Skip to main content

A Growing Scientific Consensus on The Cell and Molecular Biology Mediating

Interactions with Environmental Electromagnetic Fields

  • Chapter
  • First Online:
Biological Effects of Magnetic and Electromagnetic Fields

Introduction

Over the past 15 years, epidemiological studies have raised concerns about possible health risks related to exposures to electromagnetic fields associated with electric power transmission, distribution and use; and to various radio and microwave field exposures in homes and schools, in the workplace, and in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adey WR (1981) Tissue interactions with nonionizing electromagnetic fields. Physiol. Rev. 61:435–514.

    Google Scholar 

  • Adey WR (1990) Joint actions of environmental nonionizing electromagnetic fields and chemical pollution in cancer promotion. Environmental Health Perspectives 86:297–305.

    Google Scholar 

  • Adey WR (1992) Extremely low frequency magnetic fields and promotion of cancer. Interaction Mechanisms of Low-Level Electromagnetic Fields in Living Systems, B. Norden and C. Ramel, eds. Oxford University Press, pp 23–46.

    Google Scholar 

  • Adey WR (1993) Electromagnetics in biology and medicine. Modern Radio Science. H. Matsumoto. ed. Oxford University Press, pp 227–245.

    Google Scholar 

  • Adey WR, Lawrence AF (1984) Nonlinear Electrodynamics in Biological Systems. New York, Plenum Press.

    Google Scholar 

  • Bassett CAL, Mitchell SN, Gaston SR (1982) Pulsing electromagnetic field treatment in ununited fractures and failed arthrodeses. JAMA 247:623–628.

    Google Scholar 

  • Bawin SM, Adey WR (1976) Sensitivity of calcium binding in cerebral tissue to weak electric fields oscillating at low frequency. Proc. Nat. Acad. Sci. USA 73:1999–2003.

    ADS  Google Scholar 

  • Bawin SM, Kaczmarek LK, Adey WR (1975) Effects of modulated VHF fields on the central nervous system. Ann. NY Acad. Sci. 247:74–80.

    ADS  Google Scholar 

  • Bawin SM, Satmary WM, Adey WR (1994) Nitric oxide modulates rhythmic slow activity in rat hippocampal slices. Newo Report 5:1869–1872.

    Google Scholar 

  • Berridge MJ (1987) Inositol triphosphate and diacylglycerol: two interacting second messengers. Ann. Rev. Biochem. 56:159–193.

    Google Scholar 

  • Bignami M, Rosa S, Falcone G, Tato F, Katoh F, Yamasaki H (1988) Specific viral oncogenes cause differential effects in cell-to-cell communication, relevant to suppression of the transformed phenotype by normal cells. Molec. Carcin. 191:67–75.

    Google Scholar 

  • Blackman CF (1994) Effect of electrical and magnetic fields on the nervous system. The Vulnerable Brain and Environmental Risks, vol 3: Toxins in Air and Water. RL Isaacson and KF Jensen eds. Plenum Press, New York, pp 341–355.

    Google Scholar 

  • Blackman CF, Elder JA, Weil CM, Benane SG, Eichinger DC, House DE (1979) Induction of calcium ion flux from brain tissue by radio frequency radiation: effects of modulation frequency and field strength, Radio Sci. 14:93–98.

    ADS  Google Scholar 

  • Blackman CF, Benane SG, House DE, Joines WT (1985a) Effects of ELF (1–120 Hz) and modulated (50 Hz) RF fields on the efflux of calcium ions from brain tissue, in vitro. Bioelectromagnetics 6:1–12.

    Google Scholar 

  • Blackman CF. Benane SG, Rabinowitz JR, House DE (1985b) A role for the magnetic field in the radiation-induced efflux from brain tissue, in vitro. Bioelectromagnetics 6:327–338.

    Google Scholar 

  • Blackman CF. Blanchard JP, Benane SG, House DE(1994) Empirical test of an ion parametric resonance model for magnetic field interactions with PC-12 cells. Bioelectromagnetics 15:239–260.

    Google Scholar 

  • Blanchard JP. Blackman CF (1994) Clarification and Application of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics 15:217–238.

    Google Scholar 

  • Byus CV, Lundak RL, Fletcher RM, Adey WR (1984) Alterations in protein kinase activity following exposure of cultured lymphocytes to modulated microwave fields. Bioelectromagnetics 5:34–51.

    Google Scholar 

  • Byus CV, Pieper SE, Adey WR (1987) The effects of low-energy 60 Hz environmental electromagnetic fields upon the growth-related enzyme ornithine decarboxylase. Carcinogenesis 8:1385–9.

    Google Scholar 

  • Byus CV, Kartun K, Pieper S, Adey WR (1988) Increased ornithine decarboxylase activity in cultured cells exposed to low energy modulated microwave fields and phorbol ester tumor promoters. Cancer Res. 48:4222–4226.

    Google Scholar 

  • Byus CV (1994) Regulation of the efflux of putrescine and cadaverine from rapidly-growing cultured RAW-264 cells by extracellular putrescine. Biochem J., in press.

    Google Scholar 

  • Cain CD, Luben RA (1987) Pulsed EMF effects on PTH stimulated cAMP accumulation and bone resorption in mouse calvariae. Interactions of Biological Systems with ELF, LE Anderson, BJ Kelman, RJ Weigel, eds. Richland, WA: Battelle Laboratories Press; Conference Publication No. 24. pp 269–278.

    Google Scholar 

  • Cain CD, Thomas DL, Adey WR (1993) 60 Hz magnetic field acts as co-promoter in focus formation of C3H10T1/2 cells. Carcinogenesis 14:955–960.

    Google Scholar 

  • Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y (1982) Direct activation of calcium-activated phospholipid-dependent protein kinase by tumor promoting phorbol esters. J. Biol Chem. 257:7847–51.

    Google Scholar 

  • Conti P, Gigante GE, Alesse E, Cifone MG, Fieschi C, Reale M, Angeletti PU (1985a) A role for calcium in the effect of very low frequency electromagnetic field on the blastogenesis of human lymphocytes. FEBS Lett. 181:28–32.

    Google Scholar 

  • Conti P, Gigante GE, Cifone MG, Alesse E, Fieschi C, Angeletti PU (1985b) Effect of electromagnetic field on two calcium dependent biological systems, J. Bioelectr 4:227–236.

    Google Scholar 

  • Dutta SK, Subramoniam A, Ghosh B, Parshad R (1984) Microwave radiation-induced calcium efflux from brain tissue, in vitro. Bioelectromagnetics 5:71–78.

    Google Scholar 

  • Foster KR, Guy AW (1986) The microwave problem. Sci. Amer. 225(3):32–39.

    Google Scholar 

  • Foster KR, Pickard WF (1987) Microwaves: the risks of risk research. Nature London 330:531–532.

    ADS  Google Scholar 

  • Frohlich H, ed. (1988) Biological Coherence and Response to External Stimuli. Heidelberg, Springer.

    Google Scholar 

  • Grundler W, Kaiser F, Keilmann F, Walleczek J (1992) Mechanics of electromagnetic interaction with cellular systems. Naturwissenschaften 79:551–559.

    ADS  Google Scholar 

  • Harkins TT, Grissom CB (1994) Magnetic field effects on B12 ethanolamine ammonia lyase: evidence of a radical mechanism. Science 263:958–960.

    ADS  Google Scholar 

  • Hill SM, Blask DE (1988) Effects of the pineal hormone melatonin on the proliferation and morphological characteristics of human breast cancer cells (MCF-7) in culture. Cancer Res. 48:6121–6126.

    Google Scholar 

  • Kaiser F (1988) Theory of non-linear excitation. Biological Coherence and Response to External Stimuli, H. Frohlich, ed. Springer, Heidelberg, pp 25–48.

    Google Scholar 

  • Liboff AR (1992) The “cyclotron resonance” hypothesis: experimental evidence and theoretical constraints. Interaction Mechanisms of Low-Level Electromagnetic Fields in Living Systems. B. Norden and C Ramel, eds. Oxford University Press, pp 130–147.

    Google Scholar 

  • Liburdy RP, Harland JD, Heffernan C, Seeley M, Dunham EE (1994) Inhibition of melatonin’s natural oncostatic action on MCF-7 cells: 60 Hz dose threshold determination. Bioelectromagnetics Society, 16th Annual Meeting. Copenhagen. Proceedings, p 51 (abstract).

    Google Scholar 

  • Lin-Liu S, Adey WR (1982) Low frequency amplitude-modulated microwave fields change calcium efflux rates from synaptosomes. Bioelectromagnetics 3:309–322.

    Google Scholar 

  • Litovitz TA, Krause D, Penafiel M. Elson EC. Mullins JM (1993) The role of coherence time in the effect of microwaves on ODC activity. Bioelectromagnetics 14:395–403.

    Google Scholar 

  • Loewenstein WR (1981) Junctional intercellular communication: the cell-to-cell communication channel. Physiol. Rev. 61:829–913.

    Google Scholar 

  • Luben RA (1989) Effects of low-energy electromagnetic fields (pulsed and DC) on membrane signal transduction processes in biological systems. Health Physics 61:15–28.

    Google Scholar 

  • Luben RA, Cain CD (1984) Use of hormone receptor activities to investigate the membrane effects of low energy electromagnetic fields. Nonlinear Electrodynamics in Biological Systems. WR Adey and AF Lawrence, eds. New York, Plenum Press, pp 23–34.

    Google Scholar 

  • Luben RA, Cain CD, Chen M-Y, Rosen DM, Adey WR (1982) Effects of electromagnetic stimuli on bone and bone cells, in vitro: inhibition of responses to parathyroid hormone by low-energy, low-frequency fields. Proc. Natl. Acad. Sci. USA 79:4180–3.

    ADS  Google Scholar 

  • Luben RA, Hyunh D, Weinshank RL, Smith LE, (1990) Molecular cloning of candidate sequences for the mouse osteoblast parathyroid hormone receptor. Calcium Regulation and Bone Metabolism, DV Cohn, FH Glorieux, TJ Martin, eds. Amsterdam, Elsevier, pp 39–44.

    Google Scholar 

  • Luben RA, Morgan AP, Carlson A, Duong M (1994) One gauss 60 Hz magnetic fields modulate protein kinase activity by a mechanism similar to that of tumor promoting phorbol esters. Bioelectromagnetics Society 16th Annual Meeting, Copenhagen, Proceedings p 74.

    Google Scholar 

  • Lyle DB, Ayotte RD, Sheppard AR, Adey WR (1988) Suppression of T lymphocyte cytotoxicity following exposure to 60 Hz sinusoidal electric fields. Bioelectromagnetics 9:303–313.

    Google Scholar 

  • Lyle DB, Schechter P, Adey WR, Lundak RL (1983) Suppression of T lymphocyte cytotoxicity following exposure to sinusoidally amplitude-modulated fields. Bioelectromagnetics 4:281–292.

    Google Scholar 

  • Lyle DB, Wang X, Ayotte RD, Sheppard AR, Adey WR (1991) Calcium uptake by leukemic and normal T-lymphocytes exposed to low frequency magnetic fields. Bioelectromagnetics 12:145–156.

    Google Scholar 

  • McBain CJ, Mayer ML (1994) N-methyl-D-aspartic acid receptor structure and function. Phvsiol. Rev. 74:723–760.

    Google Scholar 

  • McLauchlan K (1992) Are environmental electromagnetic fields dangerous? Physics World pp 41–45, January.

    Google Scholar 

  • McLean JRN, Stuchly MA, Mitchel REJ, Wilkinson D, Yang H, Goddard M, Lccuyer DW, Schunk M, Callary E, Morrison D (1991) Cancer promotion in a mouse-skin model by a 60 Hz magnetic field: II. Tumor development and immune response. Bioelectromagnetics 12:273–288.

    Google Scholar 

  • Miura M, Takayama K, Okada J (1993) Increase in nitric oxide and cyclic-GMP of rat cerebellum by radiofrequency burst-type electromagnetic field radiation. J. Physiol. London 461:513–524.

    Google Scholar 

  • Nishizuka Y (1983) Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters. J. Biol. Chem. 258:11442–6.

    Google Scholar 

  • Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature London 308:693–698.

    ADS  Google Scholar 

  • Phillips JL (1993) Effects of EM field exposure on gene transcription. J. Cell. Biochem. 51:381–386.

    Google Scholar 

  • Phillips JL. Haggren W. Thomas WT, Ishida-Jones T, Adey WR (1992) Magnetic field-induced changes in specific gene transcription. Biochim. Biophys. Acta 1132:140–144.

    Google Scholar 

  • Pitot HC, Dragan YP (1991) Facts and theories concerning the mechanisms of carcinogenesis. FASEB J. 5:2280–8.

    Google Scholar 

  • Reiter RJ (1992) Alterations of the circadian melatonin rhythm by the electromagnetic spectrum: a study in environmental toxicology. Regulatory Toxicology and Pharmacology 15:226–244.

    Google Scholar 

  • Schumann WO (1957) Uber elektrische Eigenschwindungen des Hohlraumes Erd-Luft-Ionosphare, erregt durch Blitzentladungen. Zeits. Angew. J. Phys. 9:373–378.

    MATH  Google Scholar 

  • Semm P (1983) Neurobiological investigations on the magnetic sensitivity of the pineal gland in rodents and pigeons. Camp. Biol. Physiol. 159:619–625.

    Google Scholar 

  • Slaga TJ, Sivak A, Boutwell RK, eds. (1978) Mechanisms of Tumor Promotion and Carcinogenesis, Vol 2, New York, Raven Press.

    Google Scholar 

  • Steiner UK, Ulrich Th, (1989) Magnetic field effects in chemical kinetics and related phenomena. Chem. Rev. 89:51–147.

    Google Scholar 

  • Tabib A, Bachrach U (1994) Activation of the proto-oncogene c-myc and c-fos by c-ras: involvement of polyamines. Biochem. Biophys. Res. Communications 202:720–727.

    Google Scholar 

  • Tamarkin L, Pan forth D, Lichter A, Demoss E, Cohen M, Chabner B, Lippmann M (1982) Decreased nocturnal melatonin peak in patients with estrogen receptor positive breast cancer. Science 216:1003–1005.

    ADS  Google Scholar 

  • Terada H, Kitagawa K, Okamoto N, Watanabe S, Taki M, Saito M (1994) An analysis ofdose in tissue irradiated by near field of a circular loop antenna. IEICE Trans. Commun. E77-B: 754–761.

    Google Scholar 

  • Tjandrawinata RR, Hawel L, Byus C’V (1994) Regulation of putrescine export in lipopolysaccaride or IFN-gamma-activated murinc monocytic-leukemic RAW 264 cells. J. Immunol. 152:3039–3052.

    Google Scholar 

  • Walleczek J (1992) Electromagnetic field effects on cells of the immune system: the role of calcium signaling. EASEB J. 6:3176–3185.

    Google Scholar 

  • Walleczek J (1994) Immune cell interactions with extremely low frequency magnetic fields: experimental verification and free radical mechanisms. On the Nature of Electromagnetic Field Interactions with Biological Systems, AH Erey. ed. New York, RG Landes Company.

    Google Scholar 

  • Walleczek J, Liburdy RP (1990) Nonthermal 60 Hz sinusoidal magnetic field exposure enhances 45Ca2+ uptake in rat thymocytes: dependence on mitogen activation. FEBS Lett. 271:157–160.

    Google Scholar 

  • Walleczek J. Killoran PL, Adey WR (1994) Acute 60 Hz magnetic field effects on Ca+ influx in human Jurkat T-cells: strict dependence on cell state. Bioelectromagnetics Society, 16th Annual Meeting, Copenhagen, Proceedings p 76 (abstract).

    Google Scholar 

  • Weinstein IB (1988) The origins of human cancer: molecular mechanisms of carcinogenesis and their implications for cancer prevention and treatment. Cancer Res. 48:4135–43.

    Google Scholar 

  • Wilson BW, Anderson LE, Hilton DI, Phillips RD (1981) Chronic exposure to 60 Hz electric fields: effects on pineal functions in the rat. Bioelectromagnetics 2:371–380.

    Google Scholar 

  • Wilson BW, Anderson LE (1990) ELF electromagnetic-field effects on the pineal gland. Extremely Loal Frequency Electromagnetic Fields: the Question of Cancer, BW Wilson, RG Stevens, LE Anderson eds. Columbus, Ohio, Battelle Press, pp 159–186.

    Google Scholar 

  • Yamasaki H (1987) The role of cell-to-cell communication in tumor promotion. Nongenoto.xic Mechanisms in Carcinogenesis, TE Butterworth and TJ Slaga. eds. 25th Banbury Report. Cold Spring Harbor Laboratory.

    Google Scholar 

  • Yamasaki H (1991) Aberrant expression and function of gap junctions during carcinogenesis. Environ. Health Perspectives 93:191–197.

    Google Scholar 

  • Yellon SM (1994) Acute 60 Hz magnetic field exposure effects on the melatonin rhythm in the pineal gland and circulation of the adult Djungarian hamster. J. Pineal Res. 16:136–144.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press

About this chapter

Cite this chapter

Adey, W.R. (1996). A Growing Scientific Consensus on The Cell and Molecular Biology Mediating. In: Ueno, S. (eds) Biological Effects of Magnetic and Electromagnetic Fields. Springer, New York, NY. https://doi.org/10.1007/978-0-585-31661-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-31661-1_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-306-45292-5

  • Online ISBN: 978-0-585-31661-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics