize peripheral blood progenitor cells that have enhanced repopulating potential, Blood 82: 1720–1723.PubMedGoogle Scholar
  16. Cairo, M. S., Gillan, E. R., Weinthal, J., Yancik, S., Van de Ven, C., Mo, W., Shen, V., Buzby, J. S., and Suen, Y., 1993, Decreased endogenous circulating steel factor (SLF) levels following allogenic and autologous BMT: Lack of an inverse correlation with post-BMT myeloid engraftment, Bone Marrow Transplant 11: 155–161.PubMedGoogle Scholar
  17. Carter, R. F., Abrams-Ogg, A. C. G., Dick, J. E., Kruth, S. A., Valli, V. E., Kamel-Reid, S., and Dube, I. D., 1992, Autologous transplantation of canine long-term marrow culture cells genetically marked by retroviral vectors, Blood 79: 356.PubMedGoogle Scholar
  18. Chabot, B., Stephenson, D. A., Chapman, V. M., Besmer, P., and Bernstein, A., 1988, The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the W locus, Nature 335: 88.PubMedCrossRefGoogle Scholar
  19. Costa, J. J., Demetri, G. D., Hayes, D. F., Merica, E. A., Menchaca D. M., and Galli, S. J., 1993, Increased skin mast cells and urine methyl histamine in patients receiving recombinant methionyl human stem cell factor, Proc. Am. Assoc. Cancer. Res. 34: 211 (Abstract).Google Scholar
  20. Crawford, J., Lau, D., Erwin, R., Rich, W., McGuire, B., and Meyers, F., 1993, A phase I trial of recombinant methionyl human stell cell factor (SCF) in patients (pts) with advanced non-small cell lung carcinoma (NSCLC), Proc. Am. Soc. Clin. Oncol. 12: 135 (Abstract 338).Google Scholar
  21. Dale, D. C., Hammond, W. P., and Zsebo, K, M., 1991, Stem cell factor therapy for cyclic hematopoiesis in grey collie dogs, Blood 78 (Suppl): 375 (Abstract).Google Scholar
  22. Demetri, G., Costa, J., Hayes, D., Sledge, G., Galli, S., Hoffman, R., Merica, E., Rich, W., Harkins, B., McGuire, B., and Gordon, M., 1993, A phase I trial of recombinant methionyl human stem cell factor (SCF) in patients with advanced breast carcinoma pre-and post chemotherapy (chemo) with cyclophosphamide (C) and doxorubicin (A), Proc. Am. Soc. Clin. Oncol. 12: 142 (Abstract).Google Scholar
  23. de Revel, T., Appelbaum, F. R., Storb, R., Schuening, E, Nash, R., Deeg, J., McNiece, I., Andrews, R., and Graham, T., 1994, Effects of granulocyte colony stimulating factor and stem cell factor, alone and in combination on the mobilization of peripheral blood cells that engraft lethally irradiated animals, Blood 83 (12): 3795–3799.PubMedGoogle Scholar
  24. Donahue, R. E., Kessler, S. W., Bodine, D. B., Agricola, B. A., Byrne, E. R., Metzger, M. E., McDonough, K. T., Bacher, J. D., Zsebo, K. M., and Nienhuis, A. W., 1991, Gene transfer into primate immunoselected CD34+ cells: In vivo evidence that CD34 cells are responsible for both short-and long-term reconstitution of lymphoid and myeloid populations, Blood 78: 79a.Google Scholar
  25. Fleming, W. H., Alpern, E. J., Uchida, N., Ikuta, K., and Weissman, I. L., 1993, Steel factor influences the distribution and activity of murine hematopoietic stem cells in vivo, Proc. Natl. Acad. Sci. U.S.A. 90: 37603764.Google Scholar
  26. Fraser, C., Eaves, C. J., Szilvassy, S. J., and Humphries, R. K., 1990, Expansion in vitro of retrovirally marked totipotent hematopoietic stem cells, Blood 76: 1071–1079.PubMedGoogle Scholar
  27. Galli, S. J., Iemura, A., Garlick, D. S., Gamba-Vitalo, C., Zsebo, K. M., and Andrews, R. G., 1993, Reversible expansion of primate mast cell populations in vivo by stem cell factor, J. Clin. Invest. 91: 148–152.PubMedCrossRefGoogle Scholar
  28. Geissler, E. N., Cheng, S. V., Gusella, J. F., and Housman, D., 1988a, Genetic analysis of the dominant white-spotting locus (W) region on mouse chromosome 5: Identification of cloned DNA markers near W, Proc. Natl. Acad. Sci. U.S.A. 85: 9635–9642.PubMedCrossRefGoogle Scholar
  29. Geissler, E. N., Ryan, M. A., and Housman, D. E., 1988b, The dominant-white spotting (W) locus of the mouse encodes the c-kit protooncogene, Cell 55: 185–196.PubMedCrossRefGoogle Scholar
  30. Glaspy, J., McNiece, I. K., LeMaistre, F., Menchaca, D., Briddell, R., Lill, M., Jones, R., Tami, J., Morstyn, G., Brown, S., and Shpall, E. J., 1994, Effects of stem cell factor (rhSCF) and filgrastim (rhG-CSF) on mobilization of peripheral blood progenitor cells (PBPC) and on hematological recovery post transplant: Preliminary phase I/II study results, Br. J. Hematol. 87 (Suppl. 1): 156.Google Scholar
  31. Grencis, R. K., Else, K. J., Huntley, J. E, and Nishikawa, S. I., 1993, The in vivo role of stem cell factor (c-kit ligand) on mastocytosis and host protective immunity to the intestinal nematode Trichinella spiralis in mice, Parasite Immunol. 15: 55–59.PubMedCrossRefGoogle Scholar
  32. Holmberg, L. A., Yancik, S., Zsebo, K., and Torok-Storb, B., 1992, Circulating levels of kit ligand (KL) in serum of patients with aplastic anemia, myelodysplasia or following allogeneic bone marrow transplantation, Exp. Hematol. 20: 775 (Abstract 269).Google Scholar
  33. Huang, E., Nocka, K., Beier, D. R., Chu, T-Y., Buck, J., Lahm, H-W., Wenner, D., Ledner, P., and Besmer, P., 1990, The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand for the c-kit receptor, the product of the W locus, Cell 63: 226–234.CrossRefGoogle Scholar
  34. Hughes, P. F. D., Eaves, C. J., Hogge, D. E., and Humphries, R. K., 1989, High efficiency gene transfer to human hematopoietic cells maintained in long-term marrow culture, Blood 74: 1915–1925.PubMedGoogle Scholar
  35. Hunt, P., Zsebo, K. M., Hokom, M. M., Hornkohl, A., Birkett, N. C., del Castillo, J. C., and Martin, F., 1992, Evidence that stem cell factor is involved in the rebound thrombocytosis that follows 5-fluorouracil treatment, Blood 80: 904–911.PubMedGoogle Scholar
  36. Hunt, R, Bartley, T., Li, Y.-S., Bogenberger, J., Lu, H., Samal, B., Martin, E, Chang, M. S., Parker, V., and Bosselman, B., 1994, Purification and cloning of a megakaryocyte growth and development factor: A novel cytokine found in aplastic plasma, Exp. Hematol. 22 (8): 838 (Abstract).Google Scholar
  37. Kantoff, P. W., Gillio, A. P., McLachlin, J. R., Bordignnon, C., Eglitis, M. A., Kernan, N. A., Moen, R. C., Kohn, D. B., Yu, S. F., Karson, E., Karlsson, S., Zweibel, J., Gilboa, E., Blaese, R. M., Nienhuis, A., O’Reilly, R. J., and Anderson, W. F., 1987, Expression of human deaminase in nonhuman primates after retrovirus-mediated gene transfer, J. Exp. Med. 166: 219–227.PubMedCrossRefGoogle Scholar
  38. Karlson, S., 1991, Treatment of genetic defects in hematopoietic cell function by gene transfer, Blood 78: 2481 2492.Google Scholar
  39. Langley, K. E., Bennett, L. G., Wypych, J., Yancik, S. A., Liu, X-D., Westcott, K. R., Chang, D. G., Smith, K. A., and Zsebo, K. M., 1993, Soluble stem cell factor in human serum, Blood 81 (3): 656–660.PubMedGoogle Scholar
  40. Lim, B., Williams, D. A., and Orkin, S. H., 1987, Retrovirus-mediated gene transfer of human adenosine deaminase: Expression of functional enzyme in murine hematopoietic stem cells in vivo, Mol. Cell. Biol. 7: 3459–3470.PubMedGoogle Scholar
  41. Lynch, D. H., Jacobs, C., DuPont, D., Eisenman, J., Foxworthe, D., Martin, U., Miller, R. E., Roux, E., Liggit, D., and Williams, D. E., 1992, Pharmacokinetic parameters of recombinant mast cell growth factor (rMGF), Lymphokine Cytokine Res. 11: 233–236.PubMedGoogle Scholar
  42. McNiece, I. K., Langley, K. E., and Zsebo, K. M., 1991a, Recombinant human stem cell factor synergises with GMCSF, G-CSF, IL-3 and Epo to stimulate human progenitor cells of the myeloid and erythroid lineages, Exp. Hematol. 19: 226–231.PubMedGoogle Scholar
  43. McNiece, I. K., Langley, K. E., and Zsebo, K. M., 1991b, The role of recombinant stem cell factor in early B cell development: Synergistic interaction with IL-7, J. Immunol. 146: 3785–3790.PubMedGoogle Scholar
  44. McNiece, I., Glaspy, J., LeMaistre, F., Briddell, R., Menchaca, D., and Shpall, E. J., 1993, Effects of recombinant methionyl human stem cell factor (rhSCF) and fllgrastim (rhG-CSF) on mobilization of peripheral blood progenitor cells: Preliminary laboratory results from a phase I/II study, Blood 82 (Suppl.): 84 (Abstract).Google Scholar
  45. Molineux, G., Migdalska, A., Szmitkowski, M., Zsebo, K., and Dexter, T. M., 1991, The effects on hematopoiesis of recombinant stem cell factor (ligand for c-kit) administered in vivo to mice either alone or in combination with granulocyte-colony stimulating factor, Blood 78: 961–966.PubMedGoogle Scholar
  46. Namen, A. E., Widmer, M. B., Voice, R., Christensen, S., Braddy, S., Lyman, S. D., and Williams, D. E., 1991, A ligand for the c-kit proto-oncogene (MGF) stimulates lymphoid progenitor cells in vitro, Exp. Hematol. 19: 497 (Abstract).Google Scholar
  47. Neta, R., Williams, D., Selzer, E, and Abrams, J., 1993, Inhibition of c-kit ligand/steel factor by antibodies reduces survival of lethally irradiated mice, Blood 81: 324–327.PubMedGoogle Scholar
  48. Nienhuis, A. W., McDonough, K. T., and Bodine, D. M., 1991, Gene transfer into hematopoietic stem cells, Cancer 67: 2700–2712.PubMedCrossRefGoogle Scholar
  49. Nolta, J. A., and Kohn, D. B., 1990, Comparison of the effects of growth factors on retroviral vector-mediated gene transfer and the proliferative stauts of human hematopoietic progenitor cells, Hum. Gene Ther. 1: 257.PubMedCrossRefGoogle Scholar
  50. Rosen, B., Catchatourian, R., Egrie, J., Gould, S. A., Greenberg, R. A., Langley, K. E., Sehgal, L. R., and Zsebo, K. M., 1990, The in vivo effects of recombinant human stem cell factor (RhSCF) on hematopoiesis in nonhuman primates, Blood 76 (Suppl.): 163 (Abstract).Google Scholar
  51. Russell, E. S., 1970, Abnormalities of erythropoiesis associated with mutant genes in mice, in Regulation of Hematopoiesis, ( A. L. Gordon, ed.), pp. 649–656, Appelton-Century-Crofts, NewYork.Google Scholar
  52. Russell, E. S., 1979a, Analysis of pleiotropism at the W locus in the mouse. Relationship between the effects of W and W° substitution on hair pigmentation and erythrocytes, Genetics 34: 708–712.Google Scholar
  53. Russell, E. S., 1979b, Hereditary anemias of the mouse: A review for geneticists, Adv. Genet. 20:357–364. Sarvella, P. A., and Russell, L. B., 1956, Steel, a new dominant gene in the mouse, J. Hered. 47: 123–127.Google Scholar
  54. Schuening, F. G., Kawahara, K., Miller, A. D., To, R., Goehle, S., Stewart, D., Mullally, K., Fisher, L., Graham, T. C., Appelbaum, E R., Hackman, R., Osborne, W. R. A., and Storb, R., 1991, Retrovirus-mediated gene transduction into long-term repopulating marrow cells of dogs, Blood 78: 2568–2576.PubMedGoogle Scholar
  55. Schuening, F. G., Appelbaum, F. R., Deeg, H. J., Sullivan-Pepe, M., Graham, T. C., Hackman, R., Zsebo, K. M., and Storb, R., 1993, Effects of recombinant canine stem cell factor, a c-kit ligand, and recombinant granulocyte colony-stimulating factor on hematopoietic recovery after otherwise lethal total body irradiation, Blood 81: 20–26.PubMedGoogle Scholar
  56. Shieh, J.-H., Chen, Y.-E, Briddell, R., Stoney, G., and McNiece, I. K., 1994, High purity of blast cells in CD34 selected populations are essential for optimal ex vivo expansion of human GM-CFC, Exp. Hematol. 22 (8): 756 (Abstract).Google Scholar
  57. Steinshamm, S., Bergh, K., and Waage, A., 1993, Effects of stem cell factor and granulocyte colony-stimulating factor on granulocyte recovery and Candida albicans infection in granulocytopenic mice, J. Infect. Dis. 168: 1444–1448.CrossRefGoogle Scholar
  58. Sutherland, H. J., Lansdorp, P. M., Henkelman, D. H., Eaves, A. C., and Eaves, C. J., 1990, Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers, Proc. Natl. Acad. Sci. U.S.A. 87: 3584–3588.PubMedCrossRefGoogle Scholar
  59. Tanaka, R., Koike, K., Imai, T., Shiohara, M., Kubo, T., Amano, Y., Komiyama, A., and Nakahata, T., 1992, Stem cell factor enhances proliferation, but not maturation of murine megakaryocytic progenitors in serum-free culture, Blood 80: 1743–1749.PubMedGoogle Scholar
  60. Toksoz, D., Zsebo, K. M., Smith, K. A., Mu, S., Brankow, D., Suggs, S., Martin, F. M., and Williams, D., 1992, Support of human hematopoiesis in long-term bone marrow cultures by murine stromal cells selectively expressing the membrane bound and secreted forms of the human homolog of the steel gene product, stem cell factor, Proc. Natl. Acad. Sci. U.S.A. 89: 7350–7354.PubMedCrossRefGoogle Scholar
  61. Tsai, M., Shih, L. S., Newlands, G. F. J., Takeishi, T., Langley, K. E., Zsebo, K. M., Miller, H. R. P., Geissler, E. N., and Galli, S. J., 1991, The rat c-kit ligand, stem cell factor, induces the development of connective tissue type and mucosal mast cells in vivo: Analysis by anatomical distribution, histochemistry, and protease phenotype, J. Exp. Med. 174: 125–131.PubMedCrossRefGoogle Scholar
  62. Ulich, T. R., Delcastillo, J., McNiece, I. K., Yi, E. S., Alzona. C. P., Yin, S. M., and Zsebo, K. M., 1991a, Stem cell factor in combination with granulocyte colony-stimulating factor (CSF) or granulocyte-macrophage CSF synergistically increases granulopoiesis in vivo, Blood 78: 1954–1962.PubMedGoogle Scholar
  63. Ulich, T. R., Delcastillo, J., Yi, E. S., Yin, S. M., McNiece, I., Yung, Y. P., and Zsebo, K. M., 1991b, Hematologic effects of stem cell factor in vivo and in vitro in rodents, Blood 78: 645–648.PubMedGoogle Scholar
  64. Wershil, B. K., Tsai, M., Geissler, E. N., Zsebo, K. M., and Galli, S. J., 1992, The rat c-kit ligand stem cell factor, induces c-kit receptor-dependent mouse mast cell activation in vivo. Evidence that signaling through the c-kit receptor can induce expression of cellular function, J. Exp. Med. 175: 245–255.PubMedCrossRefGoogle Scholar
  65. Wieder, R., Cornetta, K., Kessler, S. W., and Anderson, W. F., 1991, Increased efficiency of retroviral-mediated gene transfer and expression in primate bone marrow after 5-fluorouracil-induced hematopoietic suppression and recovery, Blood 77: 448–457.PubMedGoogle Scholar
  66. Williams, D. E, Eisenman, J., Baird, A., Rauch, C., van Ness, K., March, C. J., Park, L. S., Martin, U., Mochizuki, D. Y., Boswell, H. S., Burgess, G. S., Cosman, D., and Lyman, S. D., 1990, Identification of a ligand for the c-kit proto-oncogene, Cell 63: 213–224.PubMedCrossRefGoogle Scholar
  67. Williams, N., Bertoncello, I., Kavnoudias, H., Zsebo, K., and McNiece, I., 1992, Recombinant rat stem cell factor stimulates the amplification and differentiation of fractionated mouse stem cell populations, Blood 79: 58–64.PubMedGoogle Scholar
  68. Yan, X. O., Briddell, R., Hartley, C., Stoney, G., Samal, B., and McNiece, I. K., 1994, Mobilization of long-term hematopoietic reconstituting cells in mice by the combination of SCF plus G-CSF, Blood 84 (3): 795–799.PubMedGoogle Scholar
  69. Yarden, Y., Kuang, W., and Yang-Feng, T., 1987, Human proto-oncogene c-kit: A new cell surface receptor tyrosine kinase for an unidentified ligand, EMBO J. 6: 3341.PubMedGoogle Scholar
  70. Young, J. D., Crawford, J., Gordon, M., Hsieh, A., Yyres, M., Meyres, F., Fare, J., and Demetri, G., 1993, Pharmacokinetics (pk) of recombinant methionyl human stem cell factor (SCF) in patients (pts) with lung and breast cancer in phase I trials, Proc. Am. Assoc. Cancer Res. 34: 217 (Abstract).Google Scholar
  71. Zsebo, K. M., Williams, D. A., Geissler, E. N., Broudy, V. C., Martin, F. H., Atkins, H. L., Hsu, R.-Y., Birkett, N. C., Okino, K. H., Murdock, D. C., Jacobsen, F. W., Langley, K. E., Smith, K. A., Takeishi, T., Cattanach, B. M., Galli, S. J., and Suggs, S. J., 1990a, Stem cell factor is encoded at the Si locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor, Cell 63: 213.PubMedCrossRefGoogle Scholar
  72. Zsebo, K. M., Wypych, J., McNiece, I. K., Lu, H., Smith, K., Karkare, S., Sachdev, R., Yuschenkoff, V., Birkett, N., Williams, L., Satyagal, V., Tung, W., Bosselman, B., Mendiai, E., and Langley, K., 1990b, Identification, purification and biological characterization of hematopoietic stem cell factor from buffalo rat liver-conditioned medium, Cell 63: 195–199.PubMedCrossRefGoogle Scholar
  73. Zsebo, K. M., Smith, K. A., Hartley, C. A., Greenblatt, M., Cooke, K., Rich, W., and McNiece, I. K., 1993, Radioprotection of mice by recombinant rat stem cell factor, Proc. Natl. Acad. Sci. U.S.A. 89: 9464–9468.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Ian K. McNiece
    • 1
  • Robert A. Briddell
    • 1
  1. 1.Department of Developmental HematologyAmgen Inc.Thousand OaksUSA

Personalised recommendations