Magnetic Nerve Stimulation and Effects of Magnetic Fields on Biological, Physical and Chemical Processes

  • Shoogo Ueno
  • Masakazu Iwasaka


Biological effects of magnetic fields are classified into three categories; the effects of (1) time-varying magnetic fields, (2) DC or static magnetic fields, and (3) multiplication of both static fields and other energy such as light and radiation. For each category, a different strategic approach is required to shed light on the biomagnetic effects.


Magnetic Field Magnetic Stimulation Dissolve Oxygen Concentration Static Magnetic Field Eddy Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. H. Aceto, Jr., C. A. Tobias, and I. L. Silver, 1970, Some studies on the biological effects of magnetic fields. IEEE Tnws. on Magn., MAG-6,2: 368–373.CrossRefADSGoogle Scholar
  2. W. R. Adey, 1981, Tissue interactions with noninonizing electromagnetic fields, Physiol. Rev., 61:435–514.Google Scholar
  3. W. R. Adey, 1993, Electromagnetic technology and the future of bioelectromagnetics. in Electricity and Magnetism in Biology and Medicine, edited by M. Blank:101–108.Google Scholar
  4. V. F. Amassian, R. Q. Cracco, and P. J. Maccabee, 1989, Focal stimulation of human cerebral cortex with the magnetic coil: A comparison with electrical stimulation, Electoencephalography and clinical Neurophysiology, 74:401–416.CrossRefGoogle Scholar
  5. V. E. Amassian, R. Q. Cracco, P. J. Maccabee, and J. B. Cracco, 1992, Cerebello-frontal cortical projections in humans studied with the magnetic coil, Electoencephalography and clinical Neurrophysiology, 85:265–272.CrossRefGoogle Scholar
  6. A. T. Barker, R. Jalinous, and I. L. Freeston, 1985, Non-invasive magnetic stimulation of human motor cortex. The Lancet, I.: 1106–1107.CrossRefGoogle Scholar
  7. A.T. Barker, I.L. Freeston, R. Jalinous, and J.A. Jarratt, 1986, Clinical evaluation of conduction time measurements in central motor pathways using magnetic stimulation of the human brain. The Lancet, i.: 1325–1326.CrossRefGoogle Scholar
  8. A.T. Barker, I.L. Freeston, R. Jalinous, and J.A. Jarratt, 1987, Magnetic stimulation of the human brain and peripheral nervous system: An introduction and results of an initial clinical evaluation, Neurosurgery, 20(No. 1): 100–109.CrossRefGoogle Scholar
  9. P.J. Basser, R. Jalinous, and B. J. Roth, 1991, Stimulation of myelinated nerve axon by electromagnetic induction, Med. & Biol. Eng. & Computing. 29: 261–268.CrossRefGoogle Scholar
  10. F. S. Barnes, 1988, Mechanism of interaction of magnetic fields with biological systems. IEEE Trans, on Magnetics, 24,4:2101–2104.CrossRefADSGoogle Scholar
  11. F. S. Barnes, 1990, The effects of the time varying magnetic fields on biological materials, IEEE Trans, on Magnetics, 25,5:2092–2097.CrossRefADSGoogle Scholar
  12. E. Beaugnon and R. Tournicr, 1991, Levitation of organic materials, Nature, 349,7,470.CrossRefADSGoogle Scholar
  13. R.G. Bickford and B.D. Fremming, 1965, Neuronal stimulation by pulsed magnetic fields in animals and man, Dig. 6th Int. Conf. Med. Electr. Biol. Eng. 112.Google Scholar
  14. C. F. Blackman, S. G. Benane, J. R. Rabinowitz, D. E. House, and W. T. Joines, 1985, A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro., Bioelectromagnelics, 6:327–337.CrossRefGoogle Scholar
  15. J. D. Bourland, G. A. Mouchawar, J. A. Nyenhuis, L. A. Geddes, K. S. Foster, and G. P. Graber, 1990, Transchest magnetic (eddy-current) stimulation of the dog heart, Med. & Biol. Eng. & Computing, 28: 196–198.CrossRefGoogle Scholar
  16. J. D Bourland, G. A. Mouchawar, J. A. Nyenhuis, L. A. Geddes, K. S. Foster, and G. P. Graber, 1992, Closed-chest cardiac stimulation with a pulsed magnetic field, Med. & Biol. Eng. & Computing, 30: 162–168.CrossRefGoogle Scholar
  17. M. S. Cohen, R. M. Weisskoff, R. R. Rzedzian, and H. L. Kantor, 1990, Sensory stimulation by time-varying magnetic fields, Magn. Reson. Med., 14,3: 409–414.CrossRefGoogle Scholar
  18. A. D’Arsonval, 1896, Dispotifs pour la mesure des courants alternatifs des toutes frequences, C. R. Acad. Sci., 48: 450–451.Google Scholar
  19. B. L. Day, P.D. Thompson, J.P. Dick, K. Nakashima, and C.D. Marsdes, 1987, Different sites of action of electrical and magnetic stimulation of the human brain, Neuroscience Letters, 75: 101–106.CrossRefGoogle Scholar
  20. K. P. Esselle and M. A. Stuchly, 1992, Neural stimulation with magnetic fields: analysis of induced electric fields, IEEE Trans. Biomed. Engineering, BME-39: 693–700.CrossRefGoogle Scholar
  21. F.J. Friedlaender, M. Takayasu, J. B. Rettig, and C.P. Kentzer, 1978, Particle flow and collection process in single wire HGMS studies, IEEE Trans. Magn., MAG-14:1158–1164.CrossRefADSGoogle Scholar
  22. J. Frost, M. J. Lea, and P. Fozooni, 1991, Distortion of liquid helium surface in inhomogeneous magnetic field, Cryogenics, 31, 890–891.CrossRefGoogle Scholar
  23. O. P. Gandhi and J. Y. Chen, 1992, A frequency-dependent finite-difference time-domain formulation for induced current calculations in human beings, Bioelectromagnetics, 13:543–555.CrossRefGoogle Scholar
  24. E. Gorczynska, 1986, The effect of static magnetic field on fibrinogen degradation products level in rabbits with thrombosis, J. Hygiene, Epidemiology, Microbiology and Immunology, 30,3: 269–273.Google Scholar
  25. W. Haberditzl, 1967, Enzyme activity in high magnetic fields, Nature, 213:72–73.CrossRefADSGoogle Scholar
  26. T. T. Harkins and C. B. Grisso, 1994, Magnetic field effects on B12 ethanolamine ammonia lyase: evidence for a radical mechanism, Science, 263: 958–960.CrossRefADSGoogle Scholar
  27. N. Hata, 1976, The effect of external magnetic field on the photochemical reaction of isoquinoline N-oxide, Chem. Lett.:547–550.Google Scholar
  28. C.W. Hess, K.R. Mills, and N.M.F. Murray, 1987a, Measurement of central motor conduction in multiple sclerosis by magnetic brain stimulation, The Lancet,: 397–419.Google Scholar
  29. C.W. Hess, K.R. Mills, and N.M.F. Murray, 1987b, Responses in small hand muscles from magnetic stimulation of the human brain, J. Physiol., 388: 397–419.Google Scholar
  30. A. Hosono, T. Goto, F. Okumura, T. Takenaka, M. Yamaguchi, T. Andoh, T. Kawakami, K. Takayama, S. Ueno, and I. Yamamoto, 1992, Effective combination of stimulating coil for magnetic stimulation, Jpn. J. Appl. Phys., 31,11: 3759–3762.CrossRefADSGoogle Scholar
  31. D.D. Irwin, S. Rush, R. Evering, E. Lepeschkin, D.B. Montgomery, and R.J. Weggcl, 1970, Stimulation of cardiac muscle by a time-varying magnetic field, IEEE Trans. Magnetics MAG-6: 321–322.CrossRefADSGoogle Scholar
  32. M. Iwasaka, S. Ueno and H. Tsuda, 1994a, Effects of magnetic fields on fibrinolysis, J. Appl. Phys., 75,10: 7162–7164.CrossRefADSGoogle Scholar
  33. M. Iwasaka, S. Ueno, and H. Tsuda, 1994b, Diamagnetic properties of fibrin and fibrinogen, IEEE Trans, on Magn., 30,6: 4695–4697.CrossRefADSGoogle Scholar
  34. M. Iwasaka, S. Ueno, and H. Tsuda, 1994c, Enzymatic activity of plasmin in strong magnetic fields, IEEE Trans, on Magn., 30,6:4701–4703.CrossRefADSGoogle Scholar
  35. M. Kato, K. Honma, T. Shigemitsu, and Y. Shiga, 1993, Effects of exposure to a circularly polarized 50-Hz magnetic field on plasma and pineal melatonin levels in rats, Bioelectromagnetics, 14,2: 97–106.CrossRefGoogle Scholar
  36. J. L. Kirshvink, A. Kobayashi-Kirshivink, and B. J. Woodford, 1992, Magnetite biomineralization in the human brain, Proc. Natl. Acad. Sci. USA. (Biophysical. 89,86: 7683–7687.CrossRefADSGoogle Scholar
  37. T. Koana and M. Nakagawa, 1994, Exposure to static magnetic field increases the frequency of somatic chromosomal recombination, BEMS Abstract Book of 16th Annual Meeting, P-96.Google Scholar
  38. W. C. Levengood, 1966, Cytogenetic variations induced with a magnetic probe, Nature, 209, 1009–1013.CrossRefADSGoogle Scholar
  39. A. R. Liboff and B. R. McLeod, 1988, Kinetics of channelized membrane ions in magnetic fields, Bioelectromagnetics, 9: 39–51.CrossRefGoogle Scholar
  40. R. P. Liburdy, 1992, Calcium signaling in lymphoctyes and ELF fields: Evidence for an electric fields metric and a site of interaction involving the calcium ion channel, FEBS Letters, 301: 53–59.CrossRefGoogle Scholar
  41. P. Lövsund, P. Å. Öberg, S. E. G. Nilsson, and T. Reuter, 1980, Magnetophosphenes: A quantitative analysis of thresholds, Medical and Biological Engineering and Computing, 28: 326–334CrossRefGoogle Scholar
  42. P. J. Maccabee, L. Eberle, V. F. Amassian, R. Q. Cracco, A. Rudell, and M. Jayachandra, 1990, Spatial distribution of the electric field induced in volume by round and figure ‘8’ magnetic coils: relevance to activation of sensory nerve fibers, Electoencephalography and clinical Neurophysiology, 76:131–141.CrossRefGoogle Scholar
  43. J.A. Maass and M.M. Asa, 1970, Contactless nerve stimulation and signal detection by inductive transducer. IEEE Trans. Magnetics MAG-6: 322–326.CrossRefADSGoogle Scholar
  44. D. Melville, F. Paul, and S. Roath, 1975, High gradient magnetic separation of red cells from whole blood, IEEE Trans. Magn., MAG-11:1701–1704CrossRefADSGoogle Scholar
  45. K.R. Mills, N.M.F. Murray, and C.W. Hess, 1987, Magnetic and electrical transcranial brain stimulation. Physiological mechanisms and clinical applications, Neurosurgery, 20(No.1): 164–168.CrossRefGoogle Scholar
  46. S. Mittler, 1971, Failure in magnetism to influence production of x-ray induced sex-linked recessive lethals. Mutation Research, 13:287–288.Google Scholar
  47. S. Nagakura and Y. Molin (Guest Editors), 1992. Magnetic field effects upon photophysical and photochemical phenomena, Chemical Physics, special issue, 162,1: 1–234.Google Scholar
  48. J. Nilsson, M. Panizza, B. J. Roth, P. J. Basser, L. G. Cohen, G. Caruso, and M. Hallett, 1992, Determining the site of stimulation during magnetic stimulation of a peripheral nerve, Electoencephalography and clinical Neurophysiology, 85: 253–264CrossRefGoogle Scholar
  49. J. Nyenhuis, J. Bourland, G. Mouchawar, L. Geddes, K. Foster, J. Jones, W. Schoenlein, G. Graber, and T. Elabbady, 1994, Magnetic stimulation of the heart and safety issues in magnetic resonance imaging, in S. Ueno (Ed.) Biomagnetic Stimultion, Plenum Press, New York and London: 75–89.Google Scholar
  50. P.Å. Öberg, 1973, Magnetic stimulation of nerve tissue, Med. Biol. Eng. 11: 55–64.CrossRefGoogle Scholar
  51. R. K. Olney, Y. T. So, D. S. Goodin, and M. J. Aminoff, 1990, A comparison of magnetic and electrical stimulation of peripheral nerves, Muscle Nerve, 13: 957–963.CrossRefGoogle Scholar
  52. J. P. Reilly, 1989, Peripheral nerve stimulation by induced electric currents: exposure to time-varying magnetic fields, Med. Biol. Eng. Comput., Vol. 27: 101–110CrossRefGoogle Scholar
  53. J.C. Rothwell, B.L. Day, P.D. Thompson, J.P.R. Dick, and C.D. Marsden, 1987, Some experiences of techniques for stimulation of the human cerebral motor cortex through the scalp, Neurosurgery, 20(No. 1): 156–163.CrossRefGoogle Scholar
  54. J. C. Rothwell, 1994, Motor cortical stimulation in man, in S. Ueno (Ed.) Biomagnetic Stimultion, Plenum Press, New York and London: 49–57Google Scholar
  55. K. Shulten, H. Staerk, A. Weller, H. J. Werner, and B. Nickel, 1976, Magnetic field dependence of the geminate recombination of radical ion pairs in polar solvents, Z. Phys. Chem.N. F., 101: 371–390Google Scholar
  56. Y. Tanimoto, H. Hayashi, S. Nagakura, H. Sakaguchi, and K. Tokumaru, 1976, The external magnetic field effect on the singlet sensitized photolysis of dibenzoyl peroxide, Chem. Phys. Lett., 41: 267–269.CrossRefADSGoogle Scholar
  57. T. S. Tenforde, 1991, Biological interactions of extremely-low-frequency electric and magnetic fields, Bioelectrochem. Bioenerg., 25:1–17.CrossRefGoogle Scholar
  58. T. S. Tenforde, 1992, Biological interactions and potential health effects of extremely-low-frequency magnetic fields from power lines and other common sources, Annu. Rev. Publ. Health, 13: 173–196.CrossRefGoogle Scholar
  59. J. Torbet, M. Freyssinet, and G. Hudry-Clergeon, 1981, Oriented fibrin gels formed by polymerization in strong magnetic fields, Nature, 289:91–93.CrossRefADSGoogle Scholar
  60. S. Ueno, S. Matsumoto, K. Harada, and Y. Oomura, 1978, Capacitative stimulatory effect in magnetic stimulation of nerve tissue, IEEE Trans. Magnetics MAG-14: 958–960.CrossRefADSGoogle Scholar
  61. S. Ueno, P. Lövsund, and P.Å. Öberg, 1981, On the effect of alternating magnetic fields on action potential in lobster giant axon, Proceedings of the 5th Nordic Meeting on Med. and Biol. Eng., Linköping. Sweden:262–264.Google Scholar
  62. S. Ueno and K. Harada, 1982, Redistribution of dissolved oxygen concentration under strong DC magnetic fields, IEEE Trans. on Magn., MAG-18,6: 1704–1706.CrossRefADSGoogle Scholar
  63. S. Ueno, K. Harada, and K. Shiokawa, 1984, The embryonic development of frogs under strong DC magnetic fields, IEEE Trans. on Magn., MAG-20,5: 1663–1665.CrossRefADSGoogle Scholar
  64. S. Ueno, K. Harada, C. Ji, and Y. Oomura, 1984, Magnetic nerve stimulation without interlinkage between nerve and magnetic flux, IEEE Trans. Magnetics, MAG-20: 1660–1662.CrossRefADSGoogle Scholar
  65. S. Ueno, H. Esaki, and K. Harada, 1985, Combustion processes under strong DC magnetic fields, IEEE Trans. on Magn., MAG-21,5: 2077–2079.CrossRefADSGoogle Scholar
  66. S. Ueno, P. Lövsund, and P.Å. Öberg, 1986, Effects of time-varying magnetic fields on the action potential in lobster giant axon, Med. & Biol. Eng. & Comput. 24: 521–526.CrossRefGoogle Scholar
  67. S. Ueno and K. Harada, 1986, Experimental difficulties in observing the effects of magnetic fields on biological and chemical processes, IEEE Trans.on Magn., MAG-22,5: 868–873.CrossRefADSGoogle Scholar
  68. S. Ueno and K. Harada, 1987, Effects of magnetic fields on flames and gas flow, IEEE Trans. on Magn., MAG-23,5:2752–2757.CrossRefADSGoogle Scholar
  69. S. Ueno, T. Tashiro, and K. Harada, 1988, Localized stimulation of neural tissues in the brain by means of a paired configration of time-varying magnetic fields, J. Appl. Phys., 64,10: 5862–5864.CrossRefADSGoogle Scholar
  70. S. Ueno, 1989, Quenching of flames by magnetic fields, J. Appl. Phys., 65,3: 1243–1245.CrossRefADSGoogle Scholar
  71. S. Ueno, T. Matsuda, M. Fujiki, and S. Hori, 1989, Localized stimulation of the human motor cortex by means of a pair of opposing magnetic fields, Digests of Intermag Conf., GD-10, Washington D.C..Google Scholar
  72. S. Ueno, T. Matsuda, and M. Fujiki, 1989a, Localized stimulation of the human cortex by opposing magnetic fields, in: Advances in Biomagnetism, S.J. Williamson et al., eds., Plenum Press, New York and London.Google Scholar
  73. S. Ueno, T. Matsuda, and M. Fujiki, 1989b, Localized stimulation of the human brain by a pair of opposing pulsed magnetic fields, Memoirs of the Faculty of Engineering — Kyushu University, 49: 161–173.Google Scholar
  74. S. Ueno, T. Matsuda, and M. Fujiki, 1990, Functional mapping of the human motor cortex obtained by focal and vectorial magnetic stimulation of the brain, IEEE Trans. on Magnetics, 26,5: 1539–1544.CrossRefADSGoogle Scholar
  75. S. Ueno and M. Iwasaka, 1990, Properties of magnetic curtain produced by magnetic fields, J. Appl. Phys., 67, 9: 5901–5903.CrossRefADSGoogle Scholar
  76. S. Ueno, K. Shiokawa, and M. Iwamoto, 1990, Embryonic development of Xenopus lacvis under static magnetic fields up to 6.34 T, J. Appl. Phys., 67,9: 5841–5843.CrossRefADSGoogle Scholar
  77. S. Ueno, T. Matsuda, and O. Hiwaki, 1990, Localized stimulation of the human brain and spinal cord by a pair of opposing pulsed magnetic fields, J. Appl. Phys. 66: 5838–5840.CrossRefADSGoogle Scholar
  78. S. Ueno, T. Matsuda, and O. Hiwaki, 1991, Estimation of structures of neural fibers in the human brain by vectorial magnetic stimulation, IEEE Trans. on Magnetics, 27,6: 5387–5389.CrossRefADSGoogle Scholar
  79. S. Ueno and O. Hiwaki, 1991, Spinal reflex evoked by a pair of opposing pulsed magnetic fields, J. Appl. Phys., 69,8, 6019–6021.CrossRefADSGoogle Scholar
  80. S. Ueno, M. Iwasaka, H. F.guchi, and T. Kitajima, 1993, Dynamic behavior of gas flow in gradient magnetic fields, IEEE Trans. on Magn., MAG-29,6: 3264–3266.CrossRefADSGoogle Scholar
  81. S. Ueno, M. Iwasaka, and H. Tsuda, 1993, Effects of magnetic fields on fibrin polymerization and fibrinolysis, IEEE Trans, on Magn., 29,6: 3352–3354.CrossRefADSGoogle Scholar
  82. S. Ueno and M. Iwasaka, 1994a, Properties of diamagnctic fluid in high gradient magnetic fields, J. Appl. Phys., 75,10: 7177–7179.CrossRefADSGoogle Scholar
  83. S. Ueno and M. Iwasaka, 1994b. Parting of water by magnetic fields. IEEE Trans, on Magn., 30,6: 4698–4700.CrossRefADSGoogle Scholar
  84. S. Ueno, M. Iwasaka, and T. Kitajima, 1994, Redistribution of dissolved oxygen concentration under magnetic fields up to 8 T, J. Appl. Phys., 75,10: 7174–7176.CrossRefADSGoogle Scholar
  85. S. Ueno, M. Iwasaka, and K. Shiokawa, 1994, Early embryonic development of frogs under intense magnetic fields up to 8 T, J. Appl. Phys., 75,10: 7165–7167.CrossRefADSGoogle Scholar
  86. A. Yamagishi, T. Takeuchi, T. Higashi, and M. Date, 1989, Diamagnetic orientation of polymerized molecules under high magnetic field, J. Phys. Soc. Jpn., 58,7: 2280–2283.CrossRefADSGoogle Scholar
  87. I. Yoshikawa, M. Iwasaka, and S. Ueno, 1994, The genetic effects of magnetic fields using the two systems of somatic mutation detection in Drosophila Melanogaster, BEMS Abstract Book of 16th Annual Meeting, J-4-1.Google Scholar

Copyright information

© Plenum Press 1996

Authors and Affiliations

  • Shoogo Ueno
    • 1
  • Masakazu Iwasaka
    • 1
  1. 1.Institute of Medical Electronics Faculty of MedicineUniversity of TokyoTokyoJapan

Personalised recommendations