Advertisement

Effects of Static Magnetic Fields on Erythrocyte Rheology

  • Takeshi Shiga
  • Masaharu Okazaki
  • Nobuji Maeda
  • Akitoshi Seiyama

Abstract

The acute influence of an external static magnetic field on the erythrocyte rheology is briefly reviewed. 1) The magnetohydrodynamic action may be effective to alter the fast blood flow in aorta at a field over 5 T, but no experimental study has been made. 2) The diamagnetic interaction, between the normal blood component and uniform magnetic field, has been found: i.e., the biconcave disk-shaped erythrocytes and platelets orient their flat plane parallel to the field direction above several T. 3) The paramagnetic interaction, effective only on a slow flow of deoxygenated erythrocytes, affects the distribution of erythrocytes within a vessel by the paramagnetic attractive force, which is proportional to the product of [flux density] × [spatial gradient], the magnetic susceptibility of erythrocytes. and the reciprocal of the flow velocity. Our model study showed that the paramagnetic interaction may be effective under an anemic situation and under an inhomogeneous magnetic field over above 100 T2/m for the product of [flux density] × [spatial gradient].

Keywords

Magnetic Field Static Magnetic Field Strong Magnetic Field Uniform Magnetic Field Inhomogeneous Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Levine, S., 1955, Magnetic techniques for in vitro isolation of leucocytes, Science, 123: 185–186.CrossRefADSGoogle Scholar
  2. 2.
    Murayama, M., 1965, Orientation of sickled erythrocytes in a magnetic field, Nature, 206: 420–422.CrossRefADSGoogle Scholar
  3. 3.
    Brody, A.S., Sorette, M.P., Gooding, C.A., Listerud, J., Clark, M.R., Mentzer, W.C., Brasch, R.C. and James, T.L., 1985, Induced alignment of flowing sickle erythrocytes in a magnetic field: a preliminary report, Invest.Radiol., 20: 560–566.CrossRefGoogle Scholar
  4. 4.
    Chen, I.I.H and Saha, S., 1984, Analysis of an intensive magnetic fiels on blood flow, J.Bioelectricity, 3:293–298.Google Scholar
  5. 5.
    Yainagishi, A., Takeuchi, T., Higashi, T. and Date, M., 1992, Diamagnetic orientation of blood cells in high magnetic field, Physica B, 177:, 523–526.CrossRefADSGoogle Scholar
  6. 6.
    Heidelberger, H., Meyer, M.M. and Damarest, C.R., 1946, Studies in human malaria. I. The preparation of vaccines and suspensions containing plasmodia, J.Immunol., 52: 325–330.Google Scholar
  7. 7.
    Melville, D., Paul, F. and Roath, S., 1975, Direct magnetic separation of red cells from whole blood, Nature, 255: 706.CrossRefADSGoogle Scholar
  8. 8.
    Okazaki, M., Maeda, N. and Shiga, T., 1986, Drift of an erythrocyte flow line due to the magnetic field, Experientia. 42: 842–843.CrossRefGoogle Scholar
  9. 9.
    Okazaki, M., Maeda, N. and Shiga, T., 1987, Effect of an inhomogeneous magnetic field on flowing erythrocytes, Eur. Biophys. J., 14:139–145.CrossRefGoogle Scholar
  10. 10.
    Okazaki, M., Kon, K. Maeda, N. and Shiga, T., 1988, Distribution of erythrocyte in a model vessel exposed to inhomogeneous magnetic field, Physiol.Chem.Phys.Med.NMR, 20: 3–14.Google Scholar
  11. 11.
    Okazaki, M., Seiyama, A., Maeda, N. and Shiga, T., 1991, Boycott effect with vertical cylinder for paramagnetic red blood cells under the inhomogeneous agnetic field, J.Colloid Interface Sci., 146:590–593.CrossRefGoogle Scholar
  12. 12.
    Chen, I.I.H. and Saha, S., 1985, Analysis of an intensive magnetic field on blood flow: part 2, J.Bioelectricity, 4: 55–61.Google Scholar
  13. 13.
    Togawa, T., Okai, O. and Oshima, M., 1967, Observation of blood flow E.M.F. in externally applied strong magnetic field by surface electrode, Med. Biol. Engng., 5: 169–170.CrossRefGoogle Scholar
  14. 14.
    Okai, O., Togawa, T. and Oshima, M., 1971, Magnetorheography: nonbleeding measurement of blood flow, J.Appl. Physiol., 30: 564–566.Google Scholar
  15. 15.
    Gaffey, C.T., Tenforde, T.S. and Dean, E.E., 1980, Alterations in the electrocardiograms of baboons exposed to DC magnetic felds, Bioelectromagnetics, 1: 209–211.Google Scholar
  16. 16.
    Maret, G., v.Schickfus, M., Mayer, A. and Dransfeid, K., 1975, Orientation of nucleic acids in high magnetic fields, Phys. Rev. Lett., 35: 387–400.CrossRefADSGoogle Scholar
  17. 17.
    Torbet, J., Freyssinet, J.-M., and Hudry-Clergeon, G., 1981, Oriented fibrin gels formed by polymerization in strong magneic fields, Nature, 289: 91–93.CrossRefADSGoogle Scholar
  18. 18.
    Yamagishi, A., Takeuchi, T., Date, M. and Higashi, T., 1989, Polymerization of biolgical molecules under high magnetic fields, Physica B. 155:433–436.CrossRefADSGoogle Scholar
  19. 19.
    Yamagishi, A., Takeuchi, T., Higashi, T. and Date, M., 1990, Magnetic field effect on the polymerization of fibrin fibers, Physica B.:164. 222–228.CrossRefADSGoogle Scholar
  20. 20.
    Higashi, T., Yamagishi, A., Takeuchi, T., Kawaguchi, N., Sagawa, S., Onishi, S., and Date, M., 1993, Orientation of erythrocytes in a strong magnetic field, Blood. 82:1328–1334.Google Scholar
  21. 21.
    Rosenblatt, C., Yager, P. and Schoen, P.E., 1987, Orientation of lipid tubules by a magnetic field, Biophys.J., 52: 295–301.CrossRefGoogle Scholar
  22. 22.
    Sakurai, I., Kawamura, Y., Ikegami, A. and Iwayanagi, S., 1980, Magneto-orientation of lecithin crystals, Proc.Natl.Acad.Sci., 77:7232–7236.CrossRefADSGoogle Scholar
  23. 23.
    Pauling, L., 1979, Diamagnetic anisotropy of the peptide group, Proc.Natl.Acad.Sci., 76:2293–2294.CrossRefADSGoogle Scholar
  24. 24.
    Higashi, T., Sagawa, S., Kawaguchi, N. and Yamagishi, A., 1993, Effects of a strong magnetic field on blood plateets, Platelets. 4: 341–342.CrossRefGoogle Scholar
  25. 25.
    Higashi, T., Yamagishi, A., Takeuchi, T. and Date, M., 1995, Effects of a strong magnetic fields on erythrocyte rheology, Bioelectrochem. Bioenerg., in press.Google Scholar
  26. 26.
    Klueznik, R.P., Carrier, D.A., Pyka, R., and Haid, R.W., 1993, Placement of a ferromagnetic intracerebral aneurysm clip in a magnetic field with a fatal outcome, Radiology, 187: 855–856.Google Scholar
  27. 27.
    Dunlop, E.H., Feiler, W.A. and Mattione, M.J., 1984, Magnetic separation in biotechnology, Biotech. Advs., 2:63–74.CrossRefGoogle Scholar
  28. 28.
    Rous, P. and Beard, J.W., 1933, Selection with the magnet and cultivation of “reticulo-endothelial” cells, Science, 77: 92.CrossRefADSGoogle Scholar
  29. 29.
    Shiga, T., Okazaki, M., Seiyama, A. and Maeda, N., 1993, Paramagnetic attraction of erythrocyte flow due to an inhomogeneous magnetic field, Bioelectrochem. Bioenerg.. 30: 181–188.CrossRefGoogle Scholar
  30. 30.
    Boycott, A.E., 1920, Sedimentation of blood corpuscles, Nature. 104: 532.ADSCrossRefGoogle Scholar
  31. 31.
    Dobashi, T., Goto, H., Sakanishi, A. and Oka, S., 1987, Erythrocyte sedimantation rate. II. Effects of tilted angle in saline solution, Biorhcology, 25: 157–164.Google Scholar

Copyright information

© Plenum Press 1996

Authors and Affiliations

  • Takeshi Shiga
    • 1
  • Masaharu Okazaki
    • 2
  • Nobuji Maeda
    • 3
  • Akitoshi Seiyama
    • 1
  1. 1.Dept. Physiol., Med. Sch.Osaka Univ.OsakaJapan
  2. 2.Dept. Chem.Natl. Ind. Res. Inst.NagoyaJapan
  3. 3.Dept. Physiol.Sch. Med., Ehime Univ.EhimeJapan

Personalised recommendations