Advertisement

Abstract

The chemical reaction is the “most chemical” event. Our encounter with the role of symmetry in chemistry would certainly be one-sided without looking at chemical reactions. In fact, this is perhaps the most flourishing, booming area today of all chemistry-related applications of the symmetry concept. For this very reason, we shall present only a short survey and refer to the vast recent literature (see, e.g., Refs.[7-1]—[7-12]). Our discussion fully relies on these papers and monographs.

Keywords

Molecular Orbital Potential Energy Surface High Occupied Molecular Orbital Reaction Coordinate Symmetry Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [7-1]
    K. Fukui, in Molecular Orbitals in Chemistry, Physics and Biology (P. O. Löwdin and B. Pullmann, eds), Academic Press, New York (1964).Google Scholar
  2. [7-2]
    K. Fukui, Theory of Orientation and Stereoselection, Springer-Verlag, Berlin (1975); K. Fukui, Top. Curr. Chem. 15, 1 (1970).Google Scholar
  3. [7-3]
    R. B. Woodward and R. Hoffmann, The Conservation of Orbital Symmetry, Verlag Chemie, Weinheim (1970).Google Scholar
  4. [7-4]
    R. B. Woodward and R. Hoffmann, Angew. Chem. Int. Ed. Engl. 8, 781 (1969).CrossRefGoogle Scholar
  5. [7-5]
    H. E. Simmons and J. F. Bunnett (eds.), Orbital Symmetry Papers, American Chemical Society, Washington, D.C. (1974).Google Scholar
  6. [7-6]
    R. G. Pearson, Symmetry Rules for Chemical Reactions: Orbital Topology and Elementary Processes, Wiley-Interscience, New York (1976); R. G. Pearson, in Special Issues on Symmetry, Computers & Mathematics with Applications 12B, 229 (1986).Google Scholar
  7. [7-7]
    L. Salem, Electrons in Chemical Reactions: First Principles, Wiley-Interscience, New York (1982).Google Scholar
  8. [7-8]
    A. P. Marchand and R. E. Lehr (eds.), Pericyclic Reactions, Vols. 1 and 2, Academic Press, New York (1977).Google Scholar
  9. [7-9]
    T. H. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry. 3rd ed., Harper & Row, New York (1987).Google Scholar
  10. [7-10]
    E. A. Halevi, Orbital Symmetry and Reaction Mechanisms: The OCAMS View, Springer-Verlag, Berlin (1992).Google Scholar
  11. [7-11]
    R. Hoffmann, Angew. Chem. Int. Ed. Engl. 21, 711 (1982).CrossRefGoogle Scholar
  12. [7-12]
    K. Fukui, Science 218, 747 (1982).CrossRefPubMedGoogle Scholar
  13. [7-13]
    E. Wigner and E. E. Witmer, Z. Phys. 51, 859 (1928).CrossRefGoogle Scholar
  14. [7-14]
    B. Solouki and H. Bock, Inorg. Chem. 16, 665 (1977).CrossRefGoogle Scholar
  15. [7-15]
    F Bernardi, I. G. Csizmadia, A. Mangini, H. B. Schlegel, M.-H. Whangbo, and S. Wolfe, J. Am. Chem. Soc. 97, 2209 (1975).CrossRefGoogle Scholar
  16. [7-16]
    I. H. Williams, Chem. Soc. Rev. 1993, 277.Google Scholar
  17. [7-17]
    H. Eyring and M. Polanyi, Z. Phys. Chem. B 12, 279 (1931); H. Eyring, J. Chem. Phys. 3, 107 (1935); H. Eyring, Chem. Rev. 17, 65 (1935).Google Scholar
  18. [7-18]
    K. N. Houk, Y. Li, and J. D. Evanseck, Angew. Chem. Int. Ed. Engl. 31, 682 (1992).CrossRefGoogle Scholar
  19. [7-19]
    M. G. Evans and M. Polanyi, Trans. Faraday Soc. 31, 875 (1935).CrossRefGoogle Scholar
  20. [7-20]
    Structure and Dynamics of Reactive Transition States, Faraday Discuss. Chem. Soc.91 (1991).Google Scholar
  21. [7-21]
    E. R. Lovejoy, S. K. Kim, and C. B. Moore, Science 256, 1541 (1992).CrossRefPubMedGoogle Scholar
  22. [7-22]
    A. H. Zewail, Science 242, 1645 (1988).CrossRefPubMedGoogle Scholar
  23. [7-23]
    R. F. W. Bader, Can. J. Chem. 40, 1164 (1962).CrossRefGoogle Scholar
  24. [7-24]
    R. F W. Bader, P. L. A. Popelier, and T. A. Keith, Angew. Chem. Int. Ed. Engl. 33, 620 (1994).CrossRefGoogle Scholar
  25. [7-25]
    K. Fukui, T. Yonezawa, and H. Shingu, J. Chem. Phys. 20, 722 (1952).CrossRefGoogle Scholar
  26. [7-26]
    R. B. Woodward and R. Hoffmann, J. Am. Chem. Soc. 87, 395 (1965).CrossRefGoogle Scholar
  27. [7-27]
    R. Hoffmann and R. B. Woodward, J. Am. Chem. Soc. 87, 2046 (1965).CrossRefGoogle Scholar
  28. [7-28]
    R. B. Woodward and R. Hoffmann, J. Am. Chem. Soc. 87, 2511 (1965).CrossRefGoogle Scholar
  29. [7-29]
    F. Hund, Z. Phys. 40, 742 (1927); 42, 93 (1927); 51, 759 (1928).CrossRefGoogle Scholar
  30. [7-30]
    R. S. Mulliken, Phys. Rev. 32, 186 (1928).CrossRefGoogle Scholar
  31. [7-31]
    J. von Neumann and E. Wigner, Phys. Z. 30, 467 (1929); E. Teller, J. Phys. Chem. 41, 109 (1937).Google Scholar
  32. [7-32]
    F. A. Halevi, Hetv. Chim. Acta 58, 2136 (1975).CrossRefGoogle Scholar
  33. [7-33]
    J. Katriel and E. A. Halevi, Theor. Chim. Acta 40, 1 (1975).CrossRefGoogle Scholar
  34. [7-34]
    W. L. Jorgensen and L. Salem, The Organic Chemist’s Book of Orbitals, Academic Press, New York (1973).Google Scholar
  35. [7-35]
    H. C. Longuet-Higgins and E. W. Abrahamson, J. Am. Chem. Soc. 87, 2045 (1965).CrossRefGoogle Scholar
  36. [7-36]
    F. A. Cotton, Chemical Applications of Group Theory, 3rd ed., Wiley-Interscience, New York (1990).Google Scholar
  37. [7-37]
    F. Bernardi, M. Olivucci, J. J. W. McDouall, and M. A. Robb, J. Am. Chem. Soc. 109, 544 (1987); F. Bernardi, A. Bottoni, M. A. Robb, H. B. Schlegel, and G. Tonachini, J. Am. Chem. Soc. 107, 2260 (1985).Google Scholar
  38. [7-38]
    R. W. Carr, Jr., and W. D. Walters, J. Phys. Chem. 67, 1370 (1963).CrossRefGoogle Scholar
  39. [7-39]
    R. Hoffmann, S. Swaminathan, B. G. Odell, and R. Gleiter, J. Am. Chem. Soc. 92, 7091 (1970).CrossRefGoogle Scholar
  40. [7-40]
    H. E. O’Neal and S. W. Benson, J. Phys. Chem. 72, 1866 (1968).CrossRefGoogle Scholar
  41. [7-41]
    R. E. K. Winter, Tetrahedron Lett. 1965, 1207.Google Scholar
  42. [7-42]
    K. Hsu, R. J. Buenker, and S. D. Peyerimhoff, J. Am. Chem. Soc. 93, 2117 (1971).CrossRefGoogle Scholar
  43. [7-43]
    A. C. Day, J. Am. Chem. Soc. 97, 2431 (1975).CrossRefGoogle Scholar
  44. [7-44]
    h. E. Zimmermann, J. Am. Chem. Soc. 88, 1564, 1566 (1966); Acc. Chem. Res. 4, 272 (1971).CrossRefGoogle Scholar
  45. [7-45]
    M. J. S. Dewar, Tetrahedron Suppl. 8, 75 (1966); M. J. S. Dewar, Angew. Chem. Int. Ed. Engl. 10, 761 (1971); M. J. S. Dewar, The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill, New York (1969).CrossRefGoogle Scholar
  46. [7-46]
    V. I. Minkin, M. N. Glukhovtsev, and B. Ya. Simkin, Aromaticity and Antiaromaticity: Electronic and Structural Aspects, John Wiley & Sons, New York (1994).Google Scholar
  47. [7-47]
    E. Hückel, Z. Phys. 70, 204 (1931); 76, 628 (1932); 83, 632 (1933).CrossRefGoogle Scholar
  48. [7-48]
    E. Heilbronner, Tetrahedron Lett. 1964, 1923.Google Scholar
  49. [7-49]
    K.-w. Shen, J. Chem. Educ. 50, 238 (1973).CrossRefGoogle Scholar
  50. [7-50]
    M. Poliakoff and J. J. Turner, J. Chem. Soc. A 1971, 2403.Google Scholar
  51. [7-51]
    J. D. Cotton, S. A. R. Knox, I. Paul, and F. G. A. Stone, J. Chem. Soc. A 1967, 264.Google Scholar

Copyright information

© Plenum Press 1995

Personalised recommendations