Advertisement

Public Health on Electromagnetic Fields and Magnetic Shield of Linearmotorcar EDS Maglev

  • M. Nakagawa
  • M. Ikehata
  • T. Koana

Introduction

As a legal term, the Labor Safety and Hygiene Law (LSHL; enforced October, 1972) uses it with a denotation of laborious disaster prevention. Activities for disaster prevention of workplace are divided into safety management and hygienic management by a narrow sense. Here, we think that it is prevention of an emergent danger with a task of “safety” of a narrow sense concerning LSHL, and we are allowed to think it is prevention of a health impairment that occurs chronically with an issue of “hygiene”. We state about “safety” related to magnetic field or electromagnetic field. Safety issues about a case of MRI taking a superconducting magnet (SCM) as an example, are as follows; 1. a strong magnetic field attracts an iron-made oxygen bomb and a stretcher (simple bed with wheels that carries a patient prostrate) or causes a hammer and operative instruments to fly. injuring personnel nearby; 2. danger of an asphyxia for a personnel nearby, when a SCM is quenched under insutFicient ventilation; and 3. when dB / dt change in magnetic field of super-high-speed MRI equipinent is large, induced currents stimulate nerves, muscles and directly act on the heart.

Keywords

Magnetic Field Electromagnetic Field Static Magnetic Field Strong Magnetic Field Safety Standard 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hatch, T.F., 1972, Permissible levels of exposure to hazardous agents in industry, J. Occup. Med. 14: 134–137.Google Scholar
  2. 2.
    Bassett, C.A.L., Pawluk, R.J., Filla, A.A., 1974, Acceleration of fracture repair by electromagnetic fields: A surgically non-invasive method, Ann. NY. Acad. Sci. 238:242–262.CrossRefADSGoogle Scholar
  3. 3.
    Poison, M.J.R., Barker, A.T., Freeston, I.L., 1982, Stimulation of nerve trunks with time varying magnetic fields, Med. Biol. Eng. Comput. 20: 243–244.CrossRefGoogle Scholar
  4. 4.
    Barker, A.T., Jalinous, R., Freeston, I.L., 1985, Non invasive magnetic stimulation of human motor cortex, Lancet: 1106–1107.Google Scholar
  5. 5.
    Murayama, M., 1965, Orientation of sickled erythrocytes in a magnetic field, Nature 206: 420–422.CrossRefADSGoogle Scholar
  6. 6.
    Maret, G., Schickfus, M.V., Mayer, A., Dransfeld, K., 1975, Orientation of nucleic acids in high magnetic fields, Phys. Rev. Lett. 35: 397–400.CrossRefADSGoogle Scholar
  7. 7.
    Yamagishi, A., Takeuchi, T., Higashi, T., Date, M., 1990, Magnetic fields effect on the polymerization of fibrin libers, Physica B 164: 222–228.CrossRefADSGoogle Scholar
  8. 8.
    Shimizu, H., Suzuki, Y., Shimizu, K., Fukumoto, M., Okonogi, H., Nakagawa, M., 1993, Biological effects of high magnetic field (2): change in time-course of mice serum LDH, Jpn. J. Ind. Health 35: S248.Google Scholar
  9. 9.
    Okuno, K., Tuchiya, K., Ano, T, Shoda, M.,1993, Effect of super high magnetic field on the growth of Eschelichia coli under various medium compositions and temperatures, J. Ferm. Bioeng. 75: 103–106.CrossRefGoogle Scholar
  10. 10.
    Koana, K., Ikehata, M., Nakagawa, M., (submitted), Estimation of genetic effects of static magnetic field by somatic cell test using mutagen sensitive mutants of Drosophila melanogaster, Bioelectrochem. Bioenerg.Google Scholar
  11. 11.
    Schenck, J.F., 1992, Health and physiological effects of human exposure to whole-dody four-tesla magnetic fields during MRI, Ann. NY. Acad. Sci. 649: 281101.CrossRefGoogle Scholar
  12. 12.
    Schwartz, J.-L., 1978, Influence of a constant magnetic field on nervous tissue: I. Nerve conduction velocity studies, IEEE Trans. Biomed. Eng. BME-25: 467–473.CrossRefGoogle Scholar
  13. 13.
    Nath, R., Schulz, R.J., and Bongiorni, P., 1980, Response of mammalian cells irradiated with 30 MV X-rays in the presence of a uniform 20-kG magnetic field, Int. J. Radiat. Biol. 38: 281092CrossRefGoogle Scholar
  14. 14.
    Mulay, I.L., and Mulay, L.N., 1964, Effect on Drosophila melanogaster and S-37 tumor cells, postulates for magnetic field interactions, in Biological Effects of Magnetic Fields (ed Barnothy, M.F.) 146–1169 (Plenum Press, New York & London).Google Scholar
  15. 15.
    Barnothy, M.F., and Siimegi, I., 1969, Effects of the magnetic field on internal organs and the endocrine system of mice, in Biological Effects of Magnetic Fields vol.2 (ed Barnothy, M.F.) 103–126 (Plenum Press, New York & London).Google Scholar
  16. 16.
    Kuz’mina, Z.F., 1984, Corticosterone content in mouse adrenals under the prolonged intensive influence of a constant magnetic field, Kosm. Biol. Aviakosm. Med. 18:87–89.Google Scholar
  17. 17.
    Pautrizel, R., Prior, M., Dalloeio, M., and Crokett, R., 1972, Action d’ondes électromagnétiques et de champs magnétiques sur les modifications lipidiques chez le Lapin par l’administration d’uni régime alimentaire hypercholesterolé, C. R. Acad. Sci. Paris D. 274: 488–491.Google Scholar
  18. 18.
    Barnothy, M.F., 1964, A possible effect of the magnetic field upon the genetic code, in Biological Effects of Magnetic Fields (ed Barnothy, M.F.) 80–89 (Plenum Press, New York & London).Google Scholar
  19. 19.
    Maret, G., and Drasfeld, K., 1977, Macromolecules and membrane in high magnetic fields, Physica 86–88b: 1077–1083.Google Scholar
  20. 20.
    Tanimoto, Y., Takashima, M., and Itoh, M., 1984, Magnetic field effect on the hydrogen abstraction reaction of xanthone in sodium dodecyl sulfate micellar solution, J. Phys. Chem. 88: 6053–6056.CrossRefGoogle Scholar
  21. 21.
    Selye, H., 1946, The general adaptation syndrome and the diseases of adaptation, J. Clin Endocrin. 6: 117–230.CrossRefGoogle Scholar
  22. 22.
    Barnothy, J.M., and Barnothy, M.F., 1963, Secon-day minimum in the growth curve of mice subjected to agnetic fields, Nature 200:189.CrossRefADSGoogle Scholar
  23. 23.
    Laforge, H., Moisan, M., Champagne, F., and Seguin, M., 1978, General adaptation syndrome and magnetostatic field: effects on sleep and delayed reinforcement of low rate, J. Psychol. 98:49–55.CrossRefGoogle Scholar
  24. 24.
    Nakagawa, M., and Matsuda, Y., 1988, A strong static-magnetic field alters operant responding by rats, Bioelectromagnetics 9:25–37.CrossRefGoogle Scholar
  25. 25.
    Nakagawa, M., and Muroya, H., 1981, Static-magnetic field affected on emotional behavior and sense of equilibrium of mice, in Abstracts of 54th Meeting of Japan Association of Industrial Health. 380–381.Google Scholar
  26. 26.
    Nakagawa, M., Muroya, H., Matsuda, Y., and Tsukamoto, H., 1980, Effects of static magnetic field on some lipid and protein metabolic processes of rabbit, J. Transprt. Med. 34:376–384.Google Scholar
  27. 27.
    Nakagawa, M., 1980, Food consumption of mice in the static magnetic fields of moderate strength, Jpn. J. Ind. Health 22:280–281.Google Scholar
  28. 28.
    Nakagawa, M., and Hosoya, M., 1975, Effect of magnetic fields on the amounts of electrolytes in urine of the mice, Med. Biol. (Tokyo) 90: 307–311.Google Scholar
  29. 29.
    Barnothy, J.M., 1963, Growth-rate of mice in static magnetic fields, Nature 200:86–87.CrossRefADSGoogle Scholar
  30. 30.
    Beischer, D.E., 1964, Survival of animals in magnetic field of 140.000 Oe, in Biological Effects of Magnetic Fields (ed Barnothy, M.F.) 201–208 (Plenum Press, New York).Google Scholar
  31. 31.
    Nakagawa, M., 1990, Mammals’ response and adaptation to static magnetic fields as a nonspecific Stressor, Phvsica B 164: 213–216.CrossRefADSGoogle Scholar
  32. 32.
    Goodman, R., Bassett, C.A.L., Henderson, A. S., 1983, Pulsing electromagnetic fields induced cellular transcription, Science 220: 1283–1285.CrossRefADSGoogle Scholar
  33. 33.
    Ueno, S., Lovsund, P., Obery, P.A., 1986, Effects of alternating magnetic fields and low-frequency electric currents on human skin blood flow, Med. Biol. Eng. Comput. 24: 57–61.CrossRefGoogle Scholar
  34. 34.
    International Electrotechnical Commission. 1993, Medical Electrical Equipment Part 2: Particular Requirements for the Safety of Magnetic Resonance Equipment for Medical Diagnosis (Draft. 6D). IEC 601-2-XY.Google Scholar
  35. 35.
    Nakagawa, M., Takebayashi, H., 1990, Diaphragm pacing by pulsated magnetic trains, Jpn. J. Med. Electron. Biol. Eng. 28: 234–239.Google Scholar
  36. 36.
    Mouchawar, G.A., Bourland, J.D., Nyenhuis, J.A., et al., 1992, Closed-chest cardiac stimulation with a pulsed magnetic field, Med. Biol. Eng. Comput. 30: 162–168.CrossRefGoogle Scholar
  37. 37.
    Dodinot, B., Godenir, J.-P., Costa, A.B., 1993, Electronic article suveillance: A possible danger for pacemaker patients, Pace 16: 46–53.Google Scholar
  38. 39.
    Murphy, J.C., Kaden, D.A., Warren, J., Sivak, A., 1993, Power frequency electric and magnetic fields: A review of genetic toxicology, Mut. Res. 296: 221–240.Google Scholar
  39. 40.
    Study Committee for Effects of Electromagnetic Fields in Department of Resource and Energy. 1993, Review Report on the Effects of Electromagnetic Fields.Google Scholar
  40. 41.
    Kolmodin-Hedman, B., Mild, K.H., Hagberg, M., et al., 1988, Health problems among operators of plastic welding machines and exposure to radiofrequency electromagnetic fields, Int. Arch. Occup Environ. Health 60: 243–247.CrossRefGoogle Scholar
  41. 42.
    Stuchly, M.A., Repacholi, M.H., Lecuyer, D.W., Mann, R.D., 1982, Exposure to the operator and patient during short wave diathermy treatments, Health Phys. 42: 341–366.CrossRefGoogle Scholar
  42. 43.
    Maron, D.M., Ames, B.N., 1983, Revised methods for the Salmonella mutagenicity test, Mut. Res 113: 173–215.Google Scholar
  43. 44.
    Juutilainen, J., Liimatainen, A., 1986, Mutation frequency in Salmonella exposed to weak 100-Hz magnetic fields, Heredit. 104: 145–147.CrossRefGoogle Scholar
  44. 45.
    Moore, R.I., 1979, B.N., 1983, Biological effects of magnetic fields: studies with microorganism, Can. Microbiol. 25: 1145–1151.CrossRefGoogle Scholar
  45. 46.
    Shimizu, H., Suzuki, Y., Masizu, N., Hayashi, K., Hashida, C., Ando, H., 1989, Effects of static magnetic field on mutagenicity of Salmonella 1., in Abstracts of 62th Meeting of Japan Association of Industrial Health. 243.Google Scholar
  46. 47.
    Nossol, B., Buse, G., Silny, J., 1993, Influence of weak static and 50-Hz magnetic fields on the redox activity of cytochrome-C oxidase, Bioelectromagnetics 14: 361–372.CrossRefGoogle Scholar
  47. 48.
    Tanimoto, Y., Jinda, C., Fujiwara, Y., Itoh, M., Hirai, K., Tomioka, H., Nakagaki, R., Nagakura, S., 1989, Lasar flash photolysis studies of the magnetic field effects on the hydrogen abstraction reaction of 2-naphthylphenylcarbene in micellar solution, J. Photochem. Photobiol., A. 47: 269–276.CrossRefGoogle Scholar
  48. 49.
    Aoki, H., Yamazaki, H., Yoshino, T., Akagi, T., 1990, Effects of static magnetic fields on membrane permeability of cultured cell line, Res. Comm. Chem. Pathol. Pharmacol. 69: 103–106.Google Scholar
  49. 50.
    Liburdy, R. P., Tenforde, T.S., Magin, R. L., 1986, Magnetic field-induced drug permeability in liposome vesicles, Radiation Res. 108: 102–111.CrossRefGoogle Scholar
  50. 51.
    Howard-Flanders, P., Boyce, R.P., 1966, DNA repair and genetic recombination: studies on mutants of Escherichia coli defective in these processes, Radiation Res. Suppl. 6: 156–184.Google Scholar
  51. 52.
    Powell, J. R., Danby, G. R., 1966, High-speed transport by magnetically suspended trains. ASME Publication (preprint) 66-WA, RR-5:1-11.Google Scholar

Copyright information

© Plenum Press 1996

Authors and Affiliations

  • M. Nakagawa
    • 1
  • M. Ikehata
    • 1
  • T. Koana
    • 1
  1. 1.Railway Technical Research InstituteKokubunji TokyoJapan

Personalised recommendations