Skip to main content

Effects of Electromagnetic Fields On K+(Rb+) Uptake by HeLa Cells

  • Chapter
  • First Online:
Book cover Biological Effects of Magnetic and Electromagnetic Fields

Conclusions

Exposure to strong homogeneous magnetic fields with various magnetic flux densities ofless than 1.6 T had no significant effect on either active or passive Rb+ influxes into HeLa cells at normal or high temperatures. Exposure to a similar magnetic field of 2 T at different temperatures of 10 to 45°C did not cause any change in active or passive Rb+ influx, and no evidence was obtained for the presence of a phase transition point of the cell membrane between 10 and 37°C.

In contrast, exposure to a strong, time-varying magnetic field of quasi-rectangular wave form caused significant inhibition of active Rb+ influx when the frequency of change in the magnetic field was more than 1/20 Hz. Conversely, K+ efflux was stimulated, but passive Rb+ influx was unaffected. Analyses of the amplitudes of the frequency components of the time-varying magnetic field B and its differential dB/dt revealed that B mainly consisted of components with the lowest angular frequencies, whereas dB/dt contained components of various frequencies. The inhibition of active Rb+ influx was not due to change in the cellular ATP content.

Results obtained by micro-fluorometry with fluorescent probes of the membrane potential (diS-C3-(5)) and pH (4-heptadecyl-7-hydroxy-coumarin) showed change in the electrical properties of the cell surface on exposure to the time-varying magnetic field. Results suggested an uneven distribution of electrical charge and an increase in negative charge on the cell surface. The inhibition of active Rb+ influx and the change in electrical properties of the cell membrane were reversible. Further studies are needed to determine whether change in electrical properties is the direct cause of inhibition of the Na+-pump.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Gualtierotti (1964) Decrease of the sodium pump activity in the frog skin in a steady magnetic field. Physiologist, 7, 150.

    Google Scholar 

  2. C. S. Collis, and M. B. Segal (1988) Effects of pulsed electromagnetic fields on Na+ fluxes across stripped rabbit colon epithelium, J. Appl. Physiol., 65, 124–130.

    Article  Google Scholar 

  3. M. Hinsenkamp, P. Lheureux, D. Martins (1985) Transmembrane Na/K exchanges under electromagnetic fields. Preliminary study on human erythrocytes. Reconstr. Surg. Traumat., 19. 63–69.

    Google Scholar 

  4. R. W. Farndale, A. Maroudas, and T. P. Marsland (1987) Effects of low amplitude pulsed magnetic fields on cellular ion transport. Bioelectromagnetics, 8, 119–143.

    Article  Google Scholar 

  5. A. P. Stevenson, and R. A. Tobey (1985) Potassium ion influx measurements on cultured Chinese hamster cells exposed to 60-Hz electromagnetic fields. Bioelectromagnetics, 6, 189–198.

    Article  Google Scholar 

  6. H. Yamaguchi, T. Ikehara, K. Hosokawa, A. Soda, M. Shono, H. Miyamoto, Y. Kinouchi, and T. Tasaka (1992) Effects of time-varying electromagnetic fields on K+(Rb+) fluxes and surface charge of HeLa cells. Jpn. J. Physiol., 42. 929–943.

    Article  Google Scholar 

  7. H. Miyamoto, L. Rasmussen, and E. Zeuthen (1976) Recording of clonal growth of mammalian cells through many generations, In D. M. Prescott ed. “Methods in Cell Biology”. 13. 107–119. Acad. Press. Inc. New York.

    Google Scholar 

  8. H. Miyamoto, T. Sakai, T. Ikehara, and K. Kaniike (1978) Effect of Rb+ substituted for K+ on HeLa cells: cellular content and membrane transport of monovalent cations, and cell growth. Cell Struct. Funct., 3, 313–324.

    Article  Google Scholar 

  9. H. Miyamoto, T. Ikehara, H. Yamaguchi, K. Hosokawa, T. Yonezu, and T. Masuya (1986) Kinetic mechanism of Na+,K+,Cl--cotransport as studied by the Rb+ influx into HeLa cells: effects of extracellular monovalent ions. J. Membrane Biol., 92. 135–150.

    Article  Google Scholar 

  10. T. Ikeharam, T. Sakai, H. Miyamoto, and K. Kaniike (1982) Interrelation between membrane transport and the contents of alkali metal cations in HeLa cells, Jpn. J. Physiol., 32, 13–24.

    Article  Google Scholar 

  11. T. Ikehara, H. Yamaguchi, K. Hosokawa, A. Takahashi, and H. Miyamoto (1993) Kinetic study on the effects of intracellular K+ and Na+ on Na+, K+,Cl- cotransport of HeLa cells by Rb+ influx determination, J. Membrane Biol., 132, 115–124.

    Article  Google Scholar 

  12. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall (1951) Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265–275.

    Google Scholar 

  13. S. H. Wright, S. Krasne, I. Kippen, and E. M. Wright (1981) Na+-dependent transport of tricarboxylic acid cycle intermediates by renal brush border membranes. Effects of fluorescence of potential-sensitive cyanine dye, Biochim. Biophys. Acta, 640, 767–778.

    Article  Google Scholar 

  14. R. Pal, W. A. Petri, Jr., Y. Barenolz, and R. R. Wagner (1983) Lipid and protein contributions to the membrane surface potential of vesicular stomatitis virus probed by a fluoresecnt pH indicator, 4-heptadecyl-7-hydroxycoumarin, Biochim. Biophys. Acta, 729, 185–192.

    Article  Google Scholar 

  15. T. Ikehara, H. Yamaguchi, T. Sakai, and H. Miyamoto (1984a) Kinetic parameters and mechanism of active cation transport in HeLa cells as studied by Rb+ influx, Biochim. Biophys. Acta, 775, 297–307.

    Article  Google Scholar 

  16. T. Ikehara, H. Yamaguchi, K. Hosokawa, T. Sakai, and H. Miyamoto (1984) Rb+ influx in response to changes in energy generation: effect of the regulation of the ATP content of HeLa cells, J. Cell. Physiol., 119,273–282.

    Article  Google Scholar 

  17. T. Ikehara, H. Yamaguchi, K. Hosokawa, and H. Miyamoto (1990) Kinetic mechanism of ATP action in Na+-K+-Cl- cotransport of HeLa cells determined by Rb+ influx studies. Am. J. Physiol., 258. C599–C609.

    Article  Google Scholar 

  18. T. Ikehara, A. Takahashi, H. Yamaguchi, K. Hosokawa, T. Masuya, and H. Miyamoto (1991) Regulatory changes in the K+, Cl- and water contents of HeLa cells incubated in an isosmotic high K+-medium. Biochim. Biophys. Acta. 1068, 87–96.

    Article  Google Scholar 

  19. A. Takahashi, H. Yamaguchi, and H. Miyamoto (1993) Changes in K+ current of HeLa cells with progression of the cell cycle studied by patch-clamp technique, Am. J. Physiol., 265, C328–C336.

    Article  Google Scholar 

  20. Y. Kinouchi, S. Tanimoto, T. Ushita, K. Sato, H. Yamaguchi, and H. Miyamoto (1988) Effects of static magnetic fields on diffusion in solutions. Bioelectromagnetics, 9, 159–166.

    Article  Google Scholar 

  21. T. S. Tenforde, and R. P. Liburdy (1988) Magnetic deformation of phospholipid bilayers: effects on liposome shape and solute permeability at prephase transition temperatures. J. Theoret. Biol., 133. 385–396.

    Article  Google Scholar 

  22. R. P. Liburdy, and P. F. Vanek, Jr. (1985) Microwaves and the cell membrane. II. Temperature, plasma, and oxygen mediate microwave-induced membrane permeability in the erythrocyte. Rad. Res., 102, 190–205.

    Article  Google Scholar 

  23. H. Aceto, Jr., C. A. Tobias, and I. L. Silver (1970) Some studies on the biological effects of magnetic fields. IEEE Trans. Mag. MAG-6, 368–373.

    Article  ADS  Google Scholar 

  24. M. Blank, and L. Soo (1989) The effects of alternating currents on Na.K-ATPase function. Bioelectrochem. Bioenerg., 22, 313–322.

    Article  Google Scholar 

  25. M. T. Marron, E. M. Goodman, P. T. Sharpe, and B. Greenebaum (1988) Low frequency electric and magnetic fields have different effects on the cell surface. FEBS Lett., 230, 13–16, 1988.

    Article  Google Scholar 

  26. O. M. Smith, E. M. Goodman, B. Greenebaum, and P. Tipnis (1991) An increase in the negative surface charge of U937 cells exposed to a pulsed magnetic field. Bioelectromagnetics. 12, 197–202.

    Article  Google Scholar 

  27. S. McLaughlin, and M.-M. Poo (1981) The role of electro-osmosis in the electric-field-induced movement of charged macromolecules on the surfaces of cells, Biophys. J., 34, 85–93.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press

About this chapter

Cite this chapter

Miyamoto, H., Yamaguchi, H., Ikehara, T., Kinouchi, Y. (1996). Effects of Electromagnetic Fields On K+(Rb+) Uptake by HeLa Cells. In: Ueno, S. (eds) Biological Effects of Magnetic and Electromagnetic Fields. Springer, New York, NY. https://doi.org/10.1007/978-0-585-31661-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-31661-1_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-306-45292-5

  • Online ISBN: 978-0-585-31661-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics