Genetic Analysis of Iron Biomineralization

  • Tadashi Matsunaga
  • Chikashi Nakamura
  • Yuko Hotta


Establishment of gene transfer has enabled study of analysis of genes in magnetic bacteria and protein production on BMPs using magnetic bacteria as the host cell. Gene transfer into magnetic bacteria, and transposon mutagenesis. are very useful for future analysis of the mechanism of magnetic particle production. The magA gene was the first discoverd gene involved in magnetite biomineralization in magnetic bacteria, and the product of magA seems to be a kind of cation channel protein localized on the cell and magnetic particle membranes. Gene analysis of Magnetospirillum sp. AMB-1 will determine the mechanism.

Moreover, protein expression on the surfaces of magnetic particles using the fusion gene method was studied. Magnetic particles which have fusion proteins on the surfaces can be collected very easily, and production of purified protein will be applied in future.


Magnetic Particle Magnetotactic Bacterium magA Gene Promoter Probe Vector MagA Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blakemore, R.P., D. Maratea, and R.S. Wolfe, 1979, Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium, J. Bacteriol. 140:720–729.Google Scholar
  2. 2.
    Burgess, J.G., R. Kawaguchi, T. Sakaguchi, R.H. Thornhill, and T. Matsunaga, 1993, Evolutionary relationships among Magnetospirillum strains inferred from phylogenetic analysis of I6S rDNA sequences, J. Bactcriol. 175:6689–6694.Google Scholar
  3. 3.
    Corey, D.R., A.K. Shiau, Q. Yang, B.A. Janowski, and C.S. Craik, 1993, Trypsin display on the surface of bacteriophage, Gene 128:129–134.CrossRefGoogle Scholar
  4. 4.
    Djojonegoro, B.M., M.J. Benedik, and R.C. Willson, 1994, Bacteriophage surface display of an immunoglobulin-binding domain of Staphylococcus aureus protein A, Bio Technology 12:169–172.Google Scholar
  5. 5.
    Eden, P.A. and R.P. Blakemore, 1991, Electroporation and conjugal plasmid transfer to members of the genus Aquaspirillum. Arch. Microbiol. 155:449–452.CrossRefGoogle Scholar
  6. 6.
    Francisco, J.A., R. Campbell, B.L. Iverson, and G. Georgiou, 1993, Production and fluorescence-activated cell sorting of Escherichia coli expressing a functional antibody fragment on the external surface, Proc. Natl. Acad. Sci. USA 90:10444–10448.CrossRefADSGoogle Scholar
  7. 7.
    Georgiou, G., H.L. Poetschke, C. Stathopoulos, and J.A. Francisco, 1993, Partial application of engineering Gram-negative bacterial cell surfaces, Tibtech 11:6–10.Google Scholar
  8. 8.
    Itaya, M. 1990, Isolation and characterization of a second RNase H (RNase HII of Escherichia coli K-12 encoded by the rnhB gene, Proc. Natl. Acad. Sci. USA 87:8587–8591.CrossRefADSGoogle Scholar
  9. 9.
    Kawaguchi, R., J.G. Burgess, and T. Matsunaga, 1992, Phylogeny and 16S rRNA sequence of Magnetospirillum sp. AMB-1, an aerobic magnetic bacterium, Nucl. Ac. Res. 20:1140.CrossRefGoogle Scholar
  10. 10.
    Keen, N.T., S. Tamaki, D. Kobayashi, and D. Trollinger, 1988, Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria, Gene 70:191–197.CrossRefGoogle Scholar
  11. 11.
    Klauser, T., J. Pohlner, and T.F. Meyer, 1990, Extracellular transport of cholera toxin B subunit using Neisseria IgA protease b-domain: conformation-dependent outer membrane translocation, The EMBO Journal 9:1991–1999.Google Scholar
  12. 12.
    Lowman, H.B., S.H. Bass, N. Simpson, and J.A. Wells, 1991, Selecting high-affinity binding proteins by monovalent phage display, Biochemistry 30:10832–10838.CrossRefGoogle Scholar
  13. 13.
    Matsunaga, T., C. Nakamura, J.G. Burgess, and K. Sode, 1992, Gene transfer in magnetic bacteria; transposon mutagenesis and cloning of genomic DNA fragments required for magnetosome synthesis, J. Bacteriol. 174:2748–2753.Google Scholar
  14. 14.
    Matsunaga, T., T. Sakaguchi, and F. Tadokoro, 1991, Magnetite formation by a magnetic bacterium capable of growing aerobically, Appl. Microb. Biotechnol. 35:651–655.CrossRefGoogle Scholar
  15. 15.
    Matsunaga, T., F. Tadokoro, and N. Nakamura, 1990, Mass culture of magnetic bacteria and their application to flow type immunoassays, IEEE Trans. Magnet. 26:1557–1559.CrossRefADSGoogle Scholar
  16. 16.
    Munro, A.W., G.Y. Ritchie, A.J. Lamb, R.M. Douglas, and I.R. Booth, 1991, The cloning and DNA sequence of the gene for the glulathione-regulated potassium-efflux system KefC of Escherichia coli. Molec. Microbiol. 5:607–616.CrossRefGoogle Scholar
  17. 17.
    Nakamura, N., J.G. Burgess, K. Yagiuda, S. Kudo, T. Sakaguchi, and T. Matsunaga, 1993, Detection and removal Escherichia coli using fluoroscein isothiocyanate conjugated monoclonal antibody immobilized on bacterial magnetic particles, Anal. Chem. 65:2036–2039.CrossRefGoogle Scholar
  18. 18.
    Reizer, J., A. Reizer, and M.H. Saier Jr., 1992, The putative Na+ H+ antiporler (NapA) of Enterococcus hirae is homologous to the putative K+/H+ antiporter (KefC) of Escherichia coli. FEMS Microbiology Letters 94:161–164.CrossRefGoogle Scholar
  19. 19.
    Rosenberg, M. and D. Court, 1979, Regulatory sequences involved in the promotion and termination of RNA transcription, Annu. Rev. Genet. 13:319–353.CrossRefGoogle Scholar
  20. 20.
    Schleifer, K.H., D. Schuler, S. Spring, M. Weizenegger, R. Amann, W. Ludwig, and M. Kohler, 1991, The genus Magnetospirillum, gen. nov. Description of Magnetospirillum gryphiswaldense and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum. comb. nov, Syst. Appl. Microbiol. 14:379–385.Google Scholar
  21. 21.
    Shine, J. and L. Dalgarno, 1974, Determinant of cistron specificity in bacterial ribosomes, Nature 254:34–38.CrossRefADSGoogle Scholar
  22. 22.
    Simon, R., M. O. Connell, M. Labes, and A. Puhler, 1986, Plasmid vectors for the genetic analysis of Rhizobia and other Gram-negative bacteria, Meth. Enzymol. 118 640–659.CrossRefGoogle Scholar
  23. 23.
    Simon, R., U. Priefer, and A. Puhler, 1983, A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria, Bio/Technology 1:784–791.CrossRefGoogle Scholar
  24. 24.
    Sode, K., N. Hatano. and M. Tatara. submitted. Cloning of a marine cyanobacterial promoter for foreign gene expression using a promoter probe vector, Appl. Biochem. Biotechnol.Google Scholar
  25. 25.
    Tomasiewicz, H.G. and C.S. Mchenry, 1987, Sequence analysis of the Escherichia coli dnaE gene, Journal of Biotechnology 169:5735–5744.Google Scholar
  26. 26.
    Waser, M., D. Hess-Bienz, K. Davies, and M. Solioz, 1992, Cloning and disruption of putative NaH-antiporter gene of Enterococus hirae, The Journal of Biological Chemistry 267:5396–5400.Google Scholar

Copyright information

© Plenum Press 1996

Authors and Affiliations

  • Tadashi Matsunaga
    • 1
  • Chikashi Nakamura
    • 1
  • Yuko Hotta
    • 1
  1. 1.Department of BiochemistryTokyo University of Agriculture and TechnologyTokyoJapan

Personalised recommendations