Fundamental phenomena and laws of nature are related to symmetry, and, accordingly, symmetry is one of science’s basic concepts. Perhaps it is so important in human creations because it is omnipresent in the natural world. Symmetry is beautiful, although alone it may not be enough for beauty, and absolute perfection may even be irritating. Usefulness and function and aesthetic appeal are the origins of symmetry in the worlds of technology and the arts.


Periodic System Symmetry Consideration Aesthetic Appeal Regular Pentagon Photograph Courtesy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1-1]
    E. Lendvai, in Module, Proportion, Symmetry, Rhythm (G. Kepes, ed.), George Braziller, New York (1966).Google Scholar
  2. [1-2]
    N. Angier, The New York Times, February 8, 1994, p. Cl.Google Scholar
  3. [l-3]
    V. Prelog, Science 193, 17 (1976).PubMedCrossRefGoogle Scholar
  4. [1-4]
    A. Koestler, Insight and Outlook, Macmillan, London (1949).Google Scholar
  5. [1-5]
    C. A. Coulson, Chem. Br. 4, 113 (1968).Google Scholar
  6. [1-6]
    K. Fukui, Science 218, 747 (1982).CrossRefPubMedGoogle Scholar
  7. [1-7]
    R. Hoffmann, Science 211, 995 (1981).CrossRefPubMedGoogle Scholar
  8. [1-8]
    H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162 (1985).CrossRefGoogle Scholar
  9. [1-9]
    D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev. Lett. 53, 1951 (1984).CrossRefGoogle Scholar
  10. [1-10]
    I. Hargittai, Per. Mineral. 61, 9 (1992).Google Scholar
  11. [1-11]
    R. B. Fuller, Synergetics: Explorations in the Geometry of Thinking, Macmillan, New York (1975), p. 4.Google Scholar
  12. [1-12]
    D. E. H. Jones, Philos. Trans. R. Soc. London 343, 9 (1993).CrossRefGoogle Scholar
  13. [1-13]
    D. E. H. Jones, New Scientist 35, 245 (1966).Google Scholar
  14. [1-14]
    D. W. Thompson, On Growth and Form, Cambridge University Press (1961).Google Scholar
  15. [1-15]
    H. W. Kroto, Angew. Chem. Int. Ed. Engl. 31, 111 (1992).CrossRefGoogle Scholar
  16. [1-16]
    H. W. Kroto, in Symmetry 2, Unifying Human Understanding (I. Hargittai, ed.) Pergamon Press, Oxford, (1989), p. 417.Google Scholar
  17. [1-17]
    P. C. Gasson, Geometry of Spacial Forms, Ellis Horwood, Chichester, (1983), pp. ix–x.Google Scholar
  18. [1-18]
    I. Hargittai, Math. Intell. 17, 34 (1995).Google Scholar
  19. [1-19]
    I. Hargittai, Forma 8, 327 (1993).Google Scholar
  20. [1-20]
    E. Osawa, Kagaku (Kyoto) 25, 854 (1970).Google Scholar
  21. [1-21]
    D. A. Bochvar and E. G. Gal’pern, Dokl. Akad. Nauk SSSR 209, 610 (1973).Google Scholar
  22. [1-22]
    A. L. Mackay, Physica 114A, 609 (1982).Google Scholar
  23. [1-23]
    C. M. Breder, Bulletin of the American Museum of Natural History 106, 173 (1955).Google Scholar
  24. [1-24]
    D. W. Crowe, in Fivefold Symmetry (I. Hargittai, ed.), World Scientific, Singapore (1992), p. 465.Google Scholar
  25. [1-25]
    L. Danzer, B. Grünbaum, and G. C. Shephard, Am. Math. Monthly 89, 568 (1982).CrossRefGoogle Scholar
  26. [1-26]
    A. L. Mackay, Sov. Phys. Crystallogr. 26, 517 (1981).Google Scholar
  27. [1-271.
    R. Penrose, Math. Intell. 2, 32 (1979/80).CrossRefGoogle Scholar
  28. [1-28]
    R. Feynman, The Character of the Physical Law, The MIT Press, Cambridge, Massachusetts (1967).Google Scholar
  29. [1-29]
    C. N. Yang, in The Oscar Klein Memorial Lectures, Vol. 1, (G. Ekspong, ed.), World Scientific, Singapore (1991), p. 11.Google Scholar
  30. [1-30]
    P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949).CrossRefGoogle Scholar
  31. [1-31]
    R. H. Dalitz and R. Peierls, Biogr. Mem. Fellows Roy. Soc. 32, 159 (1989). We thank Professor J. D. Dunitz, Zürich, for this reference.Google Scholar
  32. [1-32]
    R. Peierls, Contemp. Phys. 33, 221 (1992).CrossRefGoogle Scholar
  33. [1-33]
    A. V. Shubnikov, Simmetriya i antisimmetriya konechnykh figur, Izd. Akad. Nauk SSSR, Moscow (1951).Google Scholar
  34. [1-34]
    H. S. M. Coxeter, Regular Polytopes, 3rd ed., Dover Publications, New York (1973).Google Scholar
  35. [1-35]
    H. Weyl, Symmetry, Princeton University Press, Princeton, New Jersey (1952).Google Scholar
  36. [1-36]
    K. Mislow and P. Bickart, Israel J. Chem. 15, 1 (1976/77).Google Scholar
  37. [1-37]
    M. Scriven, J. Philos. 56, 857 (1959).CrossRefGoogle Scholar
  38. [1-38]
    R. G. Pearson, Symmetry Rules for Chemical Reactions, Orbital Topology and Elementary Processes, Wiley-Interscience, New York (1976).Google Scholar
  39. [1-39]
    H. Zabrodsky, S. Peleg, and D. Avnir, J. Am. Chem. Soc. 114, 7843 (1992); 115, 8278 (1993); H. Zabrodsky and D. Avnir, in Advances in Molecular Structure Research, Vol. 1 (M. Hargittai and I. Hargittai, eds.), JAI Press, Greenwich, Connecticut (1995).CrossRefGoogle Scholar
  40. [1-40]
    A. B. Buda, T. Auf der Heyde, and K. Mislow, Angew. Chem. Int. Ed. Engl. 31, 989 (1992).CrossRefGoogle Scholar
  41. [1-41]
    A. L. Loeb, Space Structures. Their Harmony and Counterpoint, Addison-Wesley Publishing Co., Reading, Massachusetts (1976).Google Scholar
  42. [1-42]
    L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York (1939) [2nd ed., 1940; 3rd ed., 1960].Google Scholar
  43. [1-43]
    P. Murray-Rust, in Computer Modelling of Biomolecular Processes (J. M. Goodfellow and D. S. Moss., eds.), Ellis Horwood, New York (1992).Google Scholar
  44. [1-44]
    E. G. Mazurs, Graphic Representations of the Periodic System during One Hundred Years, The University of Alabama Press, University, Alabama (1974).Google Scholar
  45. [1-45]
    H. Erdmann, Lehrbuch der anorganischen Chemie, Dritte Auflage, F. Vieweg und Sohn, Braunschweig (1902).Google Scholar
  46. [l-46]
    B. Vizi, Chemistry in Sculptures, Hungarian Chemical Society, Budapest, 1990.Google Scholar

Copyright information

© Plenum Press 1995

Personalised recommendations