Skip to main content

In Vitro Regulation of Dendritic Cell Development and Function

  • Chapter

Part of the book series: Blood Cell Biochemistry ((BLBI,volume 7))

Summary

Human and murine dendritic cells (DC) can now be generated in vitro in large numbers by culturing progenitor cells. The establishment of such culture systems will allow clarification of the relationship between different DC populations and monocytes. In all studies, granulocyte—macrophage colony-stimulating factor (GM-CSF) has been required for the generation of DC, suggesting a crucial role for this hematopoietic growth factor during the ontogeny of the DC lineage. Those DC generated in vitro represent interesting models for studying the function of DC. Such studies established that immature DC precursors are able to phagocytose particles much more efficiently than the mature DC. These DC generated in vitro induce, after antigen loading and injection into mice, antigen-specific immune responses. Human DC generated by culturing monocytes with GM-CSF and IL-4 capture macromolecules through high-rate macropinocytosis. Human DC can also be generated by culturing CD34+ hematopoietic progenitors in the presence of GM-CSF, and further addition of TNF-α results in a strong increase of DC yield. These cultured human DC are able to prime naive T cells, a phenomenon that involves interactions between CD80/CD86 on DC and CD28 on T cells. Interestingly, DC express a functional CD40 antigen whose triggering up-regulates expression of CD80 and CD86 and induces cytokine secretion.

Actually, CD40/CD4OL interaction between DC and T cells (see Chapter 3) might represent a very early event, interruption of which might lead to prevention of T-cell priming. Finally, DC generated in vitro interact directly with naive B cells that are activated through their CD40 antigen, leading to enhanced growth, differentiation (IgM production), and preferential isotype switch toward IgA. Thus, in the extrafollicular area of lymphoid organs, in addition to prime naive T cells, DC might also provide costimulatory factors involved in the initiation of the primary B-cell response and in the development of humoral immunity.

In vivo administration of DC generated in vitro and loaded with antigen may ultimatly represent a powerful immunotherapy of presently uncontrolled infectious diseases and tumors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agger, R.. Crowley, M. T., and Witmer-Pack, M. D., 1990, The surface of dendritic cells in the mouse as studied with monoclonal antibodies, Int. Rev. Immunol. 6: 89–101.

    PubMed  CAS  Google Scholar 

  • Aiba, S., and Katz, S. I., 1991, The ability of cultured Langerhans cells to process and present protein antigen is MHC dependent, J. Immunol. 146: 2479–2487.

    PubMed  CAS  Google Scholar 

  • Alderson, M. R., Armitage, R. J., Tough, T. W., Strockbine, L., Fanslow, W. C., and Spriggs, M. K., 1993, CD40 expression by human monocytes: Regulation by cytokines and activation of monocytes by the ligand for CD40, J. Exp. Med. 178: 669–674.

    PubMed  CAS  Google Scholar 

  • Ardavin, C., Wu, L., Li, C. L., and Shortman, K., 1993, Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population, Nature 362: 761–763.

    PubMed  CAS  Google Scholar 

  • Austyn, J. M., Kupiec-Weglinski, J. W., Hankins, D. F., and Morris, P. J., 1988, Migration patterns of dendritic cells in the mouse. Homing to T cell-dependent areas of spleen, and binding within marginal zone, J. Exp. Med. 167: 646–651.

    PubMed  CAS  Google Scholar 

  • Azuma, M., Ito, D., Yagita, H., Okumura, K., Phillips, J. H., Lanier, L. L., and Somoza, C., 1993, B70 antigen is a second ligand for CTLA-4 and CD28, Nature 366: 76–79.

    PubMed  CAS  Google Scholar 

  • Backx, B., Broeders, L., Bot, F. J., and Lowenberg, B., 1991, Positive and negative effects of tumor necrosis factor on colony growth from highly purified normal marrow progenitors, Leukemia 5: 66–70.

    PubMed  CAS  Google Scholar 

  • Banchereau, J., Bazan, F., Blanchard, D., Brière, F., Galizzi, J.-P., van Kooten, C., Liu, Y.-J., Rousset, F., and Saeland, S., 1994, The CD40 antigen and its ligand, Annu. Rev. Immunol. 12: 881–922.

    PubMed  CAS  Google Scholar 

  • Barclay, A. N., and Mayrhofer, G., 1981, Bone marrow origin of Ia-positive cells in the medulla of rat thymus, J. Exp. Med. 153: 1666–1671.

    PubMed  CAS  Google Scholar 

  • Barfoot, R., Denham, S., Gyure, L. A., Hall, J. G., Hobbs, S. M., Jackson, L. E., and Robertson, D., 1989, Some properties of dendritic macrophages from peripheral lymph, Immunology 68: 233–239.

    PubMed  CAS  Google Scholar 

  • Bartosik, J., 1992, Cytomembrane-derived Birbeck granules transport horseradish peroxidase to the endosomal compartment in the human Langerhans cells, J. Invest. Dermatol. 99: 53–58.

    PubMed  CAS  Google Scholar 

  • Beckman, E. M., Porcelli, S. A., Morita, C. T., Behar, S. M., Furlong, S. T., and Brenner, M. B., 1994, Recognition of a lipid antigen by CD1-restricted aß+ T cells, Nature 372: 691–694.

    PubMed  CAS  Google Scholar 

  • Bejarano, M.-T., de Waal Malefyt, R., Abrams, J. S., Bigler, M., Bacchetta, R., de Vries, J. E., and Roncarolo, M.-G., 1992, Interleukin 10 inhibits allogeneic proliferative and cytotoxic T cell responses generated in primary mixed lymphocyte cultures, Int. Immunol. 4: 1389–1397.

    PubMed  CAS  Google Scholar 

  • Berg, S. F., Mjaaland, S., and Fossum, S., 1994, Comparing macrophages and dendritic leukocytes as antigen- presenting cells for humoral responses in vivo by antigen targeting, Eue. J. Immunol. 24: 1262–1268.

    CAS  Google Scholar 

  • Bhardwaj, N., Friedman, S. M., Cole, B. C., and Nisanian, A. J., 1992, Dendritic cells are potent antigen-presenting cells for microbial superantigens, J. Exp. Med. 175: 267–273.

    PubMed  CAS  Google Scholar 

  • Bhardwaj, N., Young, J. W., Nisanian, A. J., Baggers, J., and Steinman, R. M., 1993, Small amounts of superantigen, when presented on dendritic cells, are sufficient to initiate T cell responses, J. Exp. Med. 178: 633–642.

    PubMed  CAS  Google Scholar 

  • Bhardwaj, N., Bender, A., Gonzalez, N., Bui, L. K., Garrett, M. C., and Steinman, R. M., 1994a, Influenza virus-infected dendritic cells stimulate strong proliferative and cytolytic responses from human CD8+ T cells, J. Clin. Invest. 94: 797–807.

    PubMed  CAS  Google Scholar 

  • Bhardwaj, N., Hodtsev, A.S., Nisanian, A., Kabak, S., Friedman, S. M., Cole, B. C., and Posnett, D. N., 1994b, Human T-cell responses to Mycoplasma arthritides-derived superantigen, Infect. Immun. 62: 135–144.

    PubMed  CAS  Google Scholar 

  • Birbeck, M. S., Breathnach, A. S., and Everall, J. D., 1961, An electron microscopic study of basal melanocytes and high level clear cells (Langerhans’ cells) in vitiligo, J. Invest. Dermatol. 37: 51–64.

    Google Scholar 

  • Boehmelt, G., Madruga, J., Dörfler, P., Briegel, K., Schwarz, H., Enrietto, P. J., and Zenke, M., 1995, Dendritic cell progenitor is transformed by a conditional v-Rel estrogen receptor fusion protein v-Re1ER, Cell 80: 341–352.

    PubMed  CAS  Google Scholar 

  • Boussiotis, V. A., Freeman, G. J., Gribben, J. G., Daley, J., Gray, G., and Nadler, L. M., 1993, Activated human B lymphocytes express three CTLA-4 counterreceptors that costimulate T-cell activation, Proc. Natl. Acad. Sci. U.S.A. 90: 11059–11063.

    PubMed  CAS  Google Scholar 

  • Brand, C. U., Gerber, H. A., Hunziker, T., Schaffner, T., Limat, A., and Brathen, L.R., 1993, Phenotype of Langerhans cells in human afferent skin lymph derived from allergic contact dermatitis, Exp. Dermatol. 2: 274–279.

    PubMed  CAS  Google Scholar 

  • Bujdoso, R., Hopkins, J., Dutia, B. M., Young, P., and McConnell, I., 1989, Characterization of sheep afferent lymph dendritic cells and their role in antigen carriage, J. Exp. Med. 170: 1285–1301.

    PubMed  CAS  Google Scholar 

  • Buller, M. L., Holmes, K. L., Hugin, A., Frederikson, T. N., and Morse, H. C., 1987, Induction of cytotoxic T-cell response in vivo in the absence of CD4 helper cells, Nature 328: 77–79.

    PubMed  CAS  Google Scholar 

  • Burkly, L., Hession, C., Ogata, L., Reilly, C., Marconi, L. A., Olson, D., Tizard, R., Cate, R., and Lo, D., 1995, Expression of relB is required for the development of thymic medulla and dendritic cells, Nature 373: 531–536.

    PubMed  CAS  Google Scholar 

  • Caine, R. Y., Sells, R. A., Pena, J. R., Davis, D. R., Millard, P. R., Herbertson, B. M., Binns, R. M., and Davis, D. A. L., 1969, Induction of immunological tolerance by porcine liver allografts, Nature 233: 472–476.

    Google Scholar 

  • Cameron, P. U., Freudenthal, P. S., Barker, J. M., Gezelter, S., Inaba, K., and Steinman, R. M., 1992, Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells, Science 257: 383–387.

    PubMed  CAS  Google Scholar 

  • Cameron, P. U., Lowe, M. G., Crowe, S. M., O’Doherty, U., Pope, M., Gezelter, S., and Steinman, R. M., 1994, Susceptibility of dendritic cells to HIV-1 infection in vitro, J. Leukocyte Biol. 56: 257–265.

    PubMed  CAS  Google Scholar 

  • Caux, C., Saeland, S., Favre, C., Duvert, V., Mannoni, P., and Banchereau, J., 1990, Tumor necrosis factor-alpha strongly potentiates interleukin-3 and granulocyte—macrophage colony-stimulating factor-induced proliferation of human CD34+ hematopoietic progenitor cells, Blood 75: 2292–2298.

    PubMed  CAS  Google Scholar 

  • Caux, C., Favre, C., Saeland, S., Duvert, V., Durand, I., Mannoni, P., and Banchereau, J., 1991, Potentiation of early hematopoiesis by tumor necrosis factor-a is followed by inhibition of granulopoietic differentiation and proliferation, Blood 78: 635–644.

    PubMed  CAS  Google Scholar 

  • Caux, C., Dezutter-Dambuyant, C., Schmitt, D., and Banchereau, J., 1992, GM-CSF and TNF-a cooperate in the generation of dendritic Langerhans cells, Nature 360: 258–261.

    PubMed  CAS  Google Scholar 

  • Caux, C., Durand, I., Moreau, I., Duvert, V., Saeland, S., and Banchereau, J., 1993, TNF-a cooperates with IL-3 in the recruitment of a primitive subset of human CD34+ progenitors., J. Exp. Med. 177: 1815–1820.

    PubMed  CAS  Google Scholar 

  • Caux, C., Massacrier, C., Vanbervliet, B., Barthelemy, C., Liu, Y.-J., and Banchereau, J., 1994a, Interleukin-l0 inhibits T cell alloreaction induced by human dendritic cells, Int. Immunol. 6: 1177–1185.

    PubMed  CAS  Google Scholar 

  • Caux, C., Massacrier, C., Vanbervliet, B., Dubois, B., van Kooten, C., Durand, I., and Banchereau, J., 1994b, Activation of human dendritic cells through CD40 cross-linking, J. Exp. Med. 180: 1263–1272.

    PubMed  CAS  Google Scholar 

  • Caux, C., Vanbervliet, B., Massacrier, C., Azuma, M., Okumura, K., Lanier, L. L., and Banchereau, J., 1994c, B70/ B7–2 is identical to CD86 and is the major functional ligand for CD28 expressed on human dendritic cells, J. Exp. Med. 180: 1841–1847.

    PubMed  CAS  Google Scholar 

  • Caux, C., Massacrier, C., Dezutter-Dambuyant, C., Vanbervliet, B., Jacquet, C., Schmitt, D., and Banchereau, J., 1995a, Human dendritic Langerhans cells generated in vitro from CD34+ progenitors can prime naive CD4+ T cells and process soluble antigen, J. Immunol. 155: 5427–5435.

    PubMed  CAS  Google Scholar 

  • Caux, C., Vanbervliet, B., Massacrier, C., Dubois, B., Dezutter-Dambuyant, C., Schmitt, D., and Banchereau, J., 1995b, Characterization of human CD34+ derived Dendritic/Langerhans cells (D-Lc), in Dendritic Cells in Fundamental and Clinical Immunology (J. Banchereau and D. Schmitt, eds.), pp. l-5, Plenum Press, London.

    Google Scholar 

  • Caux, C., Vanbervliet, B., Massacrier, C., Durand, I., and Banchereau, J., 1996, Interleukin-3 cooperates with Tumor Necrosis Factor it for the development of human dendritic/Langerhans cells from cord blood CD34+ hematopoietic progenitor cells, Blood 87: 2376–2385.

    PubMed  CAS  Google Scholar 

  • Chen, H., Ma, C., Yuan, J., Wang, Y., and Silvers, W. K., 1986, Occurrence of donor Langerhans cells in mouse and rat chimeras and their replacement in skin grafts, J. Invest. Dermatol. 86: 630–633.

    PubMed  CAS  Google Scholar 

  • Clare-Salzler, M. J., Brooks, J., Chai, A., Van Herle, K., and Anderson, C., 1992, Prevention of diabetes in nonobese diabetic mice by dendritic cell transfer, J. Clin. Invest. 90: 741–748.

    PubMed  CAS  Google Scholar 

  • Codner, M. A., Shuster, B. A., Steinman, R. M., Harper, A. D., LaTrenta, G. S., and Hoffman, L. A., 1990, Migration of donor leukocytes from limb allografts into host lymphoid tissues, Ann. Plastic Surg. 25: 353–359.

    CAS  Google Scholar 

  • Croft, M., Duncan, D. D., and Swain, S. L., 1992, Response of naive antigen-specific CD4+ T cells in vitro: Characteristics and antigen-presenting cell requirements, J. Exp. Med. 176: 1431–1437.

    PubMed  CAS  Google Scholar 

  • Crow, M. K., and Kunkel, H. G., 1982, Human dendritic cells: Major stimulators of the autologous and allogeneic mixed leucocyte reactions, Clin. Exp. Immunol. 49: 338–346.

    PubMed  CAS  Google Scholar 

  • Crowley, M., Inaba, K., Witmer, P. M., and Steinman, R. M., 1989, The cell surface of mouse dendritic cells: FACS analyses of dendritic cells from different tissues including thymus, Cell. Immunol 118: 108–125.

    PubMed  CAS  Google Scholar 

  • Crowley, M. T., Inaba, K., Witmer-Pack, M. D., Gezelter, S., and Steinman, R. M., 1990, Use of the fluorescence activated cell sorter to enrich dendritic cells from mouse spleen, J. Immunol. Methods 133: 55–66.

    PubMed  CAS  Google Scholar 

  • Cumberbatch, M., and Kimber, I., 1992, Dermal tumour necrosis factor-alpha induces dendritic cell migration to draining lymph nodes, and possibly provides one stimulus for Langerhans’ cell migration, Immunology 75: 257–263.

    PubMed  CAS  Google Scholar 

  • Cumberbatch, M., and Kimber, I., 1995, Tumour necrosis factor-a is required for accumulation of dendritic cells in draining lymph nodes and for optimal contact sensitization, Immunology 84: 31–35.

    PubMed  CAS  Google Scholar 

  • Dai, R., Grammer, S. F., and Streilein, J. W., 1993, Fresh and cultured Langerhans cells display differential capacities to activate hapten-specific T cells, J. Immunol. 150: 59–66.

    PubMed  CAS  Google Scholar 

  • De Becker, G., Somasse, T., Nabavi, N., Bazin, H., Tielemans, F., Urbain, J., Leo, O., and Moser, M., 1994, Immunoglobulin isotype regulation by antigen-presenting cells in vivo, Eue. J. Immunol. 24: 1523–1528.

    Google Scholar 

  • De Bruijn, M. L. H., Nieland, J. D., Harding, C. V., and Melief, C. J. M., 1992, Processing and presentation of intact hen egg-white lysozyme by dendritic cells, Eue. J. Immunol. 22: 2347–2352.

    Google Scholar 

  • De Fraissinette, A., Schmitt, D., Dezutter-Dambuyant, C., Guyotat, D., Zabot, M., and Thivolet, J., 1988, Culture of putative Langerhans cell bone marrow precursors: Characterization of their phenotype, Exp. Hematol. 16: 764–768.

    PubMed  Google Scholar 

  • De Panfilis, G., Soligo, D., Manara, G. C., Ferrari, C., and Torresani, C., 1989, Adhesion molecules on the plasma membrane of epidermal cells. I. Human resting Langerhans cells express two members of the adherence-promoting CD11/CD18 family, namely, H-Mac-1 (CD11b/CD18) and pg 150,95 (CD11c/CD18), J. Invest. Dermatol. 93: 60–69.

    PubMed  Google Scholar 

  • Dezutter-Bambuyant, C., and Schmitt, D., 1993, Epidermal Langerhans cells and HIV-1 infection, Immunol. Leu. 39: 33–37.

    Google Scholar 

  • Dijkstra, C. D., 1982, Characterization of nonlymphoid cells in rat spleen, with special reference to strongly Iapositive branched cells in T-cell areas, J. Reticuloendothel. Soc. 32: 167–178.

    PubMed  CAS  Google Scholar 

  • Ding, L., and Shevach, E., 1992, IL-10 inhibits mitogen-induced T cell proliferation by selectively inhibiting macrophage costimulatory function, J. Immunol. 148: 3133–3139.

    PubMed  CAS  Google Scholar 

  • Dranoff, G., Crawford, A. D., Sadelain, M., Ream, B., Rashid, A., Bronson, R. T., Dickersin, G. R., Bachurski, C. J., Mark, E. L., Whitsett, J. A., and Mulligan, R. C., 1994, Involvment of granulocyte-macrophage colony-stimulating factor in pulmonary homeostasis, Science 264: 713–716.

    PubMed  CAS  Google Scholar 

  • Drexhage, H. A., Mullink, H., de Groot, J., Clark, J., and Balfour, B. M., 1979, A study of cells present in peripheral lymph of pigs with special reference to a type of cell resembling the Langerhans cells, Cell Tiss. Res. 202: 407–430.

    CAS  Google Scholar 

  • Dubois, B., Fayette, J., Vanbervlient, B., Banchereau, J., Brière, F., and Caux, C., 1995, Human dendritic cells enhance growth and differentiation of CD40 activated B cells, in Dendritic Cells in Fundamental and Clinical Immunology ( J. Banchereau and D. Schmitt, eds.), pp. 397–399, Plenum Press, New York.

    Google Scholar 

  • Duijvestijn, A. M., Schutte, R., Kohler, Y. G., Korn, C., and Hoefsmit, E. C. M., 1983, Characterization of the population of phagocytic cells in thymic cell suspensions. A morphological and cytochemical study, Cell Tiss. Res. 231: 313–323.

    CAS  Google Scholar 

  • Durie, E. H., Fava, R. A., Foy, T. M., Aruffo, A., Ledbetter, J. A., and Noelle, R. J., 1993, Prevention of collagen-induced arthritis with an antibody to gp39, the ligand for CD40, Science 261: 1328–1330.

    PubMed  CAS  Google Scholar 

  • Durie, F. H., Aruffo, A., Ledbetter, J., Crassi, K. M., Green, W. R., and Fast, L. D., 1994, Antibody to the ligand of CD40, gp39, blocks the occurence of the acute and chronic forms of graft-vs-host disease, J. Clin. Invest. 94: 1333–1338.

    PubMed  CAS  Google Scholar 

  • Elbe, A., Schleischitz, S., Strunk, D., and Stingl, G., 1994, Fetal skin-derived MHC class I+, MHC class II dendritic cells stimulate MHC class I-restricted responses of unprimed CD8+ T cells, J. Immunol. 153: 2878–2889.

    PubMed  CAS  Google Scholar 

  • Enk, A. H., Angeloni, V. L., Udey, M. C., and Katz, S. I., 1993, Inhibition of Langerhans cell antigen-presenting function by IL-10, J. Immunol. 151: 2390–2398.

    PubMed  CAS  Google Scholar 

  • Enk, A. H., Saloga, J., Becker, D., Mohamadzadeh, M., and Knop, J., 1994, Induction of hapten-specific tolerance by interleukin 10 in vivo, J. Exp. Med. 179: 1397–1402.

    PubMed  CAS  Google Scholar 

  • Fairchild, P. J., and Austyn, J. M., 1990, Thymic dendritic cell. Phenotype and function, Int. Rev. Immunol. 6: 187–196.

    PubMed  CAS  Google Scholar 

  • Fayette, J., Dubois, B., Caux, C., Banchereau, J., and Brière, F., 1995, Human dendritic cells can drive CD40activated sIgD+ B cells to mount mucosal-type humoral response, in Dendritic Cells in Fundamental and Clinical Immunology ( J. Banchereau and D. Schmitt, eds.), pp. 401–403, Plenum Press, New York.

    Google Scholar 

  • Fiorentino, D. F., Bond, M. W., and Mosmann, T. R., 1989, Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Thl clones, J. Exp. Med. 170: 2081–2095.

    PubMed  CAS  Google Scholar 

  • Fithian, E., Kung, P., Goldstein, G., Rubenfeld, M., Fenoglio, C., and Edelson, R., 1981, Reactivity of Langerhans cells with hybridoma antibody, Proc. Natl. Acad. Sci. U.S.A. 78: 2541–2544.

    PubMed  CAS  Google Scholar 

  • Flamand, V., Sornasse, T., Thielemans, K., Demanet, C., Bakkus, M., Bazin, H., Tielemans, F., Leo, O., Urbain, J., and Moser, M., 1994, Murine dendritic cells pulsed in vitro with tumor antigen induce tumor resistance in vivo, Eur. J. Immunol. 24: 605–610.

    PubMed  CAS  Google Scholar 

  • Fossum, S., 1988, Lymph-borne dendritic leucocytes do not recirculate, but enter the lymph node paracortex to become interdigitating cells, Scand. J. Immunol. 27: 97–105.

    PubMed  CAS  Google Scholar 

  • Fossum, S., 1989a, Dendritic leukocytes: features of their in vivo physiology, Res. Immunol. 140:883–891. Fossum, S., 1989b, The life history of dendritic leukocytes (DL), Current Topics in Pathology (O. H. Ivessen ed.), pp. 101–124, Springer-Verlag, Berlin.

    Google Scholar 

  • Francotte, M., and Urbain, J., 1985, Enhancement of antibody responses by mouse dendritic cells pulsed with tobacco mosaic virus or with rabbit antiidiotypic antibodies raised against a private rabbit idiotype, Proc. Natl. Acad. Sci. U.S.A. 82: 8149–8152.

    PubMed  CAS  Google Scholar 

  • Freeman, G. F., Gribben, J. G., Boussiotis, V. A., Ng, J. W., Restivo, V. A., Jr., Lombard, L. A., Gray, G. S., and Nadler, L. M., 1993a, Cloning of B7–2: A CTLA-4 counterreceptor that costimulates human T cell proliferation, Science 262: 909–911.

    PubMed  CAS  Google Scholar 

  • Freeman, G. J., Borriello, F., Hodes, R. J., Reiser, H., Hathcock, K. S., Laszlo, G., McKnight, A. J., Kim, J., Du, L., Lombard, D. B., Gray, G. S., Nadler, L. M., and Sharpe, A. H., 1993b, Uncovering of functional alternative CTLA-4 counter-receptor in B7-deficient mice, Science 262: 907–909.

    PubMed  CAS  Google Scholar 

  • Freudenthal, P., and Bhardwaj, N., 1990, Dendritic cells in human blood and synovial exudates, Int. Rev. Immunol. 6: 103–116.

    PubMed  CAS  Google Scholar 

  • Freudenthal, P. S., and Steinman, R. M., 1990, The distinct surface of human blood dendritic cells, as observed after an improved isolation method, Proc. Natl. Acad. Sci. U.S.A. 87: 7698–7702.

    PubMed  CAS  Google Scholar 

  • Fuchs, E. J., and Matzinger, P., 1992, B cells turn off virgin but not memory T cells, Science 258: 1156–1159.

    PubMed  CAS  Google Scholar 

  • Galy, A. H. M., and Spits, H., 1992, CD40 is functionnally expressed on human thymic epithelial cells, J. Immunol. 149: 775–782.

    PubMed  CAS  Google Scholar 

  • Gautam, S. C., and Battisto, J. R., 1985, Orally induced tolerance generates an efferently acting suppressor T cell and an acceptor T cell that together downregulate contact sensitivity, J. Immunol. 135: 2975–2983.

    PubMed  CAS  Google Scholar 

  • Gribben, J. G., Freman, G. J., Boussiotis, V. A., Rennert, P., Jellis, C. L., Greenfield, E., Barber, M., Restivo, V. A., Jr., Ke, X., Gray, G.S., and Nadler, L.M., 1995, CRLA4 mediates antigen-specific apoptosis of human T cells, Proc. Natl. Acad. Sci. U.S.A. 92: 811–815.

    PubMed  CAS  Google Scholar 

  • Guillemot, F. P., Oliver, P. D., Peault, B. M., and LeDourain, N. M., 1984, Cells expressing Ia antigen in the avian thymus, J. Exp. Med. 160: 1803–1819.

    PubMed  CAS  Google Scholar 

  • Hanau, D., Fabre, M., Schmitt, D. A., Stampf, J.-L., Garaud, J.-C., Bieber, T., Grosshans, E., Benezra, C., and Cazenave, J.-P., 1987, Human epidermal Langerhans cells internalized by receptor-mediated endocytosis T6 (CD1 “NA1/34”) surface antigen. Birbeck granules are involved in the intracellular traffic of the antigen, J. Invest. Dermatol. 89: 172–177.

    PubMed  CAS  Google Scholar 

  • Harkiss, G. D., Hopkins, J., and McConnell, I., 1990, Uptake of antigen by afferent lymph dendritic cells mediated by antibody, Eur. J. Immunol. 20: 2367–2373.

    PubMed  CAS  Google Scholar 

  • Hart, D. N. J., and Fabre, J. W., 1981, Demonstration and characterization of Ia-positive dendritic cells in the interstitial connective tissues of rat heart and other tissues, but not brain, J. Exp. Med. 154: 347–361.

    PubMed  CAS  Google Scholar 

  • Hart, D. N. J., and McKenzie, J. L., 1988, Isolation and characterization of human tonsil dendritic cells, J. Exp. Med. 168: 157–160.

    PubMed  CAS  Google Scholar 

  • Hart, D. N. J., and McKenzie, J. L., 1990, Interstitial dendritic cells, Int. Rev. Immunol. 6: 128–149.

    Google Scholar 

  • Hart, D. N., Starling, G. C., Calder, V. L., and Fernando, N. S., 1993, B7/BB-1 is a leucocyte differentiation antigen on human dendritic cells induced by activation, Immunology 79: 616–620.

    PubMed  CAS  Google Scholar 

  • Hathcock, K. S., Laszlo, G., Dickler, H. B., Bradshaw, J., Linsley, P., and Hodes, R. J., 1993, Identification of an alternative CTLA-4 ligand co-stimulatory for T cell activation, Science 262: 905–907.

    PubMed  CAS  Google Scholar 

  • Havenith, C. E., Breedijk, A. J., Betjes, M. G., Calame, W., Beelen, R. H., and Hoefsmit, E. C., 1993, T cell priming in situ by intratracheally instilled antigen-pulsed dendritic cells, Am. J. Respir. Cell. Mol. Biol. 8: 319–324.

    PubMed  CAS  Google Scholar 

  • Heufler, C., Koch, F., and Schuler, G., 1988, Granulocyte/macrophage colony-stimulating factor and interleukin 1 mediate the maturation of murine epidermal Langerhans cells into potent immunostimulatory dendritic cells, J. Exp. Med. 167: 700–705.

    PubMed  CAS  Google Scholar 

  • Hoang, T., Levy, B., Onetto, N., Haman, A., and Rodriguez-Cimadevilla, J. C., 1989, Tumor necrosis factor a stimulates growth of the clonogenic cells of acute myeloblastic leukemia in synergy with granulocyte—macrophage colony-stimulating factor, J. Exp. Med. 170: 15–26.

    PubMed  CAS  Google Scholar 

  • Holt, P. G., 1993, Regulation of antigen-presenting cell function(s) in lung and airway tissues, Eur. Respir. J. 6: 120–129.

    PubMed  CAS  Google Scholar 

  • Holt, P. G., Schon-Hegrad, M. A., and Oliver, J., 1988, MHC class II antigen-bearing dendritic cells in pulmonary tissues of the rat: Regulation of antigen presentation activity by endogenous macrophage populations, J. Exp. Med. 167: 262–274.

    PubMed  CAS  Google Scholar 

  • Holt, P. G., Schon-Hegrad, M. A., and McMenamin, P. G., 1990, Dendritic cells in the respiratory tract, Im. Rev. Immunol. 6: 139–149.

    CAS  Google Scholar 

  • Holt, P. G., Oliver, J., McMenamin, C., Bilyk, N., Kraal, G., and Thepen, T., 1993a, The antigen presentation functions of lung dendritic cells are downmodulated in situ by soluble mediators from pulmonary alveolar macrophages, J. Exp. Med. 177: 397–407.

    PubMed  CAS  Google Scholar 

  • Holt, P. G., Haining, S., Nelson, D. J., and Sedgwick, J. D., 1994, Origin and steady-state turnover of class II MHC-bearing dendritic cells in the epithelium of the conducting airways, J. Immunol. 153: 256–261.

    PubMed  CAS  Google Scholar 

  • Hsieh, C.-S., Macatonia, S. E., Tripp, C. S., Wolf, S. F., O’Garra, A., and Murphy, K. M., 1993, Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages, Science 260: 547–549.

    PubMed  CAS  Google Scholar 

  • Ibrahim, M. A. A., Chain, B. M., and Katz, D. R., 1995, The injured cell: The role of the dendritic cell system as a sentinel receptor pathway, Immunol. Today 14: 181–186.

    Google Scholar 

  • Inaba, K., and Steinman, R. M., 1985, Protein-specific helper T lymphocyte formation initiated by dendritic cells, Science 229: 475–479.

    PubMed  CAS  Google Scholar 

  • Inaba, K., and Steinman, R. M., 1987, Dendritic and B cell function during antibody responses in normal and immunodeficient (xid) mouse spleen cultures, Cell. Immunol. 105: 432–442.

    PubMed  CAS  Google Scholar 

  • Inaba, K., Granelli-Piperno, A., and Steinman, R. M., 1983, Dendritic cells are critical accessory cells for thymusdependent antibody responses in mouse and man, Proc. Natl. Acad. Sci. U.S.A. 80: 6041–6045.

    PubMed  CAS  Google Scholar 

  • Inaba, K., Witmer, M. D., and Steinman, R. M., 1984, Clustering of dendritic cells, helper T lymphocytes, and histocompatible B cells, during primary antibody responses in vitro, J. Exp. Med. 160: 858–876.

    PubMed  CAS  Google Scholar 

  • Inaba, K., Schuler, G., Witmer, M. D., Valinksy, J., Atassi, B., and Steinman, R. M., 1986, Immunologic properties of purified epidermal Langerhans cells, J. Exp. Med. 164: 605–613.

    PubMed  CAS  Google Scholar 

  • Inaba, K., Young, J. W., and Steinman, R. M., 1987, Direct activation of CD8+ cytotoxic T lymphocytes by dendritic cells, J. Exp. Med 166: 182–194.

    PubMed  CAS  Google Scholar 

  • Inaba, K., Hosono, M., and Inaba, M., 1990a, Thymic dendritic cells and B cells: Isolation and function, Int. Rev. Immunol. 6: 117–122.

    PubMed  CAS  Google Scholar 

  • Inaba, K., Metlay, J. P., Crowley, M. T., and Steinman, R. M., 19906, Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ, J. Exp. Med. 172: 631–640.

    Google Scholar 

  • Inaba, K., Metlay, J. P., Crowley, M. T., Witmer-Pack, M., and Steinman, R. M., 1990c, Dendritic cells as antigen presenting cells in vivo, Int. Rev. Immunol. 6: 197–206.

    PubMed  CAS  Google Scholar 

  • Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Muramatsu, S., and Steinman, R. M., 1992a, Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor, J. Exp. Med. 176: 1693–1702.

    PubMed  CAS  Google Scholar 

  • Inaba, K., Steinman, R. M., Pack, M. W., Aya, H., Inaba, M., Sudo, T., Wolpe, S., and Schuler, G., 19926, Identification of proliferating dendritic cell precursors in mouse blood, J. Exp. Med. 175: 1157–1167.

    Google Scholar 

  • Inaba, K., Inaba, M., Deguchi, M., Hagi, K., Yasumizu, R., Ikehara, S., Muramatsu, S., and Steinman, R. M., 1993a, Granulocytes, macrophages, and dendritic cells arise from a common major histocompatibility complex class II-negative progenitor in mouse bone marrow, Proc. Natl. Acad. Sci. U.S.A. 90: 3038–3042.

    PubMed  CAS  Google Scholar 

  • Inaba, K., Inaba, M., Naito, M., and Steinman, R. M., 1993b, Dendritic cells progenitors phagocytose particulates, including Bacillus Calmette-Guérin organisms, and sensitize mice to mycobacterial antigens in vivo, J. Exp. Med. 178: 479–488.

    PubMed  CAS  Google Scholar 

  • Inaba, K., Witmer-Pack, M., Inaba, M., Hathcock, K. S., Sakuta, H., Azuma, M., Yagita, H., Okumura, K., Linsley, P. S., Ikehara, S., Muramatsu, S., Hodes, R. J., and Steinman, R. M., 1994, The tissue distribution of the B7–2 costimulator in mice: Abundant expression on dendritic cells in situ and during maturation in vitro, J. Exp. Med. 180: 1849–1860.

    PubMed  CAS  Google Scholar 

  • Jacobsen, F. W., Rothe, M., Rusten, L., Goeddel, D. V., Smeland, E. B., Veiby, O. P., Slordal, L., and Jacobsen, E. W., 1994, Role of the 75-kDa tumor necrosis factor receptor: Inhibition of early hematopoiesis, Proc. Natl. Acad. Sci. U.S.A. 91: 10695–10699.

    PubMed  CAS  Google Scholar 

  • Jacobsen, S. E. W., Ruscetti, F. W., Dubois, C. M., and Keller, J. R., 1992, Tumor necrosis factor a directly and indirectly regulates hematopoietic progenitor cell proliferation: Role of colony-stimulating factor receptor modulation, J. Exp. Med. 175: 1759–1772.

    PubMed  CAS  Google Scholar 

  • Jenkinson, E. J., Jhittay, P., Kingston, R., and Owen, J. J. T., 1985, Studies of the role of the thymic environment in the induction of tolerance to MHC antigens, Transplantation 39: 331–333.

    PubMed  CAS  Google Scholar 

  • Kabel, P. J., de Haan-Meulman, M., Voorbij, H. A., Kleingeld, M., Knol, E. F., and Drexhage, H. A., 1989, Accessory cells with a morphology and marker pattern of dendritic cells can be obtained from elutriatorpurified blood monocyte fractions. An enhancing effect of metrizamide in this differentiation, Immunobiology 179: 395–411.

    PubMed  CAS  Google Scholar 

  • Kaiserling, E., Stein, H., and Mueller-Hermelink, H. K., 1974, Interdigitating reticulum cells in the human thymus, Cell Tiss. Res. 155: 47–55.

    CAS  Google Scholar 

  • Kaplan, G., Walsh, G., Guido, L. S., Meyn, P., Burkhardt, R. A., Abalos, R. M., Barker, J., Frindt, P. A., Fajardo, T. T., Celona, R., and Cohn, Z. A., 1992, Novel responses of human skin to intradermal recombinant granulocyte/macrophage-colony-stimulating factor: Langerhans cell recruitment, keratinocyte growth, and enhanced wound healing, J. Exp. Med. 175: 1717–1728.

    PubMed  CAS  Google Scholar 

  • Kashihara, M., Ueda, M., Horiguchi, Y., Furukawa, F., Hanaoka, M., and Imamura, S., 1986, A monoclonal antibody specifically reactive to human Langerhans cells, J. Invest. Dermatol. 87: 602–607.

    PubMed  CAS  Google Scholar 

  • Kasinrerk, W., Baumruker, T., Majdic, O., Knapp, W., and Stockinger, H., 1993, CD] molecule expression on human monocytes induced by granulocyte-macrophage colony-stimulating factor, J. Immunol. 150: 579–584.

    PubMed  CAS  Google Scholar 

  • Katz, S. I., Tamaki, K., and Sachs, D. H., 1979, Epidermal Langerhans cells are derived from cells originating in bone marrow, Nature 282: 324–326.

    PubMed  CAS  Google Scholar 

  • Kleijmeer, M. J., Oorschot, V. M., and Geuze, H. J., 1994, Human resident Langerhans cells display a lysosomal compartment enriched in MHC class II, J. Invest. Dermatol. 103: 516–523.

    PubMed  CAS  Google Scholar 

  • Klinkert, W. E. F., Labadie, J. H., and Bowers, W. E., 1982, Accessory and stimulating properties of dendritic cells and macrophages isolated from various rat tissues, J. Exp. Med. 156: 1–19.

    PubMed  CAS  Google Scholar 

  • Knight, S. C., and Stagg. A. J., 1993, Antigen-presenting cell types, Curr. Opin. Immunol. 5: 374–382.

    PubMed  CAS  Google Scholar 

  • Knight, S. C., Balfour, B. M., O’Brien, J., Buttifant, L., Sumerska, T., and Clark, J., 1982, Role of veiled cells in lymphocyte activation, Eur. J. Immunol. 12: 1057–1060.

    PubMed  CAS  Google Scholar 

  • Knight, S. C., Farrant, J., and Bryan, A., 1986, Non-adherent, low density cells from human peripheral blood contain dendritic cells and monocytes, both with veiled morphology, Immunology 57: 595–603.

    PubMed  CAS  Google Scholar 

  • Knight, S. C., Macatonia, S. E., Bedford, P. A., and Patterson, S., 1991, Dendritic cells and HIV infection, in Accessory Cells in HIV and Other Retroviral Infections ( P. Racz, C. D. Dijkstra, and J. C. Gluckman, eds.), pp. 145–154, Karger, Basel.

    Google Scholar 

  • Koch, F., Heufler, C., Kmpgen, E., Schneeweiss, D., ‘Rick, G., and Schuler, G., 1990, Tumor necrosis factor alpha maintains the viability of murine epidermal Langerhans cells in culture but, in contrast to granulocyte—macrophage colony-stimulating factor, does not induce their functional maturation, J. Exp. Med. 171: 159–172.

    PubMed  CAS  Google Scholar 

  • Kraal, G., Van Wilsem, E., and Breve, J., 1993, The phenotype of murine Langerhans cells from skin to lymph node, In Vivo 7: 203–206.

    PubMed  CAS  Google Scholar 

  • Kripke, M. L., Munn, C. G., Jeevan, A., Tang, J.-M., and Bucana, C., 1990, Evidence that cutaneous antigenpresenting cells igrate to regional lymph nodes during contact sensitization, J. Immunol. 145: 2833–2838.

    PubMed  CAS  Google Scholar 

  • Krueger, G. G., Daynes, R. A., and Emam, M., 1983, Biology of Langerhans cells: Selective migration of Langerhans cells into allogeneic and xenogeneic grafts on nude mice, Proc. Natl. Acad. Sci. U.S.A. 80: 1650–1654.

    PubMed  CAS  Google Scholar 

  • Kuchroo, V. K., Das, M. P., Brown, J. A., Ranger, A. M., Zamvil, S. S., Sobel, R. A., Weiner, H. L., Nabavi, N., and Glimcher, L. H., 1995, B7–1 and B7–2 costimulatory molecules activate differentially the Thl/Th2 developmental pathways: application to autoimmune disease therapy, Cell 80: 707–718.

    PubMed  CAS  Google Scholar 

  • Kupiec-Weglinski, J. W., Austyn, J. M., and Morris, P. J., 1988, Migration patterns of dendritic cells in the mouse. Traffic from blood, and T cell-dependent and independent entry to lymploid tissues, J. Exp. Med. 167: 632–645.

    PubMed  CAS  Google Scholar 

  • Kyewski, B. A., Fathman, C. G., and Rouse, R. V., 1986, Intrathymic presentation of circulating non-MHC antigens by medullary dendritic cells. An antigen-dependent microenvironment for T cell differentiation, J. Exp. Med. 163: 231–246.

    PubMed  CAS  Google Scholar 

  • Langhoff, E., Terwilliger, E. F., Bos, H. J., Kalland, K. H., Poznansky, M. C., Bacon, O. M. L., and Haseltine, W. A., 1991, Replication of human immunodeficiency virus type 1 in primary dendritic cell cultures, Proc. Natl. Acad. Sci. U.S.A. 88: 7998–8002.

    PubMed  CAS  Google Scholar 

  • Larsen, C. P., Steinman, R. M., Witmer-Pack, M. D., Hankins, D. F., Morris, P. J., and Austyn, J. M., 1990, Migration and maturation of Langerhans cells in skin transplants and explants, J. Exp. Med. 172: 1483–1494.

    PubMed  CAS  Google Scholar 

  • Larsen, C. P., Ritchie, S. C., Pearson, T. C., Linsley, P. S., and Lowry, R. P., 1992, Functional expression of the costimulatory molecule, B7/BB1, on murine dendritic cell populations, J. Exp. Med. 176: 1215–1220.

    PubMed  CAS  Google Scholar 

  • Larsen, C. P., Ritchie, S. C., Hendrix, R., Linsley, P. S., Hathcock, K. S., Hodes, R. J., Lowry, R. P., and Pearson, T. C., 1994, Regulation of immunostimulatory function and costimulatory molecule (B7–1 and B7–2) expression on murine dendritic cells, J. Immunol. 152: 5208–5219.

    PubMed  CAS  Google Scholar 

  • Lenschow, D. J., Zeng, Y., Thistlethwaite, J. R., Montag, A., Brady, W., Gibson, M. G., Linsley, P. S., and Bluestone, J. A., 1992, Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4Ig, Science 257: 789–792.

    PubMed  CAS  Google Scholar 

  • Lenz, A., Heufler, C., Rammensee, H. G., Glassl, H., Koch, F., Romani, N., and Schuler, G., 1989, Murine epidermal Langerhans cells express significant amounts of class I major histocompatibility complex antigens, Proc. Natl. Acad. Sci. U.S.A. 86: 7527–7531.

    PubMed  CAS  Google Scholar 

  • Lenz, A., Heine, M., Schuler, G., and Romani, N., 1993, Human and murine dermis contain dendritic cells, J. Clin. Invest. 92: 2587–2596.

    PubMed  CAS  Google Scholar 

  • Leszcynski, R., Renkonen, R., and Hayry, P., 1985, Turnover of dendritic cells in rat heart, Scand. J. Immunol. 22: 351–360.

    Google Scholar 

  • Levin, D., Constant, S., Pasqualini, T., Flavell, R., and Bottomly, K., 1993, Role of dendritic cells in the priming of CD4+ T lymphocytes to peptide antigen in vivo, J. Immunol. 151: 6742–6750.

    PubMed  CAS  Google Scholar 

  • Levine, T. P., and Chain, B. M., 1992, Endocytosis by antigen presenting cells: Dendritic cells are as endocytically active as other antigen presenting cells, Proc. Natl. Acad. Sci. U.S.A. 89: 8342–8346.

    PubMed  CAS  Google Scholar 

  • Linsley, R. S., and Ledbetter, J. A., 1993, The role of the CD28 receptor during T cell responses to antigen, Annu. Rev. Immunol. 11: 191–212.

    PubMed  CAS  Google Scholar 

  • Linsley, R. S., Wallace, R. M., Johnson, J., Gibson, M. G., Greene, J. L., Ledbetter, J. A., Singh, C., and Tepper, M. A., 1992, Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule, Science 257: 792–795.

    PubMed  CAS  Google Scholar 

  • Liu, L.M., and MacPherson, G.G., 1993, Antigen acquisition by dendritic cells: intestinal dendritic cells acquire antigen administered orally and can prime naive T cells in vivo, J. Exp. Med. 177: 1299–1307.

    PubMed  CAS  Google Scholar 

  • Lu, L., Woo, J., Rao, A. S., Li, Y., Watkins, S. C., Qian, S., Starzl, T. E., Demetris, A. J., and Thomson, A. W., 1994, Propagation of dendritic cell progenitors from normal mouse liver using granulocyte/macrophage colony-stimulating factor and their maturational development in the presence of type-1 collagen, J. Exp. Med. 179: 1823–1834.

    PubMed  CAS  Google Scholar 

  • Macatonia, S. E., Knight, S. C., Edwards, A. J., Griffiths, S., and Fryer, R, 1987, Localization of antigen on lymph node dendritic cells after exposure to the contact sensitizer fluorescein isothiocyanate, J. Exp. Med. 166: 1654–1667.

    PubMed  CAS  Google Scholar 

  • Macatonia, S. E., Doherty, T. M., Knight, S. C., and O’Garra, A., 1993a, Differential effect of interleukin 10 on dendritic cell-induced T cell proliferation and interferon-y production, J. Immunol. 150: 3755–3765.

    PubMed  CAS  Google Scholar 

  • Macatonia, S. E., Hsieh, C.-S., Murphy, K. M., and O’Garra, A., 1993b, Dendritic cells and macrophages are required for Thl development of CD4+ T cells from a3 TCR transgenic mice: IL-12 substitution for macrophages to stimulate IFN-y production is IFN-y-dependent, Int. Immunol. 5: 1119–1128.

    PubMed  CAS  Google Scholar 

  • Macatonia, S. E., Hosken, N. A., Litton, M., Vieira, R, Hsieh, C.-S., Culpepper, J. A., Wysocka, M., Trinchieri, G., Murphy, K. M., and O’Garra, A., 1995, Dendritic cells produce interleukin-12 and direct the development of Th1 cells from naive CD4+ T cells, J. Immunol. 154: 5071–5079.

    PubMed  CAS  Google Scholar 

  • MacDonald, T. T., 1983, Immunosuppression caused by antigen feeding II. Suppressor T cells mask Peyer’s patch B cell priming to orally administered antigen, Eur. J. Immunol. 13: 138–142.

    PubMed  CAS  Google Scholar 

  • Mason, D. W., Pugh, C. W., and Webb, M., 1981, The rat mixed lymphocyte reaction: Roles of a dendritic cell in intestinal lymph and T cell subsets defined by monoclonal antibodies, Immunology 44: 75–87.

    PubMed  CAS  Google Scholar 

  • Matzinger, R, 1994, Tolerance, danger, and the extended family, Annu. Rev. Immunol. 12: 991–1045.

    PubMed  CAS  Google Scholar 

  • Mayordomo, J. I., Storkus, W. J., Kast, W. M., Zorina, T., DeLeo, A. B., and Lotze, M. T., 1995, Bone marrowderived dendritic cells serve as potent adjuvants for peptide-based antitumor vaccines, J. Cell. Biochem.[Supp.] 21A: 21.

    Google Scholar 

  • Mayrhofer, G., Holt, P. G., and Papadimitriou, J. M., 1986, Functional characteristics of the veiled cells in afferent lymph from the rat intestine, Immunology 58: 379–387.

    PubMed  CAS  Google Scholar 

  • McWilliam, A. S., Nelson, D., Thomas, J. A., and Holt, P. G., 1994, Rapid dendritic cell recruitment is a hallmark of the acute inflammatory response at mucosal surfaces, J. Exp. Med. 179: 1331–1336.

    PubMed  CAS  Google Scholar 

  • Metlay, J. P., Puré, E., and Steinman, R. M., 1989, Control of the immune response at the level of antigen-presenting cells: A comparison of the function of dendritic cells and B lymphocytes, Adv. Immunol. 47: 45–116.

    PubMed  CAS  Google Scholar 

  • Metlay, J. P., Witmer-Pack, M. D., Agger, R., Crowley, M. T., Lawless, D., and Steinman, R. M., 1990, The distinct leukocyte integrins of mouse spleen dendritic cells as identified with new hamster monoclonal antibodies, J. Exp. Med. 171: 1753–1772.

    PubMed  CAS  Google Scholar 

  • Moll, H., 1993, Epidermal Langerhans cells are critical for immunoregulation of cutaneous leishmaniasis, Immunol. Today 14: 383–387.

    PubMed  CAS  Google Scholar 

  • Moll, H., Fuchs, H., Blank, C., and Rollinghoff, M., 1993, Langerhans cells transport Leishmania major from the infected skin to the draining lymph node for presentation to antigen-specific T cells, Eur. J. Immunol. 23: 1595–1601.

    PubMed  CAS  Google Scholar 

  • Moore, K. W., Vieira, P., Fiorentino, D. F., Trounstine, M. L., Khan, T. A., and Mosmann, T. R., 1990, Homology of the cytokine synthesis inhibitory factor (IL-10) to the Epstein—Barr virus gene BCRFI, Science 248: 1230–1234.

    PubMed  CAS  Google Scholar 

  • Moore, M. A. S., 1991, Clinical implications of positive and negative hematopoietic stem cell regulators, Blood 78: 1–19.

    PubMed  CAS  Google Scholar 

  • Mosier, D. E., 1967, A requirement for two cell types for antibody formation in vitro, Science 158: 1573–1575.

    PubMed  CAS  Google Scholar 

  • Mowat, A. M., 1987, The regulation of immune responses to dietary protein antigens, Immunol. Today 8: 93–98.

    CAS  Google Scholar 

  • Nestle, F. O., Zheng, X.-G., Thompson, C. B., Turka, L. A., and Nickoloff, B. J., 1993, Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets, J. Immunol. 151: 6535–6545.

    PubMed  CAS  Google Scholar 

  • Nicod, L. P., Lipscomb, M. F., Weissler, J. C., Lyons, C. R., Alberton, J., andToews, G. B., 1989, Mononuclear cells from human lung parenchyma support antigen-induced T lymphocyte proliferation, J. Leuk. Biol. 45: 336–344.

    CAS  Google Scholar 

  • Nonacs, R., Humborg, C., Tam, J. R, and Steinman, R. M., 1992, Mechanisms of mouse spleen dendritic cell function in the generation of influenza-specific, cytolytic T lymphocytes, J. Exp. Med. 176: 519–529.

    PubMed  CAS  Google Scholar 

  • Notarangelo, L. D., Duse, M., and Ugazio, A. G., 1992, Immunodeficiency with hyper-IgM (HIM), Immunodef. Rev. 3: 101–122.

    PubMed  CAS  Google Scholar 

  • Nussenzweig, M. C., Jiang, W., Swiggard, W. J., Mirza, A., Peng, M., and Steinman, R. M., 1995, Molecular characterization of a 205 Kd protein that is abundant on dendritic cells and identified with the NLDC-145 monoclonal antibody, J. Cell Biochem. [Suppl.] 21A: 20.

    Google Scholar 

  • O’Doherty, U., Steinman, R. M., Peng, M., Cameron, P. U., Gezelter, S., Kopeloff, I., Swiggard, W. J., Pope, M., and Bhardwaj, N., 1993, Dendritic cells freshly isolated from human blood express CD4 and mature into typical immunostimulatory dendritic cells after culture in monocyte-conditioned medium, J. Exp. Med. 178: 1067–1078.

    PubMed  Google Scholar 

  • O’Doherty, U., Peng, M., Gezelter, S., Swiggard, W. J., Betjes, M., Bhardwaj, N., and Steinman, R. M., 1994, Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature, Immunology 82: 487–493.

    PubMed  Google Scholar 

  • Paglia, E, Girolomoni, G., Robbiati, F., Granucci, F., and Ricciardi-Castagnoli, R, 1993, Immortalized dendritic cell line fully competent in antigen presentation initiates primary T cell responses in vivo, J. Exp. Med. 178: 1893–1901.

    CAS  Google Scholar 

  • Pauli, P., Woodhams, C. E., Doe, W. F., and Hume, D. A., 1990, Isolation and characterization of antigen-presenting dendritic cells from the mouse intestinal lamina propria, Immunology 70: 40–47.

    Google Scholar 

  • Péguet-Navarro, J., Moulon, C., Caux, C., Dalbiez-Gauthier, C., Banchereau, J., and Schmitt, D., 1994, Interleukin 10 inhibits the primary allogeneic T cell response to human epidermal Langerhans cells, Eur. J. Immunol. 24: 884–891.

    PubMed  Google Scholar 

  • Péguet-Navarro, J., Dalbiez-Gauthier, C., Rattis, E M., Van Kooten, C., Banchereau, J., and Schmitt, D., 1995, Functional expression of CD40 antigen on human epidermal Langerhans cells, J. Immunol. 155: 4241–4247.

    PubMed  Google Scholar 

  • Pelletier, M., Perreaut, C., Landry, D., David, M., and Montplaisir, S., 1984, Ontogeny of human epidermal Langerhans cells, Transplantation 38: 544–546.

    PubMed  CAS  Google Scholar 

  • Porcelli, S., Morita, C. T., and Brenner, M. B., 1992, CD1b restricts the response of human CD4–8-T lymphocytes to a microbial antigen, Nature 360: 593–597.

    PubMed  CAS  Google Scholar 

  • Prickett, T. C. R., McKenzie, J. L., and Hart, D. N. J., 1988, Characterization of interstitial dendritic cells in human liver, Transplantation 46: 754–761.

    PubMed  CAS  Google Scholar 

  • Pugh, C. W., MacPherson, G. G., and Steer, H. W., 1983, Characterization of nonlymphoid cells derived from rat peripheral lymph, J. Exp. Med. 157: 1758–1779.

    PubMed  CAS  Google Scholar 

  • Puré, E., Inaba, K., Crowley, M. T., Tardelli, L., Witmer-Pack, M. D., Ruberti, G., Fathman, G., and Steinman, R. M., 1990, Antigen processing by epidermal Langerhans cells correlates with the level of biosynthesis of MHC class II molecules and expression of invariant chain, J. Exp. Med. 172: 1459–1469.

    PubMed  Google Scholar 

  • Qian, S., Demetris, A. J., Murase, N., Rao, A. S., Fung, J. J., and Starzl, T. E., 1994, Murine liver allograft transplantation: Tolerance and donor cell chimerism, Hepatology 19: 916–924.

    PubMed  CAS  Google Scholar 

  • Rahemtulla, A., Fung-Leung, W. P., Schilham, M. W., Kundig, T. M., Sambhara, S. R., Narendram, A., Arabian, A., Wakeham, A., Paige, C. J., and Zinkernagel, R. M., 1991, Normal development and function of CD8+ cells but markedly decreased helper cell activity in mice lacking CD4, Nature 353: 180–184.

    PubMed  CAS  Google Scholar 

  • Ray, A., Schmitt, D., Dezutter, D. C., Fargier, M. C., and Thivolet, J., 1989, Reappearance of CD1a antigenic sites after endocytosis on human Langerhans cells evidenced by immunogoldlabeling, J. Invest. Dermatol. 92: 217–224.

    PubMed  CAS  Google Scholar 

  • Reid, C. D. L., Fryer, P. R., Clifford, C., Kirk, A., Tikerpae, J., and Knight, S. C., 1990, Identification of hematopoietic progenitors of macrophages and dendritic Langerhans cells (DL-CFU) in human bone marrow and peripheral blood, Blood 76: 1139–1149.

    PubMed  CAS  Google Scholar 

  • Reid, C. D. L., Stackpoole, A., Meager, A., and Tikerpae, J., 1992, Interactions of tumor necrosis factor with granulocyte—macrophage colony-stimulating factor and other cytokines in the regulation of dendritic cell growth in vitro from early bipotent CD34+ progenitors in human bone marrow, J. Immunol. 149: 2681–2688.

    PubMed  CAS  Google Scholar 

  • Reis e Sousa, C., Stahl, P. D., and Austyn, J. M., 1993, Phagocytosis of antigens by Langerhans cells in vitro, J. Exp. Med. 178: 509–519.

    Google Scholar 

  • Ren, Y., Silverstein, R. L., Allen, J., and Savill, J., 1995, CD36 gene transfer confers capacity for phagocytosis of cells undergoing apoptosis, J. Exp. Med. 181: 1857–1862.

    PubMed  CAS  Google Scholar 

  • Rhodes, J. M., and Agger. R., 1987, Comparison of membrane antigens of mouse dendritic cell types, Immunol. Lett. 16: 107–112.

    PubMed  CAS  Google Scholar 

  • Romani, N., Koide, S., Growley, M., Witmer-Pack, M., Livingstone, A. M., Fathman, G. G., Inaba, K., and Steinman, R. M., 1989a, Presentation of exogenous protein antigens by dendritic cells to T cell clones, J. Exp. Med. 169: 1169–1178.

    PubMed  CAS  Google Scholar 

  • Romani, N., Lenz, A., Glassl, H., Stossel, H., Stanzl, U., Majdic, O., Fritsch, P., and Schuler, G., 1989b, Cultured human Langerhans cells resemble lymphoid dendritic cells in phenotype and function., J. Invest. Dermatol. 93: 600–609.

    PubMed  CAS  Google Scholar 

  • Romani, N., Gruner, S., Brang, D., Kämpgen, E., Lenz, A., Trockenbacher, B., Konwalinka, G., Fritsch, P. O., Steinman, R. M., and Schuler, G., 1994, Proliferating dendritic cell progenitors in human blood, J. Exp. Med. 180: 83–93.

    PubMed  CAS  Google Scholar 

  • Ronchese, F., and Hausmann, B., 1993, B lymphocytes in vivo fail to prime naive T cells but can stimulate antigen-experienced T lymphocytes, J. Exp. Med. 177: 679–690.

    PubMed  CAS  Google Scholar 

  • Ross, E. L., Barker, J. N. W. N., Allen, M. H., Chu, A. C., Groves, R. W., and MacDonald, D. M., 1994, Langerhans’ cell expression of the selectin ligand, sialyl Lewis x, Immunology 81: 303–308.

    PubMed  CAS  Google Scholar 

  • Rossi, G., Heveker, N., Thiele, B., Gelderblom, H., and Steinbach, F., 1992, Development of a Langerhans cell phenotype from peripheral blood monocytes, Immunol. Len. 31: 189–197.

    CAS  Google Scholar 

  • Rowden, G., 1981, The Langerhans cells, Crit. Rev. Immunol. 3: 94–180.

    Google Scholar 

  • Rubin, D., Weiner, H. L., Fields, B. N., and Greene, M. I., 1981, Immunologic tolerance after oral administration of reovirus: requirement for two viral gene products for tolerance induction, J. Immunol. 127: 1697–1701.

    PubMed  CAS  Google Scholar 

  • Rusten, L. S., Jacobsen, F. W., Lesslauer, W., Loetscher, H., Smeland, E. B., and Jacobsen, S. E., 1994, Bifunctional effects of tumor necrosis factor alpha (TNF alpha) on the growth of mature and primitive human hematopoietic progenitor cells: Involvement of p55 and p75 TNF receptors, Blood 83: 3152–3159.

    PubMed  CAS  Google Scholar 

  • Saeland, S., Duvert, V., Moreau, I., and Banchereau, J., 1993, Human B cell precursors proliferate and express CD23 after CD40 ligation, J. Exp. Med. 178: 113–120.

    PubMed  CAS  Google Scholar 

  • Sagebiel, R. W., and Reed, T. H., 1968, Serial reconstruction of the characteristic granule of the Langerhans cell, J. Cell. Biol. 36: 595–608.

    PubMed  CAS  Google Scholar 

  • Salem, M., Deiwel, R., Touw, I., Mahmoud, L. A., Elbasousy, E. M., and Lowenberg. B., 1990, Modulation of colony stimulating factor-(CSF) dependent growth of acute myeloid leukemia by tumor necrosis factor, Leukemia 4: 37–43.

    PubMed  CAS  Google Scholar 

  • Sallusto, F., and Lanzavecchia, A., 1994, Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha, J. Exp. Med. 179: 1109–1118.

    PubMed  CAS  Google Scholar 

  • Sallusto, F., Cella, M., Danieli, C., and Lanzavecchia, A., 1995, Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: Downregulation by cytokines and bacterial products, J. Exp. Med. 182: 389–400.

    PubMed  CAS  Google Scholar 

  • Santiago-Schwarz, F., Belilos, E., Diamond, B., and Carsons, S. E., 1992, TNF in combination with GM-CSF enhances the differentiation of neonatal cord blood stem cells into dendritic cells and macrophages, J. Leukocyte Biol. 52: 274–281.

    PubMed  CAS  Google Scholar 

  • Santiago-Schwarz, F., Divans, N., Kay, C., and Carsons, S. E., 1993, Mechanisms of tumor necrosis factorgranulocyte-macrophage colony-stimulating factor-induced dendritic cell development, Blood 82: 3019–3028.

    PubMed  CAS  Google Scholar 

  • Sato, N., Caux, C., Kitamura, T., Watanabe, Y., Arai, K., Banchereau, J., and Miyajima, A., 1993, Expression and factor-dependent modulation of the Interleukin-3 receptor subunits on human hematopoietic cells, Blood 82: 752–761.

    PubMed  CAS  Google Scholar 

  • Scheicher, C., Mehlig, M., Zecher, R., and Reske, K., 1992, Dendritic cells from mouse bone marrow: In vitro differentiation using low doses of recombinant granulocyte—macrophage colony-stimulating factor, J. Immunol. Methods 154: 253–264.

    PubMed  CAS  Google Scholar 

  • Schmitt, D. A., Hanau, D., Bieber, T., Dezutter-Dambuyant, C., Schmitt, D., Fabre, M., Pauly, G., and Cazenave, J.-P., 1990, Human epidermal Langerhans cells express only the 40-kilodalton Fc gamma receptor (FcRII), J.Immunol. 144: 4284–4290.

    PubMed  CAS  Google Scholar 

  • Schon-Hegrad, M.A., Oliver, J., McMenamin, P.G., and Holt, P.G., 1991, Studies on the density, distribution, and surface phenotype of intraepithelial class II major histocompatability complex antigen (Ia)-bearing dendritic cells (DC) in the conducting airways, J. Exp. Med. 173: 1345–1356.

    PubMed  CAS  Google Scholar 

  • Schrader, C. E., Geroge, A., Kerlin, R. L., and Cebra, J. J., 1990, Dendritic cells support production of IgA and other non-IgM isotypes in clonal microculture, Int. Immunol. 2: 563–570.

    PubMed  CAS  Google Scholar 

  • Schuler, G., and Steinman, R. M., 1985, Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro, J. Exp. Med. 161: 526–546.

    CAS  Google Scholar 

  • Schuler, G., Auböck, J., and Linert, J., 1983, Enrichment of epidermal Langerhans cells by immunoadsorption to Staphylococcus aureus cells, J. Immunol. 130: 2008–2010.

    PubMed  CAS  Google Scholar 

  • Shimada, S., Caughman, S. W., Sharrow, S. O., Stephany, D., and Katz, S. I., 1987, Enhanced antigen-presenting capacity of cultured Langerhans cells is associated with markedly increased expression of la antigen, J. Immunol. 139: 2551–2555.

    PubMed  CAS  Google Scholar 

  • Sornasse, T., Flamand, V., de Becker, G., Bazin, H., Tielemans, F., Thielemans, K., Urbain, J., Oberdan, L., and Moser, M., 1992, Antigen-pulse dendritic cells can efficiently induce an antibody response in vivo, J. Exp. Med. 175: 15–21.

    CAS  Google Scholar 

  • Spalding, D. M., and Griffin, J. A., 1986, Different pathways of differentiation of pre-B cell lines are induced by dendritic cells and T cells from different lymphoid tissues, Cell 44: 507–515.

    PubMed  CAS  Google Scholar 

  • Spalding, D. M., Koopman, W. J., Eldridge, J. H., McGhee, J. R., and Steinman, R. M., 1983, Accessory cells in murine Peyer’s patch. I. Identification and enrichment of a functional dendritic cell, J. Exp. Med. 157: 1646–1659.

    PubMed  CAS  Google Scholar 

  • Spencer, S. C., and Fabre, J. W., 1990, Characterization of the tissue macrophage and the interstitial dendritic cell as distinct leukocytes normally residend in the connective tissue of rat heart, J. Exp. Med. 171: 1841–1851.

    PubMed  CAS  Google Scholar 

  • Spry, C. J. F., Pflug, A. J., Janossy, G., and Humphrey, J. H., 1980, Large mononuclear (veiled) cells with “Ia-like” membrane antigens in human afferent lymph, Clin. Exp. Immunol. 39: 750–756.

    PubMed  CAS  Google Scholar 

  • Starzl, T. E., Marchioro, T. L., Porter, K. A., Taylor, P. D., Faris, T. D., Herrmann, T. J., Hlad, C. J., and Waddell, W. R., 1965, Factors determining short-and long-term survival after orthotopic liver homotransplantation in the dog, Surgery 58: 131–138.

    PubMed  Google Scholar 

  • Starzl, T. E., Demetris, A. J., Trucco, M., Murase, N., Ricordi, C., Ildstad, S., Ramos, H., Todo, S., Tzakis, A., and Fung, J. J., 1993, Cell migration and chimerism after whole organ transplantation: The basis of graft acceptance, Hepatology 17: 1153–1156.

    Google Scholar 

  • Steiniger, B., Klempnauer, J., and Wonigeit, K., 1984, Phenotype and histological distribution of interstitial dendritic cells in the rat pancreas, liver, heart and kidney, Transplantation 38: 169–174.

    PubMed  CAS  Google Scholar 

  • Steinman, R. M., 1991, The dendritic cell system and its role in immunogenicity, Annu. Rev. Immunol. 9: 271–296.

    PubMed  CAS  Google Scholar 

  • Steinman, R. M., and Witmer, M. D., 1978, Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice, Proc. Natl. Acad. Sci. U.S.A. 75: 5132–5136.

    PubMed  CAS  Google Scholar 

  • Steinman, R. M., Lustig, D. S., and Cohn, Z. A., 1974, Identification of a novel cell type in peripheral lymphoid organs of mice. III. Functional properties in vivo, J. Exp. Med. 139: 1431–1445.

    CAS  Google Scholar 

  • Stern, D. M., and Nawroth, R P., 1986, Modulation of endothelial hemostatic properties by tumor necrosis factor, J. Exp. Med. 163: 740–745.

    PubMed  Google Scholar 

  • Stössel, H., Koch, F., Kmpgen, E., Stöger, P., Lenz, A., Heufler, C., Romani, N., and Schuler, G., 1990, Disappearance of certain acidic organelles (endosomes and Langerhans cell granules) accompanies loss of antigen processing capacity upon culture of epidermal Langerhans cells, J. Exp. Med. 172: 1471–1482.

    PubMed  Google Scholar 

  • Streilein, J. W., and Grammer, S. F., 1989, In vitro evidence that Langerhans cells can adopt two functionally distinct forms capable of antigen presentation to T lymphocytes, J. Immunol. 143: 3925–3933.

    CAS  Google Scholar 

  • Streilein, J. W., Grammer, S. F., Yoshikawa, T., Demidem, A., and Vermeer, M., 1990, Functional dichotomy between Langerhans cells that present antigen to naive and memory/effector T lymphocytes, Immunol. Rev. 117: 159–184.

    PubMed  CAS  Google Scholar 

  • Symington, F. W., Brady, W., and Linsley, R S., 1993, Expression and function of B7 on human epidermal Langerhans cells, J. Immunol. 150: 1286–1295.

    PubMed  CAS  Google Scholar 

  • Szabolcs, R, Moore, M. A. S., and Young, J. W., 1995, Expansion of immunostimulatory dendritic cells among the myeloid progeny of human CD34+ bone marrow precursors cultured with c-kit-ligand, GM-CSF, and TNFa, J. Immunol. 154: 5851–5861.

    PubMed  CAS  Google Scholar 

  • Tabata, N., Alba, S., Nakagawa, S., Ohtani, H., and Tagami, H., 1993, Sialyl Lewis“ expression on human Langerhans cells, J. Invest. Dermatol. 101: 175–179.

    PubMed  CAS  Google Scholar 

  • Takahashi, H., Nakagawa, Y., Yokomuro, K., and Berzofsky, J. A., 1993, Induction of CD8+ cytotoxic T lymphocytes by immunization with syngeneic irradiated HIV-1 envelope derived peptide-pulsed dendritic cells, Int. Immunol. 5: 849–857.

    PubMed  CAS  Google Scholar 

  • Takahashi, K., Naito, M., Shultz, L. D., Hayashi, S., and Nishikawa, S., 1993, Differentiation of dendritic cell populations in macrophage colony-stimulating factor-deficient mice homozygous for the osteopetrosis (op) mutation, J. Leukocyte Biol. 53: 19–28.

    PubMed  CAS  Google Scholar 

  • Takahashi, S., and Hashimoto, K., 1985, Derivation of Langerhans cell granules from cytomembrane, J. Invest. Dermatol. 84: 469–471.

    PubMed  CAS  Google Scholar 

  • Takigawa, M., Iwatsuki, K., Yamada, M., Okamoto, H., and Imamura, S., 1985, The Langerhans cell granule is an adsorptive endocytic organelle, J. Invest. Dermatol. 85: 12–18.

    PubMed  CAS  Google Scholar 

  • Tang, A., Amagai, M., Granger, L. G., Stanley, J. R., and Udey, M. C., 1993, Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin, Nature 361: 82–85.

    PubMed  CAS  Google Scholar 

  • Tazi, A., Bouchonnet, F., Grandsaigne, M., Boumsell, L., Hance, A. J.. and Soler, R, 1993, Evidence that granulocyte macrophage-colony-stimulating factor regulates the distribution and differentiated state of dendritic cells/Langerhans cells in human lung cancers, J. Clin. Invest. 91: 566–576.

    PubMed  CAS  Google Scholar 

  • Terhorst, C., Van Agthoven, A., Le Clair, K., Stanley, J. R., and Udey, M. C., 1981, Biochemical studies of the human thymocyte cell-surface antigens T6, T9 and T10, Cell 23: 771–780.

    PubMed  CAS  Google Scholar 

  • Teunissen, M. B. M., Wormeester, J., Krieg, S. R., Peters, R J., Vogels, I. M. C., Kapsenberg, M. L., and Bos, J. D., 1990, Human epidermal Langerhans cells undergo profound morphological and phenotypical changes during in vitro culture, J. Invest. Dermatol. 94: 166–173.

    PubMed  CAS  Google Scholar 

  • Thomas, R., and Lipsky, R E., 1994, Human peripheral blood dendritic cell subsets. Isolation and characterization of precursor and mature antigen-presenting cells, J. Immunol. 153: 4016–4028.

    PubMed  CAS  Google Scholar 

  • Thomas, R., Davis, L. S., and Lipsky, P. E., 1993, Isolation and characterization of human peripheral blood dendritic cells, J. Immunol. 150: 821–834.

    PubMed  CAS  Google Scholar 

  • Turka, L. A., Linsley, P. S., Lin, H., Brady, W., Leiden, J. M., Wei, R.-Q., Gibson, M. L., Zheng, X.-G., Myrdal, S., Gordon, D., Bailey, T., Bolling, S. F., and Thompson, C. B., 1992, T-cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo, Proc. Natl. Acad. Sci. U.S.A. 89: 11102–11107.

    CAS  Google Scholar 

  • van de Rijn, M., Lerch, P. G., Bronstein, B. R., Knowles, R. W., Bhan, A. K., and Terhost, C., 1984, Human cutaneous dendritic cells express two glycoproteins T6 and M241 which are biochemically identical to those found on cortical thymocytes, Hum. Immunol. 9: 201–210.

    PubMed  Google Scholar 

  • Van Nieuwkerk, E. B. J., Van der Baan, S., Richters, C. D., and Kamperdijk, E. W. A., 1992, Isolation and characterization of dendritic cells from adenoids of children with otitis media with effusion, Clin. Exp. Immunol. 88: 345–349.

    PubMed  Google Scholar 

  • Van Voorhis, W. C., Valinsky, J., Hoffman, E., Luban, J., Hair, L. S., and Steinman, R. M., 1983, Relative efficacy of human monocytes and dendritic cells as accessory cells for T cell replication, J. Exp. Med. 158: 171–191.

    Google Scholar 

  • Veldman, J. E., and Kaiserling, E., 1980, Interdigitating cells, in The Reticulo-endothelial System, Morphology ( I. Carr and W. T. Daems, eds.), pp. 381–416, Plenum Press, New York.

    Google Scholar 

  • Volc-Platzer, B., Stingl, G., Wolff, K., Hinterberg, W., and Schnedl, W., 1984, Cytogenetic identification of allogeneic epidermal Langerhans cells in a bone-marrow-graft recipient, N. Engl. J. Med. 310: 1123–1124.

    PubMed  CAS  Google Scholar 

  • Vremec, D., Zorbas, M., Scollay, R., Saunders, D. J., Ardavin, C C. F., Wu, L., and Shortman, K., 1992, The surface phenotype of dendritic cells purified from mouse thymus and spleen: Investigation of the CD8 expression by a subpopulation of dendritic cells, J. Exp. Med 176: 47–58.

    PubMed  CAS  Google Scholar 

  • Weih, F., Carrasco, D., Durham, S. K., Barton, D. S., Rizzo, C. A., Ryseck, R.-P., Lira, S. A., and Bravo, R., 1995, Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of Re1B, a member of the NF-KB/Rel family, Cell 80: 331–340.

    PubMed  CAS  Google Scholar 

  • Weissman, D., Li, Y., Ananworanich, J., Zhou, L.-J., Adelsberger, J., Tedder, T. F., Baseler, M., and Fauci, A. S., 1995, Three populations of cells with dendritic morphology exist in peripheral blood, only one of which is infectable with human immunodeficiency virus type 1, Proc. Natl. Acad. Sci. U.S.A. 92: 826–830.

    PubMed  CAS  Google Scholar 

  • Wettendorff, M., Massacrier, C., Vanbervliet, B., Urbain, J., Banchereau, J., and Caux, C., 1995, Activation of primary allogeneic CD8+ T cells by dendritic cells generated in vitro from CD34+ cord blood progenitor cells, in Dendritic Cells in Fundamental and Clinical Immunology ( J. Banchereau and D. Schmitt, eds.), pp. 371–374, Plenum Press, London.

    Google Scholar 

  • Wiktor-Jedrzejczak, W., Ratajczak, M. Z., Ptasznik, A., Sell, K. W., Ahmed-Ansari, A., and Ostertag, W., 1992, CSF-1 deficiency in the op/op mouse has differential effects on macrophage populations and differentiation stages, Exp. Hematol. 20: 1004–1010.

    PubMed  CAS  Google Scholar 

  • Wilders, M. M., Sminia, T., Plesch, B. E., Drexhage, H. A., Weltevreden, E. F., and Meuwissen, S. G., 1983, Large mononuclear la-positive veiled cells in Peyer’s patches. II. Localization in rat Peyer’s patches, Immunology 48: 461–467.

    PubMed  CAS  Google Scholar 

  • Williams, L. A., Egner, W., and Hart, D. N. J., 1994, Isolation and function of human dendritic cells, Int. Rev. Cytol. 153: 41–103.

    PubMed  CAS  Google Scholar 

  • Witmer, M. D., and Steinman, R. M., 1984, The anatomy of peripheral lymphoid organs with emphasis on accessory cells: Light microscopic, immunocytochemical studies of mouse spleen, lymph node and Peyer’s patch, Am. J. Anat. 170: 465–481.

    PubMed  CAS  Google Scholar 

  • Witmer-Pack, M. D., Olivier, W., Valinsky, J., Schuler, G., and Steinman, R. M., 1987, Granulocyte/macrophage colony/stimulating factor is essential for the viability and function of cultured murine epidermal Langerhans cells, J. Exp. Med. 166: 1484–1498.

    PubMed  CAS  Google Scholar 

  • Witmer-Pack, M. D., Valinsky, J. O., W. and Steinman, R. M., 1988, Quantitation of surface antigens on cultured murine epidermal Langerhans cells: Rapid and selective increase in the level of surface MHC products, J. Invest. Dermatol. 90: 387–394.

    CAS  Google Scholar 

  • Witmer-Pack, M. D., Hughes, D. A., Schuler, G., Lawson, L., McWilliam, A., Inaba, K., Stemma, R. M., and Gordon, S., 1993, Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse, J. Cell Sci. 104: 1021–1029.

    PubMed  Google Scholar 

  • Wolff, K., 1967, The fine structure of the Langerhans cell granule, J. Cell. Biol. 35: 1484–1498.

    Google Scholar 

  • Wolff, K., and Schreiner, E., 1970, Uptake, intracellular transport and degradation of exogeneous protein by Langerhans cells, J. Invest. Dermatol. 48: 50–54.

    Google Scholar 

  • Xu, S., Ariizumi, K., Edelbaum, D., Bergstresser, P. R., and Takashima, A., 1995, Cytokine-dependent regulation of growth and maturation in murine epidermal dendritic cell lines, Eur. J. Immunol. 25: 1018–1024.

    PubMed  CAS  Google Scholar 

  • Young, J. W., and Steinman, R. M., 1988, Accessory cell requirements for the mixed leukocyte reaction and polyclonal mitogens, as studied with a new technique for enriching blood dendritic cells, Cell. Immunol. 111: 167–182.

    PubMed  CAS  Google Scholar 

  • Young, J. W., and Steinman, R. M., 1990, Dendritic cells stimulate primary human cytolytic lymphocyte responses in the absence of CD4+ helper T cells, J. Exp. Med. 171: 1315–1332.

    PubMed  CAS  Google Scholar 

  • Zhou, L.-J., and Tedder, T. F., 1995, Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily, J. Immunol. 154: 3821–3835.

    PubMed  CAS  Google Scholar 

  • Zhou, L.-J., Schwarting, R., Smith, H. M., and Tedder, T. F., 1992, A novel cell-surface molecule expressed by human interdigitating reticulum cells, Langerhans cells, and activated lymphocytes is a new member of the Ig superfamily, J. Immunol. 149: 735–742.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Caux, C., Banchereau, J. (1996). In Vitro Regulation of Dendritic Cell Development and Function. In: Whetton, A.D., Gordon, J. (eds) Blood Cell Biochemistry. Blood Cell Biochemistry, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-31728-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-31728-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-7052-0

  • Online ISBN: 978-0-585-31728-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics