In Vitro Regulation of Dendritic Cell Development and Function

  • Christophe Caux
  • Jacques Banchereau
Part of the Blood Cell Biochemistry book series (BLBI, volume 7)


Human and murine dendritic cells (DC) can now be generated in vitro in large numbers by culturing progenitor cells. The establishment of such culture systems will allow clarification of the relationship between different DC populations and monocytes. In all studies, granulocyte—macrophage colony-stimulating factor (GM-CSF) has been required for the generation of DC, suggesting a crucial role for this hematopoietic growth factor during the ontogeny of the DC lineage. Those DC generated in vitro represent interesting models for studying the function of DC. Such studies established that immature DC precursors are able to phagocytose particles much more efficiently than the mature DC. These DC generated in vitro induce, after antigen loading and injection into mice, antigen-specific immune responses. Human DC generated by culturing monocytes with GM-CSF and IL-4 capture macromolecules through high-rate macropinocytosis. Human DC can also be generated by culturing CD34+ hematopoietic progenitors in the presence of GM-CSF, and further addition of TNF-α results in a strong increase of DC yield. These cultured human DC are able to prime naive T cells, a phenomenon that involves interactions between CD80/CD86 on DC and CD28 on T cells. Interestingly, DC express a functional CD40 antigen whose triggering up-regulates expression of CD80 and CD86 and induces cytokine secretion.

Actually, CD40/CD4OL interaction between DC and T cells (see Chapter 3) might represent a very early event, interruption of which might lead to prevention of T-cell priming. Finally, DC generated in vitro interact directly with naive B cells that are activated through their CD40 antigen, leading to enhanced growth, differentiation (IgM production), and preferential isotype switch toward IgA. Thus, in the extrafollicular area of lymphoid organs, in addition to prime naive T cells, DC might also provide costimulatory factors involved in the initiation of the primary B-cell response and in the development of humoral immunity.

In vivo administration of DC generated in vitro and loaded with antigen may ultimatly represent a powerful immunotherapy of presently uncontrolled infectious diseases and tumors.


Dendritic Cell Secondary Lymphoid Organ Human Dendritic Cell Dendritic Cell Subset Birbeck Granule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agger, R.. Crowley, M. T., and Witmer-Pack, M. D., 1990, The surface of dendritic cells in the mouse as studied with monoclonal antibodies, Int. Rev. Immunol. 6: 89–101.PubMedGoogle Scholar
  2. Aiba, S., and Katz, S. I., 1991, The ability of cultured Langerhans cells to process and present protein antigen is MHC dependent, J. Immunol. 146: 2479–2487.PubMedGoogle Scholar
  3. Alderson, M. R., Armitage, R. J., Tough, T. W., Strockbine, L., Fanslow, W. C., and Spriggs, M. K., 1993, CD40 expression by human monocytes: Regulation by cytokines and activation of monocytes by the ligand for CD40, J. Exp. Med. 178: 669–674.PubMedGoogle Scholar
  4. Ardavin, C., Wu, L., Li, C. L., and Shortman, K., 1993, Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population, Nature 362: 761–763.PubMedGoogle Scholar
  5. Austyn, J. M., Kupiec-Weglinski, J. W., Hankins, D. F., and Morris, P. J., 1988, Migration patterns of dendritic cells in the mouse. Homing to T cell-dependent areas of spleen, and binding within marginal zone, J. Exp. Med. 167: 646–651.PubMedGoogle Scholar
  6. Azuma, M., Ito, D., Yagita, H., Okumura, K., Phillips, J. H., Lanier, L. L., and Somoza, C., 1993, B70 antigen is a second ligand for CTLA-4 and CD28, Nature 366: 76–79.PubMedGoogle Scholar
  7. Backx, B., Broeders, L., Bot, F. J., and Lowenberg, B., 1991, Positive and negative effects of tumor necrosis factor on colony growth from highly purified normal marrow progenitors, Leukemia 5: 66–70.PubMedGoogle Scholar
  8. Banchereau, J., Bazan, F., Blanchard, D., Brière, F., Galizzi, J.-P., van Kooten, C., Liu, Y.-J., Rousset, F., and Saeland, S., 1994, The CD40 antigen and its ligand, Annu. Rev. Immunol. 12: 881–922.PubMedGoogle Scholar
  9. Barclay, A. N., and Mayrhofer, G., 1981, Bone marrow origin of Ia-positive cells in the medulla of rat thymus, J. Exp. Med. 153: 1666–1671.PubMedGoogle Scholar
  10. Barfoot, R., Denham, S., Gyure, L. A., Hall, J. G., Hobbs, S. M., Jackson, L. E., and Robertson, D., 1989, Some properties of dendritic macrophages from peripheral lymph, Immunology 68: 233–239.PubMedGoogle Scholar
  11. Bartosik, J., 1992, Cytomembrane-derived Birbeck granules transport horseradish peroxidase to the endosomal compartment in the human Langerhans cells, J. Invest. Dermatol. 99: 53–58.PubMedGoogle Scholar
  12. Beckman, E. M., Porcelli, S. A., Morita, C. T., Behar, S. M., Furlong, S. T., and Brenner, M. B., 1994, Recognition of a lipid antigen by CD1-restricted aß+ T cells, Nature 372: 691–694.PubMedGoogle Scholar
  13. Bejarano, M.-T., de Waal Malefyt, R., Abrams, J. S., Bigler, M., Bacchetta, R., de Vries, J. E., and Roncarolo, M.-G., 1992, Interleukin 10 inhibits allogeneic proliferative and cytotoxic T cell responses generated in primary mixed lymphocyte cultures, Int. Immunol. 4: 1389–1397.PubMedGoogle Scholar
  14. Berg, S. F., Mjaaland, S., and Fossum, S., 1994, Comparing macrophages and dendritic leukocytes as antigen- presenting cells for humoral responses in vivo by antigen targeting, Eue. J. Immunol. 24: 1262–1268.Google Scholar
  15. Bhardwaj, N., Friedman, S. M., Cole, B. C., and Nisanian, A. J., 1992, Dendritic cells are potent antigen-presenting cells for microbial superantigens, J. Exp. Med. 175: 267–273.PubMedGoogle Scholar
  16. Bhardwaj, N., Young, J. W., Nisanian, A. J., Baggers, J., and Steinman, R. M., 1993, Small amounts of superantigen, when presented on dendritic cells, are sufficient to initiate T cell responses, J. Exp. Med. 178: 633–642.PubMedGoogle Scholar
  17. Bhardwaj, N., Bender, A., Gonzalez, N., Bui, L. K., Garrett, M. C., and Steinman, R. M., 1994a, Influenza virus-infected dendritic cells stimulate strong proliferative and cytolytic responses from human CD8+ T cells, J. Clin. Invest. 94: 797–807.PubMedGoogle Scholar
  18. Bhardwaj, N., Hodtsev, A.S., Nisanian, A., Kabak, S., Friedman, S. M., Cole, B. C., and Posnett, D. N., 1994b, Human T-cell responses to Mycoplasma arthritides-derived superantigen, Infect. Immun. 62: 135–144.PubMedGoogle Scholar
  19. Birbeck, M. S., Breathnach, A. S., and Everall, J. D., 1961, An electron microscopic study of basal melanocytes and high level clear cells (Langerhans’ cells) in vitiligo, J. Invest. Dermatol. 37: 51–64.Google Scholar
  20. Boehmelt, G., Madruga, J., Dörfler, P., Briegel, K., Schwarz, H., Enrietto, P. J., and Zenke, M., 1995, Dendritic cell progenitor is transformed by a conditional v-Rel estrogen receptor fusion protein v-Re1ER, Cell 80: 341–352.PubMedGoogle Scholar
  21. Boussiotis, V. A., Freeman, G. J., Gribben, J. G., Daley, J., Gray, G., and Nadler, L. M., 1993, Activated human B lymphocytes express three CTLA-4 counterreceptors that costimulate T-cell activation, Proc. Natl. Acad. Sci. U.S.A. 90: 11059–11063.PubMedGoogle Scholar
  22. Brand, C. U., Gerber, H. A., Hunziker, T., Schaffner, T., Limat, A., and Brathen, L.R., 1993, Phenotype of Langerhans cells in human afferent skin lymph derived from allergic contact dermatitis, Exp. Dermatol. 2: 274–279.PubMedGoogle Scholar
  23. Bujdoso, R., Hopkins, J., Dutia, B. M., Young, P., and McConnell, I., 1989, Characterization of sheep afferent lymph dendritic cells and their role in antigen carriage, J. Exp. Med. 170: 1285–1301.PubMedGoogle Scholar
  24. Buller, M. L., Holmes, K. L., Hugin, A., Frederikson, T. N., and Morse, H. C., 1987, Induction of cytotoxic T-cell response in vivo in the absence of CD4 helper cells, Nature 328: 77–79.PubMedGoogle Scholar
  25. Burkly, L., Hession, C., Ogata, L., Reilly, C., Marconi, L. A., Olson, D., Tizard, R., Cate, R., and Lo, D., 1995, Expression of relB is required for the development of thymic medulla and dendritic cells, Nature 373: 531–536.PubMedGoogle Scholar
  26. Caine, R. Y., Sells, R. A., Pena, J. R., Davis, D. R., Millard, P. R., Herbertson, B. M., Binns, R. M., and Davis, D. A. L., 1969, Induction of immunological tolerance by porcine liver allografts, Nature 233: 472–476.Google Scholar
  27. Cameron, P. U., Freudenthal, P. S., Barker, J. M., Gezelter, S., Inaba, K., and Steinman, R. M., 1992, Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells, Science 257: 383–387.PubMedGoogle Scholar
  28. Cameron, P. U., Lowe, M. G., Crowe, S. M., O’Doherty, U., Pope, M., Gezelter, S., and Steinman, R. M., 1994, Susceptibility of dendritic cells to HIV-1 infection in vitro, J. Leukocyte Biol. 56: 257–265.PubMedGoogle Scholar
  29. Caux, C., Saeland, S., Favre, C., Duvert, V., Mannoni, P., and Banchereau, J., 1990, Tumor necrosis factor-alpha strongly potentiates interleukin-3 and granulocyte—macrophage colony-stimulating factor-induced proliferation of human CD34+ hematopoietic progenitor cells, Blood 75: 2292–2298.PubMedGoogle Scholar
  30. Caux, C., Favre, C., Saeland, S., Duvert, V., Durand, I., Mannoni, P., and Banchereau, J., 1991, Potentiation of early hematopoiesis by tumor necrosis factor-a is followed by inhibition of granulopoietic differentiation and proliferation, Blood 78: 635–644.PubMedGoogle Scholar
  31. Caux, C., Dezutter-Dambuyant, C., Schmitt, D., and Banchereau, J., 1992, GM-CSF and TNF-a cooperate in the generation of dendritic Langerhans cells, Nature 360: 258–261.PubMedGoogle Scholar
  32. Caux, C., Durand, I., Moreau, I., Duvert, V., Saeland, S., and Banchereau, J., 1993, TNF-a cooperates with IL-3 in the recruitment of a primitive subset of human CD34+ progenitors., J. Exp. Med. 177: 1815–1820.PubMedGoogle Scholar
  33. Caux, C., Massacrier, C., Vanbervliet, B., Barthelemy, C., Liu, Y.-J., and Banchereau, J., 1994a, Interleukin-l0 inhibits T cell alloreaction induced by human dendritic cells, Int. Immunol. 6: 1177–1185.PubMedGoogle Scholar
  34. Caux, C., Massacrier, C., Vanbervliet, B., Dubois, B., van Kooten, C., Durand, I., and Banchereau, J., 1994b, Activation of human dendritic cells through CD40 cross-linking, J. Exp. Med. 180: 1263–1272.PubMedGoogle Scholar
  35. Caux, C., Vanbervliet, B., Massacrier, C., Azuma, M., Okumura, K., Lanier, L. L., and Banchereau, J., 1994c, B70/ B7–2 is identical to CD86 and is the major functional ligand for CD28 expressed on human dendritic cells, J. Exp. Med. 180: 1841–1847.PubMedGoogle Scholar
  36. Caux, C., Massacrier, C., Dezutter-Dambuyant, C., Vanbervliet, B., Jacquet, C., Schmitt, D., and Banchereau, J., 1995a, Human dendritic Langerhans cells generated in vitro from CD34+ progenitors can prime naive CD4+ T cells and process soluble antigen, J. Immunol. 155: 5427–5435.PubMedGoogle Scholar
  37. Caux, C., Vanbervliet, B., Massacrier, C., Dubois, B., Dezutter-Dambuyant, C., Schmitt, D., and Banchereau, J., 1995b, Characterization of human CD34+ derived Dendritic/Langerhans cells (D-Lc), in Dendritic Cells in Fundamental and Clinical Immunology (J. Banchereau and D. Schmitt, eds.), pp. l-5, Plenum Press, London.Google Scholar
  38. Caux, C., Vanbervliet, B., Massacrier, C., Durand, I., and Banchereau, J., 1996, Interleukin-3 cooperates with Tumor Necrosis Factor it for the development of human dendritic/Langerhans cells from cord blood CD34+ hematopoietic progenitor cells, Blood 87: 2376–2385.PubMedGoogle Scholar
  39. Chen, H., Ma, C., Yuan, J., Wang, Y., and Silvers, W. K., 1986, Occurrence of donor Langerhans cells in mouse and rat chimeras and their replacement in skin grafts, J. Invest. Dermatol. 86: 630–633.PubMedGoogle Scholar
  40. Clare-Salzler, M. J., Brooks, J., Chai, A., Van Herle, K., and Anderson, C., 1992, Prevention of diabetes in nonobese diabetic mice by dendritic cell transfer, J. Clin. Invest. 90: 741–748.PubMedGoogle Scholar
  41. Codner, M. A., Shuster, B. A., Steinman, R. M., Harper, A. D., LaTrenta, G. S., and Hoffman, L. A., 1990, Migration of donor leukocytes from limb allografts into host lymphoid tissues, Ann. Plastic Surg. 25: 353–359.Google Scholar
  42. Croft, M., Duncan, D. D., and Swain, S. L., 1992, Response of naive antigen-specific CD4+ T cells in vitro: Characteristics and antigen-presenting cell requirements, J. Exp. Med. 176: 1431–1437.PubMedGoogle Scholar
  43. Crow, M. K., and Kunkel, H. G., 1982, Human dendritic cells: Major stimulators of the autologous and allogeneic mixed leucocyte reactions, Clin. Exp. Immunol. 49: 338–346.PubMedGoogle Scholar
  44. Crowley, M., Inaba, K., Witmer, P. M., and Steinman, R. M., 1989, The cell surface of mouse dendritic cells: FACS analyses of dendritic cells from different tissues including thymus, Cell. Immunol 118: 108–125.PubMedGoogle Scholar
  45. Crowley, M. T., Inaba, K., Witmer-Pack, M. D., Gezelter, S., and Steinman, R. M., 1990, Use of the fluorescence activated cell sorter to enrich dendritic cells from mouse spleen, J. Immunol. Methods 133: 55–66.PubMedGoogle Scholar
  46. Cumberbatch, M., and Kimber, I., 1992, Dermal tumour necrosis factor-alpha induces dendritic cell migration to draining lymph nodes, and possibly provides one stimulus for Langerhans’ cell migration, Immunology 75: 257–263.PubMedGoogle Scholar
  47. Cumberbatch, M., and Kimber, I., 1995, Tumour necrosis factor-a is required for accumulation of dendritic cells in draining lymph nodes and for optimal contact sensitization, Immunology 84: 31–35.PubMedGoogle Scholar
  48. Dai, R., Grammer, S. F., and Streilein, J. W., 1993, Fresh and cultured Langerhans cells display differential capacities to activate hapten-specific T cells, J. Immunol. 150: 59–66.PubMedGoogle Scholar
  49. De Becker, G., Somasse, T., Nabavi, N., Bazin, H., Tielemans, F., Urbain, J., Leo, O., and Moser, M., 1994, Immunoglobulin isotype regulation by antigen-presenting cells in vivo, Eue. J. Immunol. 24: 1523–1528.Google Scholar
  50. De Bruijn, M. L. H., Nieland, J. D., Harding, C. V., and Melief, C. J. M., 1992, Processing and presentation of intact hen egg-white lysozyme by dendritic cells, Eue. J. Immunol. 22: 2347–2352.Google Scholar
  51. De Fraissinette, A., Schmitt, D., Dezutter-Dambuyant, C., Guyotat, D., Zabot, M., and Thivolet, J., 1988, Culture of putative Langerhans cell bone marrow precursors: Characterization of their phenotype, Exp. Hematol. 16: 764–768.PubMedGoogle Scholar
  52. De Panfilis, G., Soligo, D., Manara, G. C., Ferrari, C., and Torresani, C., 1989, Adhesion molecules on the plasma membrane of epidermal cells. I. Human resting Langerhans cells express two members of the adherence-promoting CD11/CD18 family, namely, H-Mac-1 (CD11b/CD18) and pg 150,95 (CD11c/CD18), J. Invest. Dermatol. 93: 60–69.PubMedGoogle Scholar
  53. Dezutter-Bambuyant, C., and Schmitt, D., 1993, Epidermal Langerhans cells and HIV-1 infection, Immunol. Leu. 39: 33–37.Google Scholar
  54. Dijkstra, C. D., 1982, Characterization of nonlymphoid cells in rat spleen, with special reference to strongly Iapositive branched cells in T-cell areas, J. Reticuloendothel. Soc. 32: 167–178.PubMedGoogle Scholar
  55. Ding, L., and Shevach, E., 1992, IL-10 inhibits mitogen-induced T cell proliferation by selectively inhibiting macrophage costimulatory function, J. Immunol. 148: 3133–3139.PubMedGoogle Scholar
  56. Dranoff, G., Crawford, A. D., Sadelain, M., Ream, B., Rashid, A., Bronson, R. T., Dickersin, G. R., Bachurski, C. J., Mark, E. L., Whitsett, J. A., and Mulligan, R. C., 1994, Involvment of granulocyte-macrophage colony-stimulating factor in pulmonary homeostasis, Science 264: 713–716.PubMedGoogle Scholar
  57. Drexhage, H. A., Mullink, H., de Groot, J., Clark, J., and Balfour, B. M., 1979, A study of cells present in peripheral lymph of pigs with special reference to a type of cell resembling the Langerhans cells, Cell Tiss. Res. 202: 407–430.Google Scholar
  58. Dubois, B., Fayette, J., Vanbervlient, B., Banchereau, J., Brière, F., and Caux, C., 1995, Human dendritic cells enhance growth and differentiation of CD40 activated B cells, in Dendritic Cells in Fundamental and Clinical Immunology ( J. Banchereau and D. Schmitt, eds.), pp. 397–399, Plenum Press, New York.Google Scholar
  59. Duijvestijn, A. M., Schutte, R., Kohler, Y. G., Korn, C., and Hoefsmit, E. C. M., 1983, Characterization of the population of phagocytic cells in thymic cell suspensions. A morphological and cytochemical study, Cell Tiss. Res. 231: 313–323.Google Scholar
  60. Durie, E. H., Fava, R. A., Foy, T. M., Aruffo, A., Ledbetter, J. A., and Noelle, R. J., 1993, Prevention of collagen-induced arthritis with an antibody to gp39, the ligand for CD40, Science 261: 1328–1330.PubMedGoogle Scholar
  61. Durie, F. H., Aruffo, A., Ledbetter, J., Crassi, K. M., Green, W. R., and Fast, L. D., 1994, Antibody to the ligand of CD40, gp39, blocks the occurence of the acute and chronic forms of graft-vs-host disease, J. Clin. Invest. 94: 1333–1338.PubMedGoogle Scholar
  62. Elbe, A., Schleischitz, S., Strunk, D., and Stingl, G., 1994, Fetal skin-derived MHC class I+, MHC class II dendritic cells stimulate MHC class I-restricted responses of unprimed CD8+ T cells, J. Immunol. 153: 2878–2889.PubMedGoogle Scholar
  63. Enk, A. H., Angeloni, V. L., Udey, M. C., and Katz, S. I., 1993, Inhibition of Langerhans cell antigen-presenting function by IL-10, J. Immunol. 151: 2390–2398.PubMedGoogle Scholar
  64. Enk, A. H., Saloga, J., Becker, D., Mohamadzadeh, M., and Knop, J., 1994, Induction of hapten-specific tolerance by interleukin 10 in vivo, J. Exp. Med. 179: 1397–1402.PubMedGoogle Scholar
  65. Fairchild, P. J., and Austyn, J. M., 1990, Thymic dendritic cell. Phenotype and function, Int. Rev. Immunol. 6: 187–196.PubMedGoogle Scholar
  66. Fayette, J., Dubois, B., Caux, C., Banchereau, J., and Brière, F., 1995, Human dendritic cells can drive CD40activated sIgD+ B cells to mount mucosal-type humoral response, in Dendritic Cells in Fundamental and Clinical Immunology ( J. Banchereau and D. Schmitt, eds.), pp. 401–403, Plenum Press, New York.Google Scholar
  67. Fiorentino, D. F., Bond, M. W., and Mosmann, T. R., 1989, Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Thl clones, J. Exp. Med. 170: 2081–2095.PubMedGoogle Scholar
  68. Fithian, E., Kung, P., Goldstein, G., Rubenfeld, M., Fenoglio, C., and Edelson, R., 1981, Reactivity of Langerhans cells with hybridoma antibody, Proc. Natl. Acad. Sci. U.S.A. 78: 2541–2544.PubMedGoogle Scholar
  69. Flamand, V., Sornasse, T., Thielemans, K., Demanet, C., Bakkus, M., Bazin, H., Tielemans, F., Leo, O., Urbain, J., and Moser, M., 1994, Murine dendritic cells pulsed in vitro with tumor antigen induce tumor resistance in vivo, Eur. J. Immunol. 24: 605–610.PubMedGoogle Scholar
  70. Fossum, S., 1988, Lymph-borne dendritic leucocytes do not recirculate, but enter the lymph node paracortex to become interdigitating cells, Scand. J. Immunol. 27: 97–105.PubMedGoogle Scholar
  71. Fossum, S., 1989a, Dendritic leukocytes: features of their in vivo physiology, Res. Immunol. 140:883–891. Fossum, S., 1989b, The life history of dendritic leukocytes (DL), Current Topics in Pathology (O. H. Ivessen ed.), pp. 101–124, Springer-Verlag, Berlin.Google Scholar
  72. Francotte, M., and Urbain, J., 1985, Enhancement of antibody responses by mouse dendritic cells pulsed with tobacco mosaic virus or with rabbit antiidiotypic antibodies raised against a private rabbit idiotype, Proc. Natl. Acad. Sci. U.S.A. 82: 8149–8152.PubMedGoogle Scholar
  73. Freeman, G. F., Gribben, J. G., Boussiotis, V. A., Ng, J. W., Restivo, V. A., Jr., Lombard, L. A., Gray, G. S., and Nadler, L. M., 1993a, Cloning of B7–2: A CTLA-4 counterreceptor that costimulates human T cell proliferation, Science 262: 909–911.PubMedGoogle Scholar
  74. Freeman, G. J., Borriello, F., Hodes, R. J., Reiser, H., Hathcock, K. S., Laszlo, G., McKnight, A. J., Kim, J., Du, L., Lombard, D. B., Gray, G. S., Nadler, L. M., and Sharpe, A. H., 1993b, Uncovering of functional alternative CTLA-4 counter-receptor in B7-deficient mice, Science 262: 907–909.PubMedGoogle Scholar
  75. Freudenthal, P., and Bhardwaj, N., 1990, Dendritic cells in human blood and synovial exudates, Int. Rev. Immunol. 6: 103–116.PubMedGoogle Scholar
  76. Freudenthal, P. S., and Steinman, R. M., 1990, The distinct surface of human blood dendritic cells, as observed after an improved isolation method, Proc. Natl. Acad. Sci. U.S.A. 87: 7698–7702.PubMedGoogle Scholar
  77. Fuchs, E. J., and Matzinger, P., 1992, B cells turn off virgin but not memory T cells, Science 258: 1156–1159.PubMedGoogle Scholar
  78. Galy, A. H. M., and Spits, H., 1992, CD40 is functionnally expressed on human thymic epithelial cells, J. Immunol. 149: 775–782.PubMedGoogle Scholar
  79. Gautam, S. C., and Battisto, J. R., 1985, Orally induced tolerance generates an efferently acting suppressor T cell and an acceptor T cell that together downregulate contact sensitivity, J. Immunol. 135: 2975–2983.PubMedGoogle Scholar
  80. Gribben, J. G., Freman, G. J., Boussiotis, V. A., Rennert, P., Jellis, C. L., Greenfield, E., Barber, M., Restivo, V. A., Jr., Ke, X., Gray, G.S., and Nadler, L.M., 1995, CRLA4 mediates antigen-specific apoptosis of human T cells, Proc. Natl. Acad. Sci. U.S.A. 92: 811–815.PubMedGoogle Scholar
  81. Guillemot, F. P., Oliver, P. D., Peault, B. M., and LeDourain, N. M., 1984, Cells expressing Ia antigen in the avian thymus, J. Exp. Med. 160: 1803–1819.PubMedGoogle Scholar
  82. Hanau, D., Fabre, M., Schmitt, D. A., Stampf, J.-L., Garaud, J.-C., Bieber, T., Grosshans, E., Benezra, C., and Cazenave, J.-P., 1987, Human epidermal Langerhans cells internalized by receptor-mediated endocytosis T6 (CD1 “NA1/34”) surface antigen. Birbeck granules are involved in the intracellular traffic of the antigen, J. Invest. Dermatol. 89: 172–177.PubMedGoogle Scholar
  83. Harkiss, G. D., Hopkins, J., and McConnell, I., 1990, Uptake of antigen by afferent lymph dendritic cells mediated by antibody, Eur. J. Immunol. 20: 2367–2373.PubMedGoogle Scholar
  84. Hart, D. N. J., and Fabre, J. W., 1981, Demonstration and characterization of Ia-positive dendritic cells in the interstitial connective tissues of rat heart and other tissues, but not brain, J. Exp. Med. 154: 347–361.PubMedGoogle Scholar
  85. Hart, D. N. J., and McKenzie, J. L., 1988, Isolation and characterization of human tonsil dendritic cells, J. Exp. Med. 168: 157–160.PubMedGoogle Scholar
  86. Hart, D. N. J., and McKenzie, J. L., 1990, Interstitial dendritic cells, Int. Rev. Immunol. 6: 128–149.Google Scholar
  87. Hart, D. N., Starling, G. C., Calder, V. L., and Fernando, N. S., 1993, B7/BB-1 is a leucocyte differentiation antigen on human dendritic cells induced by activation, Immunology 79: 616–620.PubMedGoogle Scholar
  88. Hathcock, K. S., Laszlo, G., Dickler, H. B., Bradshaw, J., Linsley, P., and Hodes, R. J., 1993, Identification of an alternative CTLA-4 ligand co-stimulatory for T cell activation, Science 262: 905–907.PubMedGoogle Scholar
  89. Havenith, C. E., Breedijk, A. J., Betjes, M. G., Calame, W., Beelen, R. H., and Hoefsmit, E. C., 1993, T cell priming in situ by intratracheally instilled antigen-pulsed dendritic cells, Am. J. Respir. Cell. Mol. Biol. 8: 319–324.PubMedGoogle Scholar
  90. Heufler, C., Koch, F., and Schuler, G., 1988, Granulocyte/macrophage colony-stimulating factor and interleukin 1 mediate the maturation of murine epidermal Langerhans cells into potent immunostimulatory dendritic cells, J. Exp. Med. 167: 700–705.PubMedGoogle Scholar
  91. Hoang, T., Levy, B., Onetto, N., Haman, A., and Rodriguez-Cimadevilla, J. C., 1989, Tumor necrosis factor a stimulates growth of the clonogenic cells of acute myeloblastic leukemia in synergy with granulocyte—macrophage colony-stimulating factor, J. Exp. Med. 170: 15–26.PubMedGoogle Scholar
  92. Holt, P. G., 1993, Regulation of antigen-presenting cell function(s) in lung and airway tissues, Eur. Respir. J. 6: 120–129.PubMedGoogle Scholar
  93. Holt, P. G., Schon-Hegrad, M. A., and Oliver, J., 1988, MHC class II antigen-bearing dendritic cells in pulmonary tissues of the rat: Regulation of antigen presentation activity by endogenous macrophage populations, J. Exp. Med. 167: 262–274.PubMedGoogle Scholar
  94. Holt, P. G., Schon-Hegrad, M. A., and McMenamin, P. G., 1990, Dendritic cells in the respiratory tract, Im. Rev. Immunol. 6: 139–149.Google Scholar
  95. Holt, P. G., Oliver, J., McMenamin, C., Bilyk, N., Kraal, G., and Thepen, T., 1993a, The antigen presentation functions of lung dendritic cells are downmodulated in situ by soluble mediators from pulmonary alveolar macrophages, J. Exp. Med. 177: 397–407.PubMedGoogle Scholar
  96. Holt, P. G., Haining, S., Nelson, D. J., and Sedgwick, J. D., 1994, Origin and steady-state turnover of class II MHC-bearing dendritic cells in the epithelium of the conducting airways, J. Immunol. 153: 256–261.PubMedGoogle Scholar
  97. Hsieh, C.-S., Macatonia, S. E., Tripp, C. S., Wolf, S. F., O’Garra, A., and Murphy, K. M., 1993, Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages, Science 260: 547–549.PubMedGoogle Scholar
  98. Ibrahim, M. A. A., Chain, B. M., and Katz, D. R., 1995, The injured cell: The role of the dendritic cell system as a sentinel receptor pathway, Immunol. Today 14: 181–186.Google Scholar
  99. Inaba, K., and Steinman, R. M., 1985, Protein-specific helper T lymphocyte formation initiated by dendritic cells, Science 229: 475–479.PubMedGoogle Scholar
  100. Inaba, K., and Steinman, R. M., 1987, Dendritic and B cell function during antibody responses in normal and immunodeficient (xid) mouse spleen cultures, Cell. Immunol. 105: 432–442.PubMedGoogle Scholar
  101. Inaba, K., Granelli-Piperno, A., and Steinman, R. M., 1983, Dendritic cells are critical accessory cells for thymusdependent antibody responses in mouse and man, Proc. Natl. Acad. Sci. U.S.A. 80: 6041–6045.PubMedGoogle Scholar
  102. Inaba, K., Witmer, M. D., and Steinman, R. M., 1984, Clustering of dendritic cells, helper T lymphocytes, and histocompatible B cells, during primary antibody responses in vitro, J. Exp. Med. 160: 858–876.PubMedGoogle Scholar
  103. Inaba, K., Schuler, G., Witmer, M. D., Valinksy, J., Atassi, B., and Steinman, R. M., 1986, Immunologic properties of purified epidermal Langerhans cells, J. Exp. Med. 164: 605–613.PubMedGoogle Scholar
  104. Inaba, K., Young, J. W., and Steinman, R. M., 1987, Direct activation of CD8+ cytotoxic T lymphocytes by dendritic cells, J. Exp. Med 166: 182–194.PubMedGoogle Scholar
  105. Inaba, K., Hosono, M., and Inaba, M., 1990a, Thymic dendritic cells and B cells: Isolation and function, Int. Rev. Immunol. 6: 117–122.PubMedGoogle Scholar
  106. Inaba, K., Metlay, J. P., Crowley, M. T., and Steinman, R. M., 19906, Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ, J. Exp. Med. 172: 631–640.Google Scholar
  107. Inaba, K., Metlay, J. P., Crowley, M. T., Witmer-Pack, M., and Steinman, R. M., 1990c, Dendritic cells as antigen presenting cells in vivo, Int. Rev. Immunol. 6: 197–206.PubMedGoogle Scholar
  108. Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Muramatsu, S., and Steinman, R. M., 1992a, Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor, J. Exp. Med. 176: 1693–1702.PubMedGoogle Scholar
  109. Inaba, K., Steinman, R. M., Pack, M. W., Aya, H., Inaba, M., Sudo, T., Wolpe, S., and Schuler, G., 19926, Identification of proliferating dendritic cell precursors in mouse blood, J. Exp. Med. 175: 1157–1167.Google Scholar
  110. Inaba, K., Inaba, M., Deguchi, M., Hagi, K., Yasumizu, R., Ikehara, S., Muramatsu, S., and Steinman, R. M., 1993a, Granulocytes, macrophages, and dendritic cells arise from a common major histocompatibility complex class II-negative progenitor in mouse bone marrow, Proc. Natl. Acad. Sci. U.S.A. 90: 3038–3042.PubMedGoogle Scholar
  111. Inaba, K., Inaba, M., Naito, M., and Steinman, R. M., 1993b, Dendritic cells progenitors phagocytose particulates, including Bacillus Calmette-Guérin organisms, and sensitize mice to mycobacterial antigens in vivo, J. Exp. Med. 178: 479–488.PubMedGoogle Scholar
  112. Inaba, K., Witmer-Pack, M., Inaba, M., Hathcock, K. S., Sakuta, H., Azuma, M., Yagita, H., Okumura, K., Linsley, P. S., Ikehara, S., Muramatsu, S., Hodes, R. J., and Steinman, R. M., 1994, The tissue distribution of the B7–2 costimulator in mice: Abundant expression on dendritic cells in situ and during maturation in vitro, J. Exp. Med. 180: 1849–1860.PubMedGoogle Scholar
  113. Jacobsen, F. W., Rothe, M., Rusten, L., Goeddel, D. V., Smeland, E. B., Veiby, O. P., Slordal, L., and Jacobsen, E. W., 1994, Role of the 75-kDa tumor necrosis factor receptor: Inhibition of early hematopoiesis, Proc. Natl. Acad. Sci. U.S.A. 91: 10695–10699.PubMedGoogle Scholar
  114. Jacobsen, S. E. W., Ruscetti, F. W., Dubois, C. M., and Keller, J. R., 1992, Tumor necrosis factor a directly and indirectly regulates hematopoietic progenitor cell proliferation: Role of colony-stimulating factor receptor modulation, J. Exp. Med. 175: 1759–1772.PubMedGoogle Scholar
  115. Jenkinson, E. J., Jhittay, P., Kingston, R., and Owen, J. J. T., 1985, Studies of the role of the thymic environment in the induction of tolerance to MHC antigens, Transplantation 39: 331–333.PubMedGoogle Scholar
  116. Kabel, P. J., de Haan-Meulman, M., Voorbij, H. A., Kleingeld, M., Knol, E. F., and Drexhage, H. A., 1989, Accessory cells with a morphology and marker pattern of dendritic cells can be obtained from elutriatorpurified blood monocyte fractions. An enhancing effect of metrizamide in this differentiation, Immunobiology 179: 395–411.PubMedGoogle Scholar
  117. Kaiserling, E., Stein, H., and Mueller-Hermelink, H. K., 1974, Interdigitating reticulum cells in the human thymus, Cell Tiss. Res. 155: 47–55.Google Scholar
  118. Kaplan, G., Walsh, G., Guido, L. S., Meyn, P., Burkhardt, R. A., Abalos, R. M., Barker, J., Frindt, P. A., Fajardo, T. T., Celona, R., and Cohn, Z. A., 1992, Novel responses of human skin to intradermal recombinant granulocyte/macrophage-colony-stimulating factor: Langerhans cell recruitment, keratinocyte growth, and enhanced wound healing, J. Exp. Med. 175: 1717–1728.PubMedGoogle Scholar
  119. Kashihara, M., Ueda, M., Horiguchi, Y., Furukawa, F., Hanaoka, M., and Imamura, S., 1986, A monoclonal antibody specifically reactive to human Langerhans cells, J. Invest. Dermatol. 87: 602–607.PubMedGoogle Scholar
  120. Kasinrerk, W., Baumruker, T., Majdic, O., Knapp, W., and Stockinger, H., 1993, CD] molecule expression on human monocytes induced by granulocyte-macrophage colony-stimulating factor, J. Immunol. 150: 579–584.PubMedGoogle Scholar
  121. Katz, S. I., Tamaki, K., and Sachs, D. H., 1979, Epidermal Langerhans cells are derived from cells originating in bone marrow, Nature 282: 324–326.PubMedGoogle Scholar
  122. Kleijmeer, M. J., Oorschot, V. M., and Geuze, H. J., 1994, Human resident Langerhans cells display a lysosomal compartment enriched in MHC class II, J. Invest. Dermatol. 103: 516–523.PubMedGoogle Scholar
  123. Klinkert, W. E. F., Labadie, J. H., and Bowers, W. E., 1982, Accessory and stimulating properties of dendritic cells and macrophages isolated from various rat tissues, J. Exp. Med. 156: 1–19.PubMedGoogle Scholar
  124. Knight, S. C., and Stagg. A. J., 1993, Antigen-presenting cell types, Curr. Opin. Immunol. 5: 374–382.PubMedGoogle Scholar
  125. Knight, S. C., Balfour, B. M., O’Brien, J., Buttifant, L., Sumerska, T., and Clark, J., 1982, Role of veiled cells in lymphocyte activation, Eur. J. Immunol. 12: 1057–1060.PubMedGoogle Scholar
  126. Knight, S. C., Farrant, J., and Bryan, A., 1986, Non-adherent, low density cells from human peripheral blood contain dendritic cells and monocytes, both with veiled morphology, Immunology 57: 595–603.PubMedGoogle Scholar
  127. Knight, S. C., Macatonia, S. E., Bedford, P. A., and Patterson, S., 1991, Dendritic cells and HIV infection, in Accessory Cells in HIV and Other Retroviral Infections ( P. Racz, C. D. Dijkstra, and J. C. Gluckman, eds.), pp. 145–154, Karger, Basel.Google Scholar
  128. Koch, F., Heufler, C., Kmpgen, E., Schneeweiss, D., ‘Rick, G., and Schuler, G., 1990, Tumor necrosis factor alpha maintains the viability of murine epidermal Langerhans cells in culture but, in contrast to granulocyte—macrophage colony-stimulating factor, does not induce their functional maturation, J. Exp. Med. 171: 159–172.PubMedGoogle Scholar
  129. Kraal, G., Van Wilsem, E., and Breve, J., 1993, The phenotype of murine Langerhans cells from skin to lymph node, In Vivo 7: 203–206.PubMedGoogle Scholar
  130. Kripke, M. L., Munn, C. G., Jeevan, A., Tang, J.-M., and Bucana, C., 1990, Evidence that cutaneous antigenpresenting cells igrate to regional lymph nodes during contact sensitization, J. Immunol. 145: 2833–2838.PubMedGoogle Scholar
  131. Krueger, G. G., Daynes, R. A., and Emam, M., 1983, Biology of Langerhans cells: Selective migration of Langerhans cells into allogeneic and xenogeneic grafts on nude mice, Proc. Natl. Acad. Sci. U.S.A. 80: 1650–1654.PubMedGoogle Scholar
  132. Kuchroo, V. K., Das, M. P., Brown, J. A., Ranger, A. M., Zamvil, S. S., Sobel, R. A., Weiner, H. L., Nabavi, N., and Glimcher, L. H., 1995, B7–1 and B7–2 costimulatory molecules activate differentially the Thl/Th2 developmental pathways: application to autoimmune disease therapy, Cell 80: 707–718.PubMedGoogle Scholar
  133. Kupiec-Weglinski, J. W., Austyn, J. M., and Morris, P. J., 1988, Migration patterns of dendritic cells in the mouse. Traffic from blood, and T cell-dependent and independent entry to lymploid tissues, J. Exp. Med. 167: 632–645.PubMedGoogle Scholar
  134. Kyewski, B. A., Fathman, C. G., and Rouse, R. V., 1986, Intrathymic presentation of circulating non-MHC antigens by medullary dendritic cells. An antigen-dependent microenvironment for T cell differentiation, J. Exp. Med. 163: 231–246.PubMedGoogle Scholar
  135. Langhoff, E., Terwilliger, E. F., Bos, H. J., Kalland, K. H., Poznansky, M. C., Bacon, O. M. L., and Haseltine, W. A., 1991, Replication of human immunodeficiency virus type 1 in primary dendritic cell cultures, Proc. Natl. Acad. Sci. U.S.A. 88: 7998–8002.PubMedGoogle Scholar
  136. Larsen, C. P., Steinman, R. M., Witmer-Pack, M. D., Hankins, D. F., Morris, P. J., and Austyn, J. M., 1990, Migration and maturation of Langerhans cells in skin transplants and explants, J. Exp. Med. 172: 1483–1494.PubMedGoogle Scholar
  137. Larsen, C. P., Ritchie, S. C., Pearson, T. C., Linsley, P. S., and Lowry, R. P., 1992, Functional expression of the costimulatory molecule, B7/BB1, on murine dendritic cell populations, J. Exp. Med. 176: 1215–1220.PubMedGoogle Scholar
  138. Larsen, C. P., Ritchie, S. C., Hendrix, R., Linsley, P. S., Hathcock, K. S., Hodes, R. J., Lowry, R. P., and Pearson, T. C., 1994, Regulation of immunostimulatory function and costimulatory molecule (B7–1 and B7–2) expression on murine dendritic cells, J. Immunol. 152: 5208–5219.PubMedGoogle Scholar
  139. Lenschow, D. J., Zeng, Y., Thistlethwaite, J. R., Montag, A., Brady, W., Gibson, M. G., Linsley, P. S., and Bluestone, J. A., 1992, Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4Ig, Science 257: 789–792.PubMedGoogle Scholar
  140. Lenz, A., Heufler, C., Rammensee, H. G., Glassl, H., Koch, F., Romani, N., and Schuler, G., 1989, Murine epidermal Langerhans cells express significant amounts of class I major histocompatibility complex antigens, Proc. Natl. Acad. Sci. U.S.A. 86: 7527–7531.PubMedGoogle Scholar
  141. Lenz, A., Heine, M., Schuler, G., and Romani, N., 1993, Human and murine dermis contain dendritic cells, J. Clin. Invest. 92: 2587–2596.PubMedGoogle Scholar
  142. Leszcynski, R., Renkonen, R., and Hayry, P., 1985, Turnover of dendritic cells in rat heart, Scand. J. Immunol. 22: 351–360.Google Scholar
  143. Levin, D., Constant, S., Pasqualini, T., Flavell, R., and Bottomly, K., 1993, Role of dendritic cells in the priming of CD4+ T lymphocytes to peptide antigen in vivo, J. Immunol. 151: 6742–6750.PubMedGoogle Scholar
  144. Levine, T. P., and Chain, B. M., 1992, Endocytosis by antigen presenting cells: Dendritic cells are as endocytically active as other antigen presenting cells, Proc. Natl. Acad. Sci. U.S.A. 89: 8342–8346.PubMedGoogle Scholar
  145. Linsley, R. S., and Ledbetter, J. A., 1993, The role of the CD28 receptor during T cell responses to antigen, Annu. Rev. Immunol. 11: 191–212.PubMedGoogle Scholar
  146. Linsley, R. S., Wallace, R. M., Johnson, J., Gibson, M. G., Greene, J. L., Ledbetter, J. A., Singh, C., and Tepper, M. A., 1992, Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule, Science 257: 792–795.PubMedGoogle Scholar
  147. Liu, L.M., and MacPherson, G.G., 1993, Antigen acquisition by dendritic cells: intestinal dendritic cells acquire antigen administered orally and can prime naive T cells in vivo, J. Exp. Med. 177: 1299–1307.PubMedGoogle Scholar
  148. Lu, L., Woo, J., Rao, A. S., Li, Y., Watkins, S. C., Qian, S., Starzl, T. E., Demetris, A. J., and Thomson, A. W., 1994, Propagation of dendritic cell progenitors from normal mouse liver using granulocyte/macrophage colony-stimulating factor and their maturational development in the presence of type-1 collagen, J. Exp. Med. 179: 1823–1834.PubMedGoogle Scholar
  149. Macatonia, S. E., Knight, S. C., Edwards, A. J., Griffiths, S., and Fryer, R, 1987, Localization of antigen on lymph node dendritic cells after exposure to the contact sensitizer fluorescein isothiocyanate, J. Exp. Med. 166: 1654–1667.PubMedGoogle Scholar
  150. Macatonia, S. E., Doherty, T. M., Knight, S. C., and O’Garra, A., 1993a, Differential effect of interleukin 10 on dendritic cell-induced T cell proliferation and interferon-y production, J. Immunol. 150: 3755–3765.PubMedGoogle Scholar
  151. Macatonia, S. E., Hsieh, C.-S., Murphy, K. M., and O’Garra, A., 1993b, Dendritic cells and macrophages are required for Thl development of CD4+ T cells from a3 TCR transgenic mice: IL-12 substitution for macrophages to stimulate IFN-y production is IFN-y-dependent, Int. Immunol. 5: 1119–1128.PubMedGoogle Scholar
  152. Macatonia, S. E., Hosken, N. A., Litton, M., Vieira, R, Hsieh, C.-S., Culpepper, J. A., Wysocka, M., Trinchieri, G., Murphy, K. M., and O’Garra, A., 1995, Dendritic cells produce interleukin-12 and direct the development of Th1 cells from naive CD4+ T cells, J. Immunol. 154: 5071–5079.PubMedGoogle Scholar
  153. MacDonald, T. T., 1983, Immunosuppression caused by antigen feeding II. Suppressor T cells mask Peyer’s patch B cell priming to orally administered antigen, Eur. J. Immunol. 13: 138–142.PubMedGoogle Scholar
  154. Mason, D. W., Pugh, C. W., and Webb, M., 1981, The rat mixed lymphocyte reaction: Roles of a dendritic cell in intestinal lymph and T cell subsets defined by monoclonal antibodies, Immunology 44: 75–87.PubMedGoogle Scholar
  155. Matzinger, R, 1994, Tolerance, danger, and the extended family, Annu. Rev. Immunol. 12: 991–1045.PubMedGoogle Scholar
  156. Mayordomo, J. I., Storkus, W. J., Kast, W. M., Zorina, T., DeLeo, A. B., and Lotze, M. T., 1995, Bone marrowderived dendritic cells serve as potent adjuvants for peptide-based antitumor vaccines, J. Cell. Biochem.[Supp.] 21A: 21.Google Scholar
  157. Mayrhofer, G., Holt, P. G., and Papadimitriou, J. M., 1986, Functional characteristics of the veiled cells in afferent lymph from the rat intestine, Immunology 58: 379–387.PubMedGoogle Scholar
  158. McWilliam, A. S., Nelson, D., Thomas, J. A., and Holt, P. G., 1994, Rapid dendritic cell recruitment is a hallmark of the acute inflammatory response at mucosal surfaces, J. Exp. Med. 179: 1331–1336.PubMedGoogle Scholar
  159. Metlay, J. P., Puré, E., and Steinman, R. M., 1989, Control of the immune response at the level of antigen-presenting cells: A comparison of the function of dendritic cells and B lymphocytes, Adv. Immunol. 47: 45–116.PubMedGoogle Scholar
  160. Metlay, J. P., Witmer-Pack, M. D., Agger, R., Crowley, M. T., Lawless, D., and Steinman, R. M., 1990, The distinct leukocyte integrins of mouse spleen dendritic cells as identified with new hamster monoclonal antibodies, J. Exp. Med. 171: 1753–1772.PubMedGoogle Scholar
  161. Moll, H., 1993, Epidermal Langerhans cells are critical for immunoregulation of cutaneous leishmaniasis, Immunol. Today 14: 383–387.PubMedGoogle Scholar
  162. Moll, H., Fuchs, H., Blank, C., and Rollinghoff, M., 1993, Langerhans cells transport Leishmania major from the infected skin to the draining lymph node for presentation to antigen-specific T cells, Eur. J. Immunol. 23: 1595–1601.PubMedGoogle Scholar
  163. Moore, K. W., Vieira, P., Fiorentino, D. F., Trounstine, M. L., Khan, T. A., and Mosmann, T. R., 1990, Homology of the cytokine synthesis inhibitory factor (IL-10) to the Epstein—Barr virus gene BCRFI, Science 248: 1230–1234.PubMedGoogle Scholar
  164. Moore, M. A. S., 1991, Clinical implications of positive and negative hematopoietic stem cell regulators, Blood 78: 1–19.PubMedGoogle Scholar
  165. Mosier, D. E., 1967, A requirement for two cell types for antibody formation in vitro, Science 158: 1573–1575.PubMedGoogle Scholar
  166. Mowat, A. M., 1987, The regulation of immune responses to dietary protein antigens, Immunol. Today 8: 93–98.Google Scholar
  167. Nestle, F. O., Zheng, X.-G., Thompson, C. B., Turka, L. A., and Nickoloff, B. J., 1993, Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets, J. Immunol. 151: 6535–6545.PubMedGoogle Scholar
  168. Nicod, L. P., Lipscomb, M. F., Weissler, J. C., Lyons, C. R., Alberton, J., andToews, G. B., 1989, Mononuclear cells from human lung parenchyma support antigen-induced T lymphocyte proliferation, J. Leuk. Biol. 45: 336–344.Google Scholar
  169. Nonacs, R., Humborg, C., Tam, J. R, and Steinman, R. M., 1992, Mechanisms of mouse spleen dendritic cell function in the generation of influenza-specific, cytolytic T lymphocytes, J. Exp. Med. 176: 519–529.PubMedGoogle Scholar
  170. Notarangelo, L. D., Duse, M., and Ugazio, A. G., 1992, Immunodeficiency with hyper-IgM (HIM), Immunodef. Rev. 3: 101–122.PubMedGoogle Scholar
  171. Nussenzweig, M. C., Jiang, W., Swiggard, W. J., Mirza, A., Peng, M., and Steinman, R. M., 1995, Molecular characterization of a 205 Kd protein that is abundant on dendritic cells and identified with the NLDC-145 monoclonal antibody, J. Cell Biochem. [Suppl.] 21A: 20.Google Scholar
  172. O’Doherty, U., Steinman, R. M., Peng, M., Cameron, P. U., Gezelter, S., Kopeloff, I., Swiggard, W. J., Pope, M., and Bhardwaj, N., 1993, Dendritic cells freshly isolated from human blood express CD4 and mature into typical immunostimulatory dendritic cells after culture in monocyte-conditioned medium, J. Exp. Med. 178: 1067–1078.PubMedGoogle Scholar
  173. O’Doherty, U., Peng, M., Gezelter, S., Swiggard, W. J., Betjes, M., Bhardwaj, N., and Steinman, R. M., 1994, Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature, Immunology 82: 487–493.PubMedGoogle Scholar
  174. Paglia, E, Girolomoni, G., Robbiati, F., Granucci, F., and Ricciardi-Castagnoli, R, 1993, Immortalized dendritic cell line fully competent in antigen presentation initiates primary T cell responses in vivo, J. Exp. Med. 178: 1893–1901.Google Scholar
  175. Pauli, P., Woodhams, C. E., Doe, W. F., and Hume, D. A., 1990, Isolation and characterization of antigen-presenting dendritic cells from the mouse intestinal lamina propria, Immunology 70: 40–47.Google Scholar
  176. Péguet-Navarro, J., Moulon, C., Caux, C., Dalbiez-Gauthier, C., Banchereau, J., and Schmitt, D., 1994, Interleukin 10 inhibits the primary allogeneic T cell response to human epidermal Langerhans cells, Eur. J. Immunol. 24: 884–891.PubMedGoogle Scholar
  177. Péguet-Navarro, J., Dalbiez-Gauthier, C., Rattis, E M., Van Kooten, C., Banchereau, J., and Schmitt, D., 1995, Functional expression of CD40 antigen on human epidermal Langerhans cells, J. Immunol. 155: 4241–4247.PubMedGoogle Scholar
  178. Pelletier, M., Perreaut, C., Landry, D., David, M., and Montplaisir, S., 1984, Ontogeny of human epidermal Langerhans cells, Transplantation 38: 544–546.PubMedGoogle Scholar
  179. Porcelli, S., Morita, C. T., and Brenner, M. B., 1992, CD1b restricts the response of human CD4–8-T lymphocytes to a microbial antigen, Nature 360: 593–597.PubMedGoogle Scholar
  180. Prickett, T. C. R., McKenzie, J. L., and Hart, D. N. J., 1988, Characterization of interstitial dendritic cells in human liver, Transplantation 46: 754–761.PubMedGoogle Scholar
  181. Pugh, C. W., MacPherson, G. G., and Steer, H. W., 1983, Characterization of nonlymphoid cells derived from rat peripheral lymph, J. Exp. Med. 157: 1758–1779.PubMedGoogle Scholar
  182. Puré, E., Inaba, K., Crowley, M. T., Tardelli, L., Witmer-Pack, M. D., Ruberti, G., Fathman, G., and Steinman, R. M., 1990, Antigen processing by epidermal Langerhans cells correlates with the level of biosynthesis of MHC class II molecules and expression of invariant chain, J. Exp. Med. 172: 1459–1469.PubMedGoogle Scholar
  183. Qian, S., Demetris, A. J., Murase, N., Rao, A. S., Fung, J. J., and Starzl, T. E., 1994, Murine liver allograft transplantation: Tolerance and donor cell chimerism, Hepatology 19: 916–924.PubMedGoogle Scholar
  184. Rahemtulla, A., Fung-Leung, W. P., Schilham, M. W., Kundig, T. M., Sambhara, S. R., Narendram, A., Arabian, A., Wakeham, A., Paige, C. J., and Zinkernagel, R. M., 1991, Normal development and function of CD8+ cells but markedly decreased helper cell activity in mice lacking CD4, Nature 353: 180–184.PubMedGoogle Scholar
  185. Ray, A., Schmitt, D., Dezutter, D. C., Fargier, M. C., and Thivolet, J., 1989, Reappearance of CD1a antigenic sites after endocytosis on human Langerhans cells evidenced by immunogoldlabeling, J. Invest. Dermatol. 92: 217–224.PubMedGoogle Scholar
  186. Reid, C. D. L., Fryer, P. R., Clifford, C., Kirk, A., Tikerpae, J., and Knight, S. C., 1990, Identification of hematopoietic progenitors of macrophages and dendritic Langerhans cells (DL-CFU) in human bone marrow and peripheral blood, Blood 76: 1139–1149.PubMedGoogle Scholar
  187. Reid, C. D. L., Stackpoole, A., Meager, A., and Tikerpae, J., 1992, Interactions of tumor necrosis factor with granulocyte—macrophage colony-stimulating factor and other cytokines in the regulation of dendritic cell growth in vitro from early bipotent CD34+ progenitors in human bone marrow, J. Immunol. 149: 2681–2688.PubMedGoogle Scholar
  188. Reis e Sousa, C., Stahl, P. D., and Austyn, J. M., 1993, Phagocytosis of antigens by Langerhans cells in vitro, J. Exp. Med. 178: 509–519.Google Scholar
  189. Ren, Y., Silverstein, R. L., Allen, J., and Savill, J., 1995, CD36 gene transfer confers capacity for phagocytosis of cells undergoing apoptosis, J. Exp. Med. 181: 1857–1862.PubMedGoogle Scholar
  190. Rhodes, J. M., and Agger. R., 1987, Comparison of membrane antigens of mouse dendritic cell types, Immunol. Lett. 16: 107–112.PubMedGoogle Scholar
  191. Romani, N., Koide, S., Growley, M., Witmer-Pack, M., Livingstone, A. M., Fathman, G. G., Inaba, K., and Steinman, R. M., 1989a, Presentation of exogenous protein antigens by dendritic cells to T cell clones, J. Exp. Med. 169: 1169–1178.PubMedGoogle Scholar
  192. Romani, N., Lenz, A., Glassl, H., Stossel, H., Stanzl, U., Majdic, O., Fritsch, P., and Schuler, G., 1989b, Cultured human Langerhans cells resemble lymphoid dendritic cells in phenotype and function., J. Invest. Dermatol. 93: 600–609.PubMedGoogle Scholar
  193. Romani, N., Gruner, S., Brang, D., Kämpgen, E., Lenz, A., Trockenbacher, B., Konwalinka, G., Fritsch, P. O., Steinman, R. M., and Schuler, G., 1994, Proliferating dendritic cell progenitors in human blood, J. Exp. Med. 180: 83–93.PubMedGoogle Scholar
  194. Ronchese, F., and Hausmann, B., 1993, B lymphocytes in vivo fail to prime naive T cells but can stimulate antigen-experienced T lymphocytes, J. Exp. Med. 177: 679–690.PubMedGoogle Scholar
  195. Ross, E. L., Barker, J. N. W. N., Allen, M. H., Chu, A. C., Groves, R. W., and MacDonald, D. M., 1994, Langerhans’ cell expression of the selectin ligand, sialyl Lewis x, Immunology 81: 303–308.PubMedGoogle Scholar
  196. Rossi, G., Heveker, N., Thiele, B., Gelderblom, H., and Steinbach, F., 1992, Development of a Langerhans cell phenotype from peripheral blood monocytes, Immunol. Len. 31: 189–197.Google Scholar
  197. Rowden, G., 1981, The Langerhans cells, Crit. Rev. Immunol. 3: 94–180.Google Scholar
  198. Rubin, D., Weiner, H. L., Fields, B. N., and Greene, M. I., 1981, Immunologic tolerance after oral administration of reovirus: requirement for two viral gene products for tolerance induction, J. Immunol. 127: 1697–1701.PubMedGoogle Scholar
  199. Rusten, L. S., Jacobsen, F. W., Lesslauer, W., Loetscher, H., Smeland, E. B., and Jacobsen, S. E., 1994, Bifunctional effects of tumor necrosis factor alpha (TNF alpha) on the growth of mature and primitive human hematopoietic progenitor cells: Involvement of p55 and p75 TNF receptors, Blood 83: 3152–3159.PubMedGoogle Scholar
  200. Saeland, S., Duvert, V., Moreau, I., and Banchereau, J., 1993, Human B cell precursors proliferate and express CD23 after CD40 ligation, J. Exp. Med. 178: 113–120.PubMedGoogle Scholar
  201. Sagebiel, R. W., and Reed, T. H., 1968, Serial reconstruction of the characteristic granule of the Langerhans cell, J. Cell. Biol. 36: 595–608.PubMedGoogle Scholar
  202. Salem, M., Deiwel, R., Touw, I., Mahmoud, L. A., Elbasousy, E. M., and Lowenberg. B., 1990, Modulation of colony stimulating factor-(CSF) dependent growth of acute myeloid leukemia by tumor necrosis factor, Leukemia 4: 37–43.PubMedGoogle Scholar
  203. Sallusto, F., and Lanzavecchia, A., 1994, Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha, J. Exp. Med. 179: 1109–1118.PubMedGoogle Scholar
  204. Sallusto, F., Cella, M., Danieli, C., and Lanzavecchia, A., 1995, Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: Downregulation by cytokines and bacterial products, J. Exp. Med. 182: 389–400.PubMedGoogle Scholar
  205. Santiago-Schwarz, F., Belilos, E., Diamond, B., and Carsons, S. E., 1992, TNF in combination with GM-CSF enhances the differentiation of neonatal cord blood stem cells into dendritic cells and macrophages, J. Leukocyte Biol. 52: 274–281.PubMedGoogle Scholar
  206. Santiago-Schwarz, F., Divans, N., Kay, C., and Carsons, S. E., 1993, Mechanisms of tumor necrosis factorgranulocyte-macrophage colony-stimulating factor-induced dendritic cell development, Blood 82: 3019–3028.PubMedGoogle Scholar
  207. Sato, N., Caux, C., Kitamura, T., Watanabe, Y., Arai, K., Banchereau, J., and Miyajima, A., 1993, Expression and factor-dependent modulation of the Interleukin-3 receptor subunits on human hematopoietic cells, Blood 82: 752–761.PubMedGoogle Scholar
  208. Scheicher, C., Mehlig, M., Zecher, R., and Reske, K., 1992, Dendritic cells from mouse bone marrow: In vitro differentiation using low doses of recombinant granulocyte—macrophage colony-stimulating factor, J. Immunol. Methods 154: 253–264.PubMedGoogle Scholar
  209. Schmitt, D. A., Hanau, D., Bieber, T., Dezutter-Dambuyant, C., Schmitt, D., Fabre, M., Pauly, G., and Cazenave, J.-P., 1990, Human epidermal Langerhans cells express only the 40-kilodalton Fc gamma receptor (FcRII), J.Immunol. 144: 4284–4290.PubMedGoogle Scholar
  210. Schon-Hegrad, M.A., Oliver, J., McMenamin, P.G., and Holt, P.G., 1991, Studies on the density, distribution, and surface phenotype of intraepithelial class II major histocompatability complex antigen (Ia)-bearing dendritic cells (DC) in the conducting airways, J. Exp. Med. 173: 1345–1356.PubMedGoogle Scholar
  211. Schrader, C. E., Geroge, A., Kerlin, R. L., and Cebra, J. J., 1990, Dendritic cells support production of IgA and other non-IgM isotypes in clonal microculture, Int. Immunol. 2: 563–570.PubMedGoogle Scholar
  212. Schuler, G., and Steinman, R. M., 1985, Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro, J. Exp. Med. 161: 526–546.Google Scholar
  213. Schuler, G., Auböck, J., and Linert, J., 1983, Enrichment of epidermal Langerhans cells by immunoadsorption to Staphylococcus aureus cells, J. Immunol. 130: 2008–2010.PubMedGoogle Scholar
  214. Shimada, S., Caughman, S. W., Sharrow, S. O., Stephany, D., and Katz, S. I., 1987, Enhanced antigen-presenting capacity of cultured Langerhans cells is associated with markedly increased expression of la antigen, J. Immunol. 139: 2551–2555.PubMedGoogle Scholar
  215. Sornasse, T., Flamand, V., de Becker, G., Bazin, H., Tielemans, F., Thielemans, K., Urbain, J., Oberdan, L., and Moser, M., 1992, Antigen-pulse dendritic cells can efficiently induce an antibody response in vivo, J. Exp. Med. 175: 15–21.Google Scholar
  216. Spalding, D. M., and Griffin, J. A., 1986, Different pathways of differentiation of pre-B cell lines are induced by dendritic cells and T cells from different lymphoid tissues, Cell 44: 507–515.PubMedGoogle Scholar
  217. Spalding, D. M., Koopman, W. J., Eldridge, J. H., McGhee, J. R., and Steinman, R. M., 1983, Accessory cells in murine Peyer’s patch. I. Identification and enrichment of a functional dendritic cell, J. Exp. Med. 157: 1646–1659.PubMedGoogle Scholar
  218. Spencer, S. C., and Fabre, J. W., 1990, Characterization of the tissue macrophage and the interstitial dendritic cell as distinct leukocytes normally residend in the connective tissue of rat heart, J. Exp. Med. 171: 1841–1851.PubMedGoogle Scholar
  219. Spry, C. J. F., Pflug, A. J., Janossy, G., and Humphrey, J. H., 1980, Large mononuclear (veiled) cells with “Ia-like” membrane antigens in human afferent lymph, Clin. Exp. Immunol. 39: 750–756.PubMedGoogle Scholar
  220. Starzl, T. E., Marchioro, T. L., Porter, K. A., Taylor, P. D., Faris, T. D., Herrmann, T. J., Hlad, C. J., and Waddell, W. R., 1965, Factors determining short-and long-term survival after orthotopic liver homotransplantation in the dog, Surgery 58: 131–138.PubMedGoogle Scholar
  221. Starzl, T. E., Demetris, A. J., Trucco, M., Murase, N., Ricordi, C., Ildstad, S., Ramos, H., Todo, S., Tzakis, A., and Fung, J. J., 1993, Cell migration and chimerism after whole organ transplantation: The basis of graft acceptance, Hepatology 17: 1153–1156.Google Scholar
  222. Steiniger, B., Klempnauer, J., and Wonigeit, K., 1984, Phenotype and histological distribution of interstitial dendritic cells in the rat pancreas, liver, heart and kidney, Transplantation 38: 169–174.PubMedGoogle Scholar
  223. Steinman, R. M., 1991, The dendritic cell system and its role in immunogenicity, Annu. Rev. Immunol. 9: 271–296.PubMedGoogle Scholar
  224. Steinman, R. M., and Witmer, M. D., 1978, Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice, Proc. Natl. Acad. Sci. U.S.A. 75: 5132–5136.PubMedGoogle Scholar
  225. Steinman, R. M., Lustig, D. S., and Cohn, Z. A., 1974, Identification of a novel cell type in peripheral lymphoid organs of mice. III. Functional properties in vivo, J. Exp. Med. 139: 1431–1445.Google Scholar
  226. Stern, D. M., and Nawroth, R P., 1986, Modulation of endothelial hemostatic properties by tumor necrosis factor, J. Exp. Med. 163: 740–745.PubMedGoogle Scholar
  227. Stössel, H., Koch, F., Kmpgen, E., Stöger, P., Lenz, A., Heufler, C., Romani, N., and Schuler, G., 1990, Disappearance of certain acidic organelles (endosomes and Langerhans cell granules) accompanies loss of antigen processing capacity upon culture of epidermal Langerhans cells, J. Exp. Med. 172: 1471–1482.PubMedGoogle Scholar
  228. Streilein, J. W., and Grammer, S. F., 1989, In vitro evidence that Langerhans cells can adopt two functionally distinct forms capable of antigen presentation to T lymphocytes, J. Immunol. 143: 3925–3933.Google Scholar
  229. Streilein, J. W., Grammer, S. F., Yoshikawa, T., Demidem, A., and Vermeer, M., 1990, Functional dichotomy between Langerhans cells that present antigen to naive and memory/effector T lymphocytes, Immunol. Rev. 117: 159–184.PubMedGoogle Scholar
  230. Symington, F. W., Brady, W., and Linsley, R S., 1993, Expression and function of B7 on human epidermal Langerhans cells, J. Immunol. 150: 1286–1295.PubMedGoogle Scholar
  231. Szabolcs, R, Moore, M. A. S., and Young, J. W., 1995, Expansion of immunostimulatory dendritic cells among the myeloid progeny of human CD34+ bone marrow precursors cultured with c-kit-ligand, GM-CSF, and TNFa, J. Immunol. 154: 5851–5861.PubMedGoogle Scholar
  232. Tabata, N., Alba, S., Nakagawa, S., Ohtani, H., and Tagami, H., 1993, Sialyl Lewis“ expression on human Langerhans cells, J. Invest. Dermatol. 101: 175–179.PubMedGoogle Scholar
  233. Takahashi, H., Nakagawa, Y., Yokomuro, K., and Berzofsky, J. A., 1993, Induction of CD8+ cytotoxic T lymphocytes by immunization with syngeneic irradiated HIV-1 envelope derived peptide-pulsed dendritic cells, Int. Immunol. 5: 849–857.PubMedGoogle Scholar
  234. Takahashi, K., Naito, M., Shultz, L. D., Hayashi, S., and Nishikawa, S., 1993, Differentiation of dendritic cell populations in macrophage colony-stimulating factor-deficient mice homozygous for the osteopetrosis (op) mutation, J. Leukocyte Biol. 53: 19–28.PubMedGoogle Scholar
  235. Takahashi, S., and Hashimoto, K., 1985, Derivation of Langerhans cell granules from cytomembrane, J. Invest. Dermatol. 84: 469–471.PubMedGoogle Scholar
  236. Takigawa, M., Iwatsuki, K., Yamada, M., Okamoto, H., and Imamura, S., 1985, The Langerhans cell granule is an adsorptive endocytic organelle, J. Invest. Dermatol. 85: 12–18.PubMedGoogle Scholar
  237. Tang, A., Amagai, M., Granger, L. G., Stanley, J. R., and Udey, M. C., 1993, Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin, Nature 361: 82–85.PubMedGoogle Scholar
  238. Tazi, A., Bouchonnet, F., Grandsaigne, M., Boumsell, L., Hance, A. J.. and Soler, R, 1993, Evidence that granulocyte macrophage-colony-stimulating factor regulates the distribution and differentiated state of dendritic cells/Langerhans cells in human lung cancers, J. Clin. Invest. 91: 566–576.PubMedGoogle Scholar
  239. Terhorst, C., Van Agthoven, A., Le Clair, K., Stanley, J. R., and Udey, M. C., 1981, Biochemical studies of the human thymocyte cell-surface antigens T6, T9 and T10, Cell 23: 771–780.PubMedGoogle Scholar
  240. Teunissen, M. B. M., Wormeester, J., Krieg, S. R., Peters, R J., Vogels, I. M. C., Kapsenberg, M. L., and Bos, J. D., 1990, Human epidermal Langerhans cells undergo profound morphological and phenotypical changes during in vitro culture, J. Invest. Dermatol. 94: 166–173.PubMedGoogle Scholar
  241. Thomas, R., and Lipsky, R E., 1994, Human peripheral blood dendritic cell subsets. Isolation and characterization of precursor and mature antigen-presenting cells, J. Immunol. 153: 4016–4028.PubMedGoogle Scholar
  242. Thomas, R., Davis, L. S., and Lipsky, P. E., 1993, Isolation and characterization of human peripheral blood dendritic cells, J. Immunol. 150: 821–834.PubMedGoogle Scholar
  243. Turka, L. A., Linsley, P. S., Lin, H., Brady, W., Leiden, J. M., Wei, R.-Q., Gibson, M. L., Zheng, X.-G., Myrdal, S., Gordon, D., Bailey, T., Bolling, S. F., and Thompson, C. B., 1992, T-cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo, Proc. Natl. Acad. Sci. U.S.A. 89: 11102–11107.Google Scholar
  244. van de Rijn, M., Lerch, P. G., Bronstein, B. R., Knowles, R. W., Bhan, A. K., and Terhost, C., 1984, Human cutaneous dendritic cells express two glycoproteins T6 and M241 which are biochemically identical to those found on cortical thymocytes, Hum. Immunol. 9: 201–210.PubMedGoogle Scholar
  245. Van Nieuwkerk, E. B. J., Van der Baan, S., Richters, C. D., and Kamperdijk, E. W. A., 1992, Isolation and characterization of dendritic cells from adenoids of children with otitis media with effusion, Clin. Exp. Immunol. 88: 345–349.PubMedGoogle Scholar
  246. Van Voorhis, W. C., Valinsky, J., Hoffman, E., Luban, J., Hair, L. S., and Steinman, R. M., 1983, Relative efficacy of human monocytes and dendritic cells as accessory cells for T cell replication, J. Exp. Med. 158: 171–191.Google Scholar
  247. Veldman, J. E., and Kaiserling, E., 1980, Interdigitating cells, in The Reticulo-endothelial System, Morphology ( I. Carr and W. T. Daems, eds.), pp. 381–416, Plenum Press, New York.Google Scholar
  248. Volc-Platzer, B., Stingl, G., Wolff, K., Hinterberg, W., and Schnedl, W., 1984, Cytogenetic identification of allogeneic epidermal Langerhans cells in a bone-marrow-graft recipient, N. Engl. J. Med. 310: 1123–1124.PubMedGoogle Scholar
  249. Vremec, D., Zorbas, M., Scollay, R., Saunders, D. J., Ardavin, C C. F., Wu, L., and Shortman, K., 1992, The surface phenotype of dendritic cells purified from mouse thymus and spleen: Investigation of the CD8 expression by a subpopulation of dendritic cells, J. Exp. Med 176: 47–58.PubMedGoogle Scholar
  250. Weih, F., Carrasco, D., Durham, S. K., Barton, D. S., Rizzo, C. A., Ryseck, R.-P., Lira, S. A., and Bravo, R., 1995, Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of Re1B, a member of the NF-KB/Rel family, Cell 80: 331–340.PubMedGoogle Scholar
  251. Weissman, D., Li, Y., Ananworanich, J., Zhou, L.-J., Adelsberger, J., Tedder, T. F., Baseler, M., and Fauci, A. S., 1995, Three populations of cells with dendritic morphology exist in peripheral blood, only one of which is infectable with human immunodeficiency virus type 1, Proc. Natl. Acad. Sci. U.S.A. 92: 826–830.PubMedGoogle Scholar
  252. Wettendorff, M., Massacrier, C., Vanbervliet, B., Urbain, J., Banchereau, J., and Caux, C., 1995, Activation of primary allogeneic CD8+ T cells by dendritic cells generated in vitro from CD34+ cord blood progenitor cells, in Dendritic Cells in Fundamental and Clinical Immunology ( J. Banchereau and D. Schmitt, eds.), pp. 371–374, Plenum Press, London.Google Scholar
  253. Wiktor-Jedrzejczak, W., Ratajczak, M. Z., Ptasznik, A., Sell, K. W., Ahmed-Ansari, A., and Ostertag, W., 1992, CSF-1 deficiency in the op/op mouse has differential effects on macrophage populations and differentiation stages, Exp. Hematol. 20: 1004–1010.PubMedGoogle Scholar
  254. Wilders, M. M., Sminia, T., Plesch, B. E., Drexhage, H. A., Weltevreden, E. F., and Meuwissen, S. G., 1983, Large mononuclear la-positive veiled cells in Peyer’s patches. II. Localization in rat Peyer’s patches, Immunology 48: 461–467.PubMedGoogle Scholar
  255. Williams, L. A., Egner, W., and Hart, D. N. J., 1994, Isolation and function of human dendritic cells, Int. Rev. Cytol. 153: 41–103.PubMedGoogle Scholar
  256. Witmer, M. D., and Steinman, R. M., 1984, The anatomy of peripheral lymphoid organs with emphasis on accessory cells: Light microscopic, immunocytochemical studies of mouse spleen, lymph node and Peyer’s patch, Am. J. Anat. 170: 465–481.PubMedGoogle Scholar
  257. Witmer-Pack, M. D., Olivier, W., Valinsky, J., Schuler, G., and Steinman, R. M., 1987, Granulocyte/macrophage colony/stimulating factor is essential for the viability and function of cultured murine epidermal Langerhans cells, J. Exp. Med. 166: 1484–1498.PubMedGoogle Scholar
  258. Witmer-Pack, M. D., Valinsky, J. O., W. and Steinman, R. M., 1988, Quantitation of surface antigens on cultured murine epidermal Langerhans cells: Rapid and selective increase in the level of surface MHC products, J. Invest. Dermatol. 90: 387–394.Google Scholar
  259. Witmer-Pack, M. D., Hughes, D. A., Schuler, G., Lawson, L., McWilliam, A., Inaba, K., Stemma, R. M., and Gordon, S., 1993, Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse, J. Cell Sci. 104: 1021–1029.PubMedGoogle Scholar
  260. Wolff, K., 1967, The fine structure of the Langerhans cell granule, J. Cell. Biol. 35: 1484–1498.Google Scholar
  261. Wolff, K., and Schreiner, E., 1970, Uptake, intracellular transport and degradation of exogeneous protein by Langerhans cells, J. Invest. Dermatol. 48: 50–54.Google Scholar
  262. Xu, S., Ariizumi, K., Edelbaum, D., Bergstresser, P. R., and Takashima, A., 1995, Cytokine-dependent regulation of growth and maturation in murine epidermal dendritic cell lines, Eur. J. Immunol. 25: 1018–1024.PubMedGoogle Scholar
  263. Young, J. W., and Steinman, R. M., 1988, Accessory cell requirements for the mixed leukocyte reaction and polyclonal mitogens, as studied with a new technique for enriching blood dendritic cells, Cell. Immunol. 111: 167–182.PubMedGoogle Scholar
  264. Young, J. W., and Steinman, R. M., 1990, Dendritic cells stimulate primary human cytolytic lymphocyte responses in the absence of CD4+ helper T cells, J. Exp. Med. 171: 1315–1332.PubMedGoogle Scholar
  265. Zhou, L.-J., and Tedder, T. F., 1995, Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily, J. Immunol. 154: 3821–3835.PubMedGoogle Scholar
  266. Zhou, L.-J., Schwarting, R., Smith, H. M., and Tedder, T. F., 1992, A novel cell-surface molecule expressed by human interdigitating reticulum cells, Langerhans cells, and activated lymphocytes is a new member of the Ig superfamily, J. Immunol. 149: 735–742.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Christophe Caux
    • 1
  • Jacques Banchereau
    • 1
  1. 1.Schering-PloughLaboratory for Immunological ResearchDardillyFrance

Personalised recommendations