Skip to main content

Leukocyte Cluster of Differentiation Antigens

  • Chapter
Handbook of Imune Response Genes
  • 194 Accesses

Abstract

The list of cluster designation (CD) (differentiation) antigens is constantly expanding as new molecules and monospecific antibodies are identified. The table below is updated for all of the differentiation antigens officially designated from the 6th International Workshop in Human Leukocyte Differentiation Antigens, held in November 1996 in Japan*. This Workshop resulted in the addition of 41 new CD clusters or subclusters, which represent cytokine receptor chains, the CD30/CD40 ligands, NK receptors, important ectoenzymes among many other both well-characterized and recently identified molecules. We have attempted to provide a brief overview of some of the important structural and biological features of the CD antigens, including some referencing that should have utility for an initial investigation of these molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Martin, L. H., Calabi, F., and Milstein, C. 1986. Isolation of CD1 genes: A family of major histocompatibility complex-related differentiation antigens. Proc. Natl. Acad. Sci. USA 83:9154–9158.

    Article  PubMed  CAS  Google Scholar 

  2. Tangri, S., Holcombe, H. R., Castano, A. R., Miller, J. E., Teitell, M., Huse, W. E., Peterson, P. A., and Kronenberg, M. 1996. Antigen-presenting function of the mouse CD1 molecule. Ann. N.Y. Acad. Sci. 778:288–296.

    Article  PubMed  CAS  Google Scholar 

  3. Brutkiewicz, R. R., Bennink, J. R., Yewdell, J. W., and Bendelac, A. 1995. TAP-independent, beta 2-micro-globulin-dependent surface expression of functional mouse CD1.1 J. Exp. Med. 182:1913–1919.

    Article  PubMed  CAS  Google Scholar 

  4. Woolfson, A., and Milstein, C. 1994. Alternative splicing generates secretory isoforms of human CD1. Proc. Natl. Acad. Sci. USA 91:6683–6687.

    Article  PubMed  CAS  Google Scholar 

  5. Sugita, M., Jackman, R. M., van Donselaar, E., Behar, S. M., Rogers, R. A., Peters, P. J., Brenner, M. B., and Porcelli, S. A. 1996. Cytoplasmic tail-dependent localization of CD1b antigen-presenting molecules to MIICs. Science 273:349–352.

    Article  PubMed  CAS  Google Scholar 

  6. Balk, S. P., Eben, E. C., Blumenthal, R. L., McDermott, F. V., Wucherpfennig, K. W., Landau, S. B., and Blumberg, R. S. 1991. Oligoclonal expansion and CD1 recognition by human intestinal intraepithelial lymphocytes. Science 253:1411–1415.

    Article  PubMed  CAS  Google Scholar 

  7. Panja, A., Blumberg, R. S., Balk, S. P., and Mayer, L. 1993. CD1d is involved in T cell-intestinal epithelial cell interactions. J. Exp. Med. 178:1115–1119.

    Article  PubMed  CAS  Google Scholar 

  8. Porcelli, S., Brenner, M. B., Greenstein, J. L., Balk, S. P., Terhorst, C., and Bleicher, P. A. 1989. Recognition of cluster of differentiation 1 antigens by human CD4-CD8-cytolytic T lymphocytes. Nature 341:447–450.

    Article  PubMed  CAS  Google Scholar 

  9. Sieling, P. A., Chatterjee, D., Porcelli, S. A., Prigozy, T. I., Mazzaccaro, R. J., Soriano, T., Bloom, B. R., Brenner, M. B., Kronenberg, M., Brennan, P. J., et at. 1995. CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 269:227–230.

    Article  PubMed  CAS  Google Scholar 

  10. Castano, A. R., Tangri, S., Miller, J. E., Holcombe, H. R., Jackson, M. R., Huse, W. D., Kronenberg, M., and Peterson, P. A. 1995. Peptide binding and presentation by mouse CD1. Science 269:223–226.

    Article  PubMed  CAS  Google Scholar 

  11. Bendelac, A., Lantz, O., Quimby, M. E., Yewdell, J. W., Bennink, J. R., and Brulkiewicz, R. R. 1995. CD1 recognition by mouse NK1+ T lymphocytes. Science 268:863–865.

    Article  PubMed  CAS  Google Scholar 

  12. Sen, J., Arceci, R. J., Jones, W., and Burakoff, S. J. 1989. Expression and ontogeny of murine CD2. Eur. J. Immunol. 19:1297–1302.

    Article  PubMed  CAS  Google Scholar 

  13. Shaw, S., Luce, G. E., Quinones, R., Gress, R. E., Springer, T. A., and Sanders, M. E. 1986. Two antigen-independent adhesion pathways used by human cytotoxic T-cell clones. Nature 323:262–264.

    Article  PubMed  CAS  Google Scholar 

  14. Gassmann, M., Amrein, K. E., Flint, N. A., Schraven, B., and Burn, P. 1994. Identification of a signaling complex involving CD2, zeta chain and p59fyn in T lymphocytes. Eur. J. Immunol. 24:139–144.

    Article  PubMed  CAS  Google Scholar 

  15. Naora, H., Altin, J. G., and Young, I. G. 1994. TCR-dependent and-independent signaling mechanisms differentially regulate lymphokine gene expression in the murine T helper clone D10.G4.1. J. Immunol. 152:5691–5702.

    PubMed  CAS  Google Scholar 

  16. Kanner, S. B., Damle, N. K., Blake, J., Aruffo, A., and Ledbetter, J. A. 1992. CD2/LFA-3 ligation induces phospholipase-C gamma 1 tyrosine phosphorylation and regulates CD3 signaling. J. Immunol. 148:2023–2029.

    PubMed  CAS  Google Scholar 

  17. Koretzky, G. A., Picus, J., Schultz, T., and Weiss, A. 1991. Tyrosine phosphatase CD45 is required for T cell antigen receptor and CD2 mediated activation of a protein tyrosine kinase and interleukin 2 production. Proc. Natl. Acad. Sci. USA 88:2037–2041.

    Article  PubMed  CAS  Google Scholar 

  18. Biancone, L., Andres, G., Ahn, H., Lim, A., Dai, C., Noelle, R., and Yagita, H. 1996. Distinct regulatory roles of lymphocyte costimulatory pathways on T-helper type 2-mediated autoimmune-disease. J. Exp. Med. 183:1473–1481.

    Article  PubMed  CAS  Google Scholar 

  19. Semnani, R. T., Nutman, T. B., Hochman, P., Shaw, S., and Vansevemer, G. A. 1994. Costimulation by purified intercellular-adhesion molecule-1 and lymphocyte function-associated antigen-3 induces distinct proliferation, cytokine and cell-surface antigen profiles in human naive and memory CD4(+) T-cells. J. Exp. Med. 180:2125–2135.

    Article  PubMed  CAS  Google Scholar 

  20. Ohno, H., Ono, S., Hirayama, N., Shimada, S., and Saito, T. 1994. Preferential usage of ihe Fc receptor gamma chain in the T cell antigen receptor complex by gamma/delta T cells localized in epithelia. J. Exp. Med. 179:365–377.

    Article  PubMed  CAS  Google Scholar 

  21. Bauer, A., McConkey, D. J., Howard, F. D., Clayton, L. K., Novick, D., Koyasu, S., and Reinherz, E. L. 1991. Differential signal tranduction via T-cell receptor CD3 zeta2, CD3zeta-eta, and CD3 eta2 isoforms. Proc. Natl. Acad. Sci. USA 88:3842.

    Article  PubMed  CAS  Google Scholar 

  22. Fleury, S., Lamarre, D., Meloche, S., Ryu, S. E., Cantin, D., Hendrickson, W. A., and Sekaly, R. P. 1991. Mutational analysis of the interaction between CD4 and class II MHC: Class II antigens contact CD4 on a surface opposite the gp 120 binding site. Cell 66:1037–1049.

    Article  PubMed  CAS  Google Scholar 

  23. Vignali, D. A., Moreno, J., Schiller, D., and Hammerling, G. J. 1992. Species-specific binding of CD4 to the beta 2 domain of major histocampatibility complex class II molecules. J. Exp. Med. 175:925–932.

    Article  PubMed  CAS  Google Scholar 

  24. Arthos, J., Deen, K. C., Chaikin, M. A., Fornwald, J. A., Sathe, G., Sattentau, Q. J., Clapham, P. R., Weiss, R. A., McDougal, J. S., Pietropaolo, C., Axel, R., Truneh, A., Maddon, P. J., and Sweet, R. W. 1989. Identification of the residues in human CD4 critical for the binding of HIV. Cell 57:469–481.

    Article  PubMed  CAS  Google Scholar 

  25. Maddon, P. J., Dalgleish, A. G., McDougal, J. S., Clapham, P. R., Weiss, R. A., and Axel, R. 1986. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47:333–348.

    Article  PubMed  CAS  Google Scholar 

  26. Klatzmann, D., Champagne, E., Chamaret, S., Gruest, J., Guetard, D., Hercend, T., Gluckman, J. C., and Montagnier, L. 1984. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312:767–768.

    Article  PubMed  CAS  Google Scholar 

  27. Van de Velde, H., von Hoegen, I., Luo, W., Parnes, J. R., and Thielemans, K. 1991. The B-cell surface protein CD72/Lyb-2 is the ligand for CD5. Nature 351:662–665.

    Article  PubMed  Google Scholar 

  28. Antin, J. H., Emerson, S. G., Martin, P., Gadol, N., and Ault, K. A. 1986. Leu-1+ (CD5+) B cells. A major lymphoid subpopulation in human fetal spleen: Phenotypic and functional studies. J. Immunol. 136:505–510.

    PubMed  CAS  Google Scholar 

  29. Ishida, H., Hastings, R., Kearney, J., and Howard, M. 1992. Continuous anti-interleukin 10 antibody administration depletes mice of Ly-1 B cells but not conventional B cells. J. Exp. Med. 175:1213–1220.

    Article  PubMed  CAS  Google Scholar 

  30. Lankester, A. C., van Schijndel, G. M., Cordell, J. L., van Noesel, C. J., and van Lier, R. A. 1994. CD5 is associated with the human B cell antigen receptor complex. Eur. J. Immunol. 24:812–816.

    Article  PubMed  CAS  Google Scholar 

  31. Osman, N., Ley, S. C., and Crumpton, M. J. 1992. Evidence for an association between the T cell receptor/CD3 antigen complex and the CD5 antigen in human T lymphocytes. Eur. J. Immunol. 22:2995–3000.

    Article  PubMed  CAS  Google Scholar 

  32. Spertini, F., Stohl, W., Ramesh, N., Moody, C., and Geha, R. S. 1991. Induction of human T cell proliferation by a monoclonal antibody to CD5. J. Immunol. 146:47–52.

    PubMed  CAS  Google Scholar 

  33. Vandenberghe, P., and Ceuppens, J. L. 1991. Immobilized anti-CD5 together with prolonged activation of protein kinase C induce interleukin 2-dependent T cell growth: Evidence for signal transduction through CD5. Eur. J. Immunol. 21:251–259.

    Article  PubMed  CAS  Google Scholar 

  34. Kopf, M., Brombacher, F., Hodgkin, P. D., Ramsay, A. J., Milbourne, E. A., Dai, W. J., Ovington, K. S., Behm, C. A., Koehler, G., Young, I. G., and Matthaei, K. I. 1996. IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 4:15–24.

    Article  PubMed  CAS  Google Scholar 

  35. Aruffo, A., Melnick, M. B., Linsley, P. S., and Seed, B. 1991. The lymphocyte glycoprotein CD6 contains a repeated domain structure characteristic of a new family of cell surface and secreted proteins. J. Exp. Med. 174:949–952.

    Article  PubMed  CAS  Google Scholar 

  36. Whitney, G. S., Starling, G. C., Bowen, M. A., Modrell, B., Siadak, A. W., and Aruffo, A. 1995. The membrane-proximal scavenger receptor cysteine-rich domain of CD6 contains the activated leukocyte cell adhesion molecule binding site. J. Biol. Chem. 270:18187–18190.

    Article  PubMed  CAS  Google Scholar 

  37. Robinson, W. H., Neuman de Vegvar, H. E., Prohaska, S. S., Rhee, J. W., and Parnes, J. R. 1995. Human CD6 possesses a large, alternatively spliced cytoplasmic domain. Eur. J. Immunol. 25:2765–2769.

    Article  PubMed  CAS  Google Scholar 

  38. Osorio, L. M., Ordonez, C., Garcia, C. A., Jondal, M., and Chow, S. C. 1995. Evidence for protein tyrosine kinase involvement in CD6-induced T cell proliferation. Cell. Immunol. 166:44–52.

    Article  PubMed  CAS  Google Scholar 

  39. Swack, J. A., Mier, J. W., Romain, P. L., Hull, S. R., and Rudd, C. E. 1991. Biosynthesis and post-translational modification of CD6, a T cell signal-transducing molecule. J. Biol. Chem. 266:7137–7143.

    PubMed  CAS  Google Scholar 

  40. Patel, D. D., Wee, S. F., Whichard, L. P., Bowen, M. A., Pesando, J. M., Aruffo, A., and Haynes, B. F. 1995. Identification and characterization of a 100-kD ligand for CD6 on human thymic epithelial cells. J. Exp. Med. 181:1563–1568.

    Article  PubMed  CAS  Google Scholar 

  41. Bowen, M. A., Patel, D. D., Li, X., Modrell, B., Malacko, A. R., Wang, W. C., Marquardt, H., Neubauer, M., Pesando, J. M., Francke, U., et al. 1995. Cloning, mapping, and characterization of activated leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand. J. Exp. Med. 181:2213–2220.

    Article  PubMed  CAS  Google Scholar 

  42. Haynes, B. F., Dennis, S. M., Singer, K. H., and Kurtzberg, J. 1989. Ontogeny of T-cell precursors: A model for the initial stages of human T-cell development. Immunol. Today 10:87–91.

    Article  PubMed  CAS  Google Scholar 

  43. Lazarovits, A. I., Osman, N., Le Feuvre, C. E., Ley, S. C., and Crumpton, M. J. 1994. CD7 is associated with CD3 and CD45 on human T cells. J. Immunol. 153:3956–3966.

    PubMed  CAS  Google Scholar 

  44. Ward, S. G., Parry, R., LeFeuvre, C., Sansom, D. M., Westwick, J., and Lazarovits, A. I. 1995. Antibody ligation of CD7 leads to association with phosphoinositide 3-kinase and phosphatidylinositol 3,4,5-trisphosphate formation in T lymphocytes. Eur. J. Immunol. 25:502–507.

    Article  PubMed  CAS  Google Scholar 

  45. Rabinowich, H., Lin, W. C., Herberman, R. B., and Whiteside, T. L. 1994. Signaling via CD7 molecules on human NK cells. Induction of tyrosine phosphorylation and beta 1 integrin-mediated adhesion to fibronectin. J. Immunol. 153:3504–3513.

    PubMed  CAS  Google Scholar 

  46. Schanberg, L. E., Lee, D. M., Fleenor, D. E., Ware, R. E., Patel, D. D., Haynes, B. F., and Kaufman, R. E. 1995. Characterization of human CD7 transgenic mice. J. Immunol. 155:2407–2418.

    PubMed  CAS  Google Scholar 

  47. Parrott, D. M., Tait, C., MacKenzie, S., Mowat, A. M., Davies, M. D., and Micklem, H. S. 1983. Analysis of the effector functions of different populations of mucosal lymphocytes. Ann. N.Y. Acad. Sci. 409:307–320.

    Article  PubMed  CAS  Google Scholar 

  48. Zuniga Pflucker, J. C., Jones, L. A., Longo, D. L., and Kruisbeek, A. M. 1990. CD8 is required during positive selection of CD4 /CD8+ T cells. J. Exp. Med. 171:427–437.

    Article  PubMed  CAS  Google Scholar 

  49. Fung-Leung, W. P., Schilham, M. W., Rahemtulla, A., Kundig, T. M., Vollenweider, M., and Potter, J. 1991. CD8 is needed for development of cytotoxic T cells but not helper T cells. Cell 65:443–449.

    Article  PubMed  CAS  Google Scholar 

  50. Boucheix, C., Benoit, P., Frachet, P., Billard, M., Worthington, R. E., Gagnon, J., and Uzan, G. 1991. Molecular cloning of the CD9 antigen. A new family of cell surface proteins. J. Biol. Chem. 266:117–122.

    PubMed  CAS  Google Scholar 

  51. Ozaki, Y., Satoh, K., Kuroda, K., Qi, R., Yatomi, Y., Yanagi, S., Sada, K., Yamamura, H., Yanabu, M., Nomura, S., et al. 1995. Anti-CD9 monoclonal antibody activates p72syk in human platelets. J. Biol. Chem. 270:15119–15124.

    Article  PubMed  CAS  Google Scholar 

  52. Willett, B. J., and Neil, J. C. 1995. cDNA cloning and eukaryotic expression of feline CD9. Mol. Immunol. 32:417–423.

    Article  PubMed  CAS  Google Scholar 

  53. Willett, B. J., Hosie, M. J., Jarrett, O., and Neil, J. C. 1994. Identification of a putative cellular receptor for feline immunodeficiency virus as the feline homologue of CD9. Immunology 81:228–233.

    PubMed  CAS  Google Scholar 

  54. Masellis Smith, A., and Shaw, A. R. 1994. CD9-regulated adhesion. Anti-CD9 monoclonal antibody induces pre-B cell adhesion to bone marrow fibroblasts through de novo recognition of fibronectin. J. Immunol. 152:2768–2777.

    PubMed  CAS  Google Scholar 

  55. Shaw, A. R., Domanska, A., Mak, A., Gilchrist, A., Dobler, K., Visser, L., Poppema, S., Fliegel, L., Letarte, M., and Willett, B. J. 1995. Ectopic expression of human and feline CD9 in a human B cell line confers beta 1 integrin-dependent motility on fibronectin and laminin substrates and enhanced tyrosine phosphorylation. J. Biol. Chem. 270:24092–24099.

    Article  PubMed  CAS  Google Scholar 

  56. Oritani, K., Wu, X., Medina, K., Hudson, J., Miyake, K., Gimble, J. M., Burstein, S. A., and Kincade, P. W. 1996. Antibody ligation of CD9 modifies production of myeloid cells in long-term cultures. Blood 87:2252–2261.

    PubMed  CAS  Google Scholar 

  57. Kalled, S. L., Siva, N., Stein, H., and Reinherz, E. L. 1995. The distribution of CD10 (NEP 24.11, CALLA) in humans and mice is similar in non-lymphoid organs but differs within the hematopoietic system: Absence on murine T and B lymphoid progenitors. Eur. J. Immunol. 25:677–687.

    Article  PubMed  CAS  Google Scholar 

  58. Mari, B., Breittmayer, J. P., Guerin, S., Belhacene, N., Peyron, J. F., Deckert, M., Rossi, B., and Auberger, P. 1994. High levels of functional endopeptidase 24.11 (CD10) activity on human thymocytes: Preferential expression on immature subsets. Immunology 82:433–438.

    PubMed  CAS  Google Scholar 

  59. Letarte, M., Vera, S., Tran, R., Addis, J. B., Onizuka, R. J., Quackenbush, E. J., Jongeneel, C. V., and McInnes, R. R. 1988. Common acute lymphocytic leukemia antigen is identical to neutral endopeptidase. J. Exp. Med. 168:1247–1253.

    Article  PubMed  CAS  Google Scholar 

  60. Shipp, M. A., Stefano, G. B., D’Adamio, L., Switzer, S. N., Howard, F. D., Sinisterra, J., Scharrer, B., and Reinherz, E. L. 1990. Downregulation of enkephalin-mediated inflammatory responses by CD10/neutral endopeptidase 24.11. Nature 347:394–396.

    Article  PubMed  CAS  Google Scholar 

  61. Werfel, T., Sonntag, G., Weber, M. H., and Goetze, O. 1991. Rapid increases in the membrane expression of neutral endopeptidase (CD10), aminopeptidase N (CD13), tyrosine phosphatase (CD45), and Fc gamma-RIII (CD16) upon stimulation of human peripheral leukocytes with human C5a. J. Immunol. 147:3909–3914.

    PubMed  CAS  Google Scholar 

  62. Salles, G., Rodewald, H. R., Chin, B. S., Reinherz, E. L., and Shipp, M. A. 1993. Inhibition of CD10/neutral endopeptidase 24.11 promotes B-cell reconstitution and maturation in vivo. Proc. Natl. Acad. Sci. USA 90:7618–7622.

    Article  PubMed  CAS  Google Scholar 

  63. Salles, G., Chen, C. Y., Reinherz, E. L., and Shipp, M. A. 1992. CD10/NEP is expressed on Thy-llow B220+ murine B-cell progenitors and functions to regulate stromal cell-dependent lymphopoiesis. Blood 80:2021–2029.

    PubMed  CAS  Google Scholar 

  64. Delikat, S. E., Galvani, D. W., and Zuzel, M. 1994. A function of CD10 on bone marrow stroma. Br. J. Haematol. 87:655–657.

    PubMed  CAS  Google Scholar 

  65. Shipp, M. A., Stefano, G. B., Switzer, S. N., Griffin, J. D., and Reinherz, E. L. 1991. CDI0 (CALLA)/neutral endopeptidase 24.11 modulates inflammatory peptide-induced changes in neutrophil morphology, migration, and adhesion proteins and is itself regulated by neutrophil activation. Blood 78:1834–1841.

    PubMed  CAS  Google Scholar 

  66. McCormack, R. T., Nelson, R. D., and LeBien, T. W. 1986. Structure/function studies of the common acute lymphoblastic leukemia antigen (CALLA/CD10) expressed on human neutrophils. J. Immunol. 137:1075–1082.

    PubMed  CAS  Google Scholar 

  67. Luscinskas, F. W., Kansas, G. S., Ding, H., Pizcueta, P., Schleiffenbaum, B. E., Tedder, T. F., and Gimbrone, M. A., Jr. 1994. Monocyte rolling, arrest and spreading on IL-4-activated vascular endothelium under flow is mediated via sequential action of L-selection, beta 1-integrins, and beta 2-integrins. J. Cell Biol. 125:1417–1427.

    Article  PubMed  CAS  Google Scholar 

  68. Albelda, S. M., Smith, C. W., and Ward, P. A. 1994. Adhesion molecules and inflammatory injury. FASEB J. 8:504–512.

    PubMed  CAS  Google Scholar 

  69. Schmits, R., Kundig, T. M., Baker, D. M., Shumaker, G., Simard, J. J. L., Duncan, G., Wakeham, A., Shahinian, A., Vanderheiden, A., Bachmann, M. F., Ohashi, P. S., Mak, T. W., and Hickstein, D. D. 1996. LFA-1-deficient mice show normal CTL responses to virus but fail to reject immunogenic tumor. J. Exp. Med. 183:1415–1426.

    Article  PubMed  CAS  Google Scholar 

  70. Vetvicka, V., Thornton, B. P., and Ross, G. D. 1996. Soluble beta-glucan polysaccharide binding to the lectin site of neutrophil or natural killer cell complement receptor type 3 (CD11b/CD18) generates a primed state of the receptor capable of mediating cytotoxicity of iC3b-opsonized target cells. J. Clin. Invest. 98:50–61.

    PubMed  CAS  Google Scholar 

  71. Wright, S. D., Weitz, J. I., Huang, A. J., Levin, S. M., Silverstein, S. C., and Loike, J. D. 1988. Complement receptor type three (CD11b/CD18) of human polymorphonuclear leukocytes recognizes fibrinogen. Proc. Natl. Acad. Sci. USA 85:7734–7738.

    Article  PubMed  CAS  Google Scholar 

  72. Altieri, D. C., and Edgington, T. S. 1988. The saturable high affinity association of factor X to ADP-stimulated monocytes defines a novel function of the Mac-1 receptor. J. Biol. Chem. 263:7007–7015.

    PubMed  CAS  Google Scholar 

  73. Wright, S. D., and Jong, M. T. 1986. Adhesion-promoting receptors on human macrophages recognize Escherichia coli by binding to lipopolysaccharide. J. Exp. Med. 164:1876–1888.

    Article  PubMed  CAS  Google Scholar 

  74. Diamond, M. S., Alon, R., Parkos, C. A., Quinn, M. T., and Springer, T. A. 1995. Heparin is an adhesive ligand for the leukocyte integrin Mac-1 (CD11b/CD1). J. Cell Biol. 130:1473–1482.

    Article  PubMed  CAS  Google Scholar 

  75. Lub, M., van Kooyk, Y., and Figdor, C. G. 1996. Competition between lymphocyte functioning-associated antigen 1 (CD11a/CD18) and Mac-1 (CD11b/CD18) for binding to intercellular adhesion molecule-1 (CD54). J. Leukoc. Biol. 59:648–655.

    PubMed  CAS  Google Scholar 

  76. Lecoanet-henchoz, S., Gauchat, J. F., Aubry, J. P., Graber, P., Life, P., Paul Eugene, N., Ferrua, B., Corbi, A. L., Dugas, D., Plater Zyberk, C., et al. 1995. CD23 regulates monocyte activation through a novel interaction with the adhesion molecules CD11b-CD18 and CD11c-CD18. Immunity 3:119–125.

    Article  PubMed  CAS  Google Scholar 

  77. Postigo, A. A., Corbi, A. L., Sanchez Madrid, F., and de Landazuri, M. O. 1991. Regulated expression and function of Cd11c/CD18 integrin on human B lymphocytes. Relation between attachment to fibrinogen and triggering of proliferation through CD11c/CD18. J. Exp. Med. 174:1313–1322.

    Article  PubMed  CAS  Google Scholar 

  78. Ingalls, R. R., and Golenbock, D. T. 1995. CD11c/CD18, a transmembrane signaling receptor for lipopolysaccharide. J. Exp. Med. 181:1473–1479.

    Article  PubMed  CAS  Google Scholar 

  79. Bilsland, C. A., Diamond, M. S., and Springer, T. A. 1994. The leukocyte integrin p150,95 (CD11c/CD18) as a receptor for iC3b. Activation by a heterologous beta subunit and localization of a ligand recognition site to the I domain. J. Immunol. 152:4582–4589.

    PubMed  CAS  Google Scholar 

  80. Blackford, J., Reid, H. W., Pappin, D. J., Bowers, F. S., and Wilkinson, J. M. 1996. A monoclonal antibody, 3/22, to rabbit CD11c which induces homotypic T cell aggregation: Evidence that ICAM-I is a ligand for CD11c/CD18. Eur. J. Immunol. 26:525–531.

    Article  PubMed  CAS  Google Scholar 

  81. Ruf, A., and Patscheke, H. 1995. Platelet-induced neutrophil activation: Platelet-expressed fibrinogen induces the oxidative burst in neutrophils by an interaction with CD11C/CD18. Br. J. Haematol. 90:791–796.

    PubMed  CAS  Google Scholar 

  82. Patel, D. D., Whichard, L. P., Radcliff, G., Denning, S. M., and Haynes, B. F. 1995. Characterization of human thymic epithelial cell surface antigens: Phenotypic similarity of thymic epithelial cells to epidermal keratinocytes. J. Clin. Immunol. 15:80–92.

    Article  PubMed  CAS  Google Scholar 

  83. Shipp, M. A., and Look, A. T. 1993. Hematopoietic differentiation antigens that are membrane-associated enzymes: Cutting is the key. Blood 82:1052–1070.

    PubMed  CAS  Google Scholar 

  84. Larsen, S. L., Pedersen, L. O., Buus, S., and Stryhn, A. 1996. T cell responses affected by aminopeptidase N (CD13)-mediated trimming of major histocompatibility complex class II-bound peptides. J. Exp. Med. 184:183–189.

    Article  PubMed  CAS  Google Scholar 

  85. Small, M., Kaiser, M., Tse, W., Heimfeld, S., and Blumberg, S. 1996. Activity of neutral endopeptidase and aminopeptidase N in mouse thymic stromal cells which bind double-positive thymocytes. Eur. J. Immunol. 26:961–964.

    Article  PubMed  CAS  Google Scholar 

  86. Giugni, T. D., Soederberg, C., Ham, D. J., Bautista, R. M., Hedlund, K. O., Moeller, E., and Zaia, J. A. 1996. Neutralization of human cytomegalovirus by human CD13-specific antibodies. J. Infect. Dis. 173:1062–1071.

    PubMed  CAS  Google Scholar 

  87. Soderberg, C., Sumitran Karuppan, S., Ljungman, P., and Moller, E. 1996. CD13-specific autoimmunity in cytomegalovirus-infected immunocompromised patients. Transplantation 61:594–600.

    Article  PubMed  CAS  Google Scholar 

  88. Fujii, H., Nakajima, M., Saiki, I., Yoneda, J., Azuma, I., and Tsuruo, T. 1995. Human melanoma invasion and metastasis enhancement by high expression of aminopeptidase N/CD13. Clin. Exp. Metastasis 13:337–344.

    Article  PubMed  CAS  Google Scholar 

  89. Fearns, C., Kravchenko, V. V., Ulevitch, R. J., and Loskutoff, D. J. 1995. Murine CD14 gene expression in vivo: Extramyeloid synthesis and regulation by lipopolysaccharide. J. Exp. Med. 181:857–866.

    Article  PubMed  CAS  Google Scholar 

  90. Hailman, E., Vasselon, T., Kelley, M., Busse, L. A., Hu, M. C., Lichenstein, H. S., Detmers, P. A., and Wright, S. D. 1996. Stimulation of macrophages and neutrophils by complexes of lipopolysaccharide and soluble CD14. J. Immunol. 156:4384–4390.

    PubMed  CAS  Google Scholar 

  91. Bufler, P., Stiegler, G., Schuchmann, M., Hess, S., Krueger, C., Stelter, F., Eckerskorn, C., Schuett, C., and Engelmann, H. 1995. Soluble lipopolysaccharide receptor (CD14) is released via two different mechanisms from human monocytes and CD14 transfectants. Eur. J. Immunol. 25:604–610.

    Article  PubMed  CAS  Google Scholar 

  92. Zarewych, D. M., Kindzelskii, A. L., Todd, R. F., 3, and Petty, H. R. 1996. LPS induces CD14 association with complement receptor type 3, which is reversed by neutrophil adhesion. J. Immunol. 156:430–433.

    PubMed  CAS  Google Scholar 

  93. Ulevitch, R. J., and Tobias, P. S. 1994. Recognition of endotoxin by cells leading to transmembrane signaling. Curr. Opin. Immunol. 6:125–130.

    Article  PubMed  CAS  Google Scholar 

  94. Kusunoki, T., Hailman, E., Juan, T. S., Lichenstein, H. S., and Wright, S. D. 1995. Molecules from Staphylococcus aureus that bind CD14 and stimulate innate immune responses. J. Exp. Med. 182:1673–1682.

    Article  PubMed  CAS  Google Scholar 

  95. Haziot, A., Rong, G. W., Lin, X. Y., Silver, J., and Goyert, S. M. 1995. Recombinant soluble CD14 prevents mortality in mice treated with endotoxin (lipopolysaccharide). J. Immunol. 154:6529–6532.

    PubMed  CAS  Google Scholar 

  96. Haziot, A., Ferrero, E., Koentgen, F., Hijiya, N., Yamamoto, S., Silver, J., Stewart, C. L., and Goyert, S. M. 1996. Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice. Immunity 4:407–414.

    Article  PubMed  CAS  Google Scholar 

  97. Ball, E. D. 1995. Introduction: Workshop summary of the CD15 monoclonal antibody panel from the Fifth International Workshop on Leukocyte Antigens. Eur. J. Morphol. 33:95–100.

    PubMed  CAS  Google Scholar 

  98. Lund-Johansen, F., Olweus, J., Horejsi, V., Skubitz, K. M., Thompson, J. S., Vilella, R., and Symington, F. W. 1992. Activation of human phagocytes through carbohydrate antigens (CD15, sialyl-CD15, CDw17, and CDw65). J. Immunol. 148:3221–3229.

    PubMed  CAS  Google Scholar 

  99. Forsyth, K. D., Simpson, A. C., and Levinsky, R. J. 1989. CD15 antibodies increase neutrophil adhesion to endothelium by an LFA-1-dependent mechanism. Eur. J. Immunol. 19:1331–1334.

    Article  PubMed  CAS  Google Scholar 

  100. Warren, H. S., Altin, J. G., Waldron, J. C., Kinnear, B. F., and Parish, C. R. 1996. A carbohydrate structure associated with CD15 (Lewis x) on myeloid cells is a novel ligand for human CD2. J. Immunol. 156:2866–2873.

    PubMed  CAS  Google Scholar 

  101. Edberg, J. C., Salmon, J. E., and Kimberly, R. P. 1992. Functional capability of Fc gamma receptor III (CD16) on human neutrophils. Immunol. Res. 11:239–251.

    PubMed  CAS  Google Scholar 

  102. Blom, T., Nilsson, G., Sundstroem, C., Nilsson, K., and Hellman, L. 1996. Characterization of a human basophil-like cell line (LAMA-84). Scand. J. Immunol. 44:54–61.

    Article  PubMed  CAS  Google Scholar 

  103. Fuereder, W., Agis, H., Sperr, W. R., Lechner, K., and Valent, P. 1994. The surface membrane antigen phenotype of human blood basophils. Allergy 49:861–865.

    Article  Google Scholar 

  104. Symington, F. W. 1989. CDw17: A neutrophil glycolipid antigen regulated by activation. J. Immunol. 142:2784–2790.

    PubMed  CAS  Google Scholar 

  105. Lannert, H., Buenning, C., Jeckel, D., and Wieland, F. T. 1994. Lactosylceramide is synthesized in the lumen of the Golgi apparatus. FEBS Lett. 342:91–96.

    Article  PubMed  CAS  Google Scholar 

  106. Lund Johansen, F., Olweus, J., Horejsi, V., Skubitz, K. M., Thompson, J. S., Vilella, R., and Symington, F. W. 1992. Activation of human phagocytes through carbohydrate antigens (CD15, sialyl-CD15, CDw17, and CDw65). J. Immunol. 148:3221–3229.

    PubMed  CAS  Google Scholar 

  107. Bhunia, A. K., Han, H., Snowden, A., and Chatterjee, S. 1996. Lactosylceramide stimulates Ras-GTP loading, kinases (MEK, Raf), p44 mitogen-activated protein kinase, and c-fos expression in human aortic smooth muscle cells. J. Biol. Chem. 271:10660–10666.

    Article  PubMed  CAS  Google Scholar 

  108. Arnaout, M. A., Spits, H., Terhorst, C., Pitt, J., and Todd, R. F., III. 1984. Deficiency of a leukocyte surface glycoprotein (LFA-1) in two patients with Mol deficiency. Effects of cell activation on Mol/LFA-1 surface expression in normal and deficient leukocytes. J. Clin. Invest. 74:1291–1300.

    PubMed  CAS  Google Scholar 

  109. Beatty, P. G., Ochs, H. D., Harlan, J. M., Price, T. H., Rosen, H., Taylor, R. F., Hansen, J. A., and Klebanoff, S. J. 1984. Absence of monoclonal-antibody-defined protein complex in boy with abnormal leucocyte function. Lancet 1:535–537.

    Article  PubMed  CAS  Google Scholar 

  110. Buescher, E. S., Gaither, T., Nath, J., and Gallin, J. I. 1985. Abnormal adherence-related functions of neutrophils, monocytes, and Epstein-Barr virus-transformed B cells in a patient with C3bi receptor deficiency. Blood 65:1382–1390.

    PubMed  CAS  Google Scholar 

  111. Nadler, L. M., Anderson, K. C., Marti, G., Bates, M., Park, E., Daley, J. F., and Schlossman, S. F. 1983. B4, a human B lymphocyte-associated antigen expressed on normal, mitogen-activated, and malignant B lymphocytes. J. Immunol. 131:244–250.

    PubMed  CAS  Google Scholar 

  112. Stamenkovic, I., and Seed, B. 1988. CD19, the earliest differentiation antigen of the B cell lineage, bears three extracellular immunoglobulin-like domains and an Epstein-Barr virus-related cytoplasmic tail. J. Exp. Med. 168:1205–1210.

    Article  PubMed  CAS  Google Scholar 

  113. Tedder, T. F., and Isaacs, C. M. 1989. Isolation of cDNAs encoding the CD19 antigen of human and mouse B lymphocytes—A new member of the immunoglobulin superfamily. J. Immunol. 143:712–717.

    PubMed  CAS  Google Scholar 

  114. Chalupny, N. J., Aruffo, A., Esselstyn, J. M., Chan, P. Y., Bajorath, J., Blake, J., Gilliland, L. K., Ledbetter, J. A., and Tepper, M. A. 1995. Specific binding of FYN and phosphatidylinositol 3-kinase to the B-cell surface glycoprotein CD19 through their SRC homology-2 domains. Eur. J. Immunol. 25:2978–2984.

    Article  PubMed  CAS  Google Scholar 

  115. Krop, I., Shaffer, A. L., Fearon, D. T., and Schlissel, M. S. 1996. The signaling activity of murine CD19 is regulated during cell development. J. Immunol. 157:48–56.

    PubMed  CAS  Google Scholar 

  116. Callard, R. E. Rigley, K. P., Smith, S. H., Thurstan, S., and Shields, J. G. 1992. CD19 regulation of human B cell responses. B cell proliferation and antibody secretion are inhibited or enhanced by ligation of the CD19 surface glycoprotein depending on the stimulating signal used. J. Immunol. 148:2983–2987.

    PubMed  CAS  Google Scholar 

  117. Carter, R. H., and Fearon, D. T. 1992. CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 256:105–107.

    Article  PubMed  CAS  Google Scholar 

  118. Fearon, D. T. 1993. The CD19-CR2-TAPA-1 complex, CD45 and signaling by the antigen receptor of B lymphocytes. Curr. Opin. Immunol. 5:341–348.

    Article  PubMed  CAS  Google Scholar 

  119. Tedder, T. E., and Engel, P. 1994. CD20—A regulator of cell-cycle progression of B-lymphocytes. Immunol. Today 15:450–454.

    Article  PubMed  CAS  Google Scholar 

  120. Bubien, J. K., Zhou, L. J., Bell, P. D., Frizzell, R. A., and Tedder, T. F. 1993. Transfection of the CD20 cell surface molecule into eclopic cell types generates a Ca2+ conductance found con.stitutively in B lymphocytes.. J. Cell Biol. 121:1121–1132.

    Article  PubMed  CAS  Google Scholar 

  121. Deans, J. P., Schieven, G. L., Shu, G. L., Valentine, M. A., Gilliland, L. A., Aruffo, A., Clark, E. A. and Ledbetter, J. A. 1993. Association of tyrosine and serine kinases with the B cell surface antigen CD20. Induction via CD20 of tyrosine phosphorylation and activation of phospholipase C-gamma 1 and PLC phospholipase C-gamma 2. J. Immunol. 151:4494–4504.

    PubMed  CAS  Google Scholar 

  122. Stashenko, P., Nadler, L. M., Hardy, R., and Schlossman, S. F. 1981. Expression of cell surface markers after human B lymphocyte activation. Proc. Natl. Acad. Sci. USA 176:1543–1550.

    Google Scholar 

  123. Clark, E. A., and Ledbelter, J. A. 1986. Activation of human B cell proliferation through surface Bp35 and Bp50. Proc. Natl. Acad. Sci. USA 83:4494–4498.

    Article  PubMed  CAS  Google Scholar 

  124. Golay, J. T., Clark, E. A., and Beverley, P. C. 1985. The CD20 (Bp35) antigen is involved in activation of B cells from the G0 to the G1 phase of the cell cycle. J. Immunol. 135:3795–3801.

    PubMed  CAS  Google Scholar 

  125. Tsoukas, C. D., and Lambris, J. D. 1993. Expression of EBV/C3d receptors on T cells: Biological significance. Immunol. Today 14:56–59.

    Article  PubMed  CAS  Google Scholar 

  126. Aubry, J. P., Pochon, S., Graber, P., Jansen, K. U., and Bonnefoy, J. Y. 1992. CD21 is a ligand for CD23 and regulates IgE production. Nature 358:505–507.

    Article  PubMed  CAS  Google Scholar 

  127. Bonnefoy, J. Y., Gauchat, J. F., Life, P., Graber, P., Aubry, J. P., and Lecoanethenchoz, S. 1995. Regulation of IgE synthesis by CD23/CD21 interaction. Int. Arch. Allergy Immunol. 107:40–42.

    Article  PubMed  CAS  Google Scholar 

  128. Tanner, J. E., Alfieri, C., Chatila, T. A., and Diaz Mitoma, F. 1996. Induction of interleukin-6 after stimulation of human B-cell CD21 by Epstein-Barr virus glycoproteins gp350 and gp220. J. Virol. 70:570–575.

    PubMed  CAS  Google Scholar 

  129. Larcher, C., Kempkes, B., Kremmer, E., Prodinger, W. M., Pawlita, M., Bornkamm, G. W., and Dierich, M. P. 1995. Expression of Epstein-Barr virus nuclear antigen-2 (EBNA2) induces CD21/CR2 on B and T cell lines and shedding of soluble CD21. Eur. J. Immunol. 25:1713–1719.

    Article  PubMed  CAS  Google Scholar 

  130. Stamenkovic, I., and Seed, B. 1990. The B cell antigen CD22 mediates monocyte and erythrocyte adhesion. Nature 345:74–77.

    Article  PubMed  CAS  Google Scholar 

  131. Wilson, G. L., Fox, C. H., Fauci, A. S., and Kehrl, J. H. 1991. cDNA cloning of the B cell membrane protein CD22: A mediator of B-B cell interactions. J. Exp. Med. 173:137–146.

    Article  PubMed  CAS  Google Scholar 

  132. Law, C. L., Sidorenko, S. P., and Clark, E. A. 1994. Regulation of lymphocyte-activation by the cell-surface molecule CD22. Immunol. Today 15:442–449.

    Article  PubMed  CAS  Google Scholar 

  133. Clark, E. A. 1993. CD22, a B cell-specific receptor, mediates adhesion and signal transduction. J. Immunol. 150:4715–4718.

    PubMed  CAS  Google Scholar 

  134. Tuscano, J., Engel, P., Tedder, T. F., and Kehrl, J. H. 1996. Engagement of the adhesion receptor CD22 triggers a potent stimulatory signal for B-cells and blocking CD22/CD221 interactions impairs T-cell proliferation. Blood 87:4723–4730.

    PubMed  CAS  Google Scholar 

  135. Sgroi, D., and Stamenkovic, I. 1994. The B-cell adhesion molecule CD22 is cross-species reactive and recognizes distinct sialoglycoproteins on different functional T-ccll sub-populations. Scand. J. Immunol. 39:433–438.

    Article  PubMed  CAS  Google Scholar 

  136. Yokota, A., Yukawa, K., Yamamoto, A., Sugiyama, K., Suemura, M., Tashiro, Y., Kishimoto, T., and Kikutani, H. 1992. Two forms of the low-affinity Fc receptor for IgE differentially mediate endocytosis and phagocytosis: Identification of the critical cytoplasmic domains. Proc. Natl. Acad. Sci. USA 89:5030–5034.

    Article  PubMed  CAS  Google Scholar 

  137. Sarfati, M., Fournier, S., Wu, C. Y., and Delespesse, G. 1992. Expression, regulation and function of human Fc epsilon RII (CD23) antigen. Immunol. Res. 11:260–272.

    PubMed  CAS  Google Scholar 

  138. Yu, P., Kosco Vilbois, M., Richards, M., Kohler, G., and Lamers, M. C. 1994. Negative feedback regulation of IgE synthesis by murine CD23. Nature 369:753–756.

    Article  PubMed  CAS  Google Scholar 

  139. Fujiwara, H., Kikutani, H., Suematsu, S., Naka, T., Yoshida, K., Tanaka, T., Suemura, M., Matsumoto, N., Kojima, S., et al. 1994. The absence of IgE antibody-mediated augmentation of immune responses in CD23-deficient mice. Proc. Natl. Acad. Sci. USA 91:6835–6839.

    Article  PubMed  CAS  Google Scholar 

  140. Dugas, N., Vouldoukis, I., Becherel, P., Arock, M., Debre, P., Tardieu, M., Mossalayi, M. D., Delfraissy, J. F., Kolb, J. P., and Dugas, B. 1996. Triggering of CD23b antigen by anti-CD23 monoclonal antibodies induces interleukin-10 production by human macrophages. Eur. J. Immunol. 26:1394–1398.

    Article  PubMed  CAS  Google Scholar 

  141. Dugas, B., Mossalayi, M. D., Damais, C., and Kolb, J. P. 1995. Nitric oxide production by human monocytes: evidence for a role of CD23. Immunol. Today 16:574–580.

    Article  PubMed  CAS  Google Scholar 

  142. Hubbe, M., and Altevogt, P. 1994. Heat-stable antigen/CD24 on mouse T lymphocytes: Evidence for a costimulatory function. Eur. J. Immunol. 24:731–737.

    Article  PubMed  CAS  Google Scholar 

  143. Hough, M. R., Takei, F., Humphries, R. K., and Kay, R. 1994. Defective development of thymocytes overexpressing the costimulatory molecule, heat-stable antigen. J. Exp. Med. 179:177–184.

    Article  PubMed  CAS  Google Scholar 

  144. Aigner, S., Ruppert, M., Hubbe, M., Sammar, M., Sthoeger, Z., Butcher, E. C., Vestweber, D., and Altevogt, P. 1995. Heal stable antigen (mouse CD24) supports myeloid cell binding to endothelial and platelet P-selection. Int. Immunol. 7:1557–1565.

    Article  PubMed  CAS  Google Scholar 

  145. Sammar, M., Aigner, S., Hubbe, M., Schirrmacher, V., Schachner, M., Vestweber, D., and Altevogi, P. 1994. Heat-stable antigen (CD24) as ligand for mouse P-selectin. Int. Immunol. 6:1027–1036.

    Article  PubMed  CAS  Google Scholar 

  146. Wenger, R. H., Kopf, M., Nitschke, L., Lamers, M. C., Koehler, G., and Nielsen, P. J. 1995. B-cell maturation in chimaeric mice deficient for the heat stable antigen (HSA/mouse CD24). Transgenic Res. 4:173–183.

    Article  PubMed  CAS  Google Scholar 

  147. Duperray, C., Boiron, J. M., Boucheix, C., Cantaloube, J. F., Lavabre Bertrand, T., Attal, M., Brochier, J., Maraninchi, D., Bataille, R., and Klein, B. 1990. The CD24 antigen discriminates between pre-B and B cells in human bone marrow. J. Immunol. 145:3678–3683.

    PubMed  CAS  Google Scholar 

  148. Kondo, M., Ohashi, Y., Tada, K., Nakamura, M., and Sugamura, K. 1994. Expression of the mouse interleukin-2 receptor gamma chain in various cell populations of the thymus and spleen. Eur. J. Immunol. 24:2026–2030.

    Article  PubMed  CAS  Google Scholar 

  149. Willerford, D. M., Chen, J., Ferry, J. A., Davidson, L., Ma, A., and Alt, F. W. 1995. Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3:521–530.

    Article  PubMed  CAS  Google Scholar 

  150. Zuniga Pfluecker, J. C., Smith, K. A., Tentori, L., Pardoll, D. M., Longo, D. L., and Kruisbeek, A. M. 1990. Are the IL-2 receptors expressed in the murine fetal thymus functional? Dev. Immunol. 1:59–66.

    Google Scholar 

  151. Rolink, A., Grawunder, U., Winkler, T. H., Karasuyama, H., and Melchers, F. 1994. IL-2 receptor a chain (CD25,TAC) expression defines a crucial stage in pre-B cell development. Int. Immunol. 6:1257–1264.

    Article  PubMed  CAS  Google Scholar 

  152. Dong, R. P., Kameoka, J., Hegen, M., Tanaka, T., Xu, Y., Schlossman, S. F., and Morimoto, C. 1996. Characterization of adenosine deaminase binding to human CD26 on T cells and its biologic role in immune response. J. Immunol. 156:1349–1355.

    PubMed  CAS  Google Scholar 

  153. de Meester, I., Vanham, G., Kestens, L., Vanhoof, G., Bosmans, E., Gigase, P., and Scharpe, S. 1994. Binding of adenosine deaminase to the lymphocyte surface via CD26. Eur. J. Immunol. 24:566–570.

    Google Scholar 

  154. Mittruecker, H. W., Steeg, C., Malissen, B., and Fleischer, B. 1995. The cytoplasmic tail of the T cell receptor zeta chain is required for signaling via CD26. Eur. J. Immunol. 25:295–297.

    Article  CAS  Google Scholar 

  155. Tanaka, T., Duke-Cohan, J. S., Kameoka, J., Yaron, A., Lee, I., Schlossman, S. F., and Morimoto, C. 1994. Enhancement of antigen-induced T-cell proliferation by soluble CD26/dipeptidyl peptidase IV. Proc. Natl. Acad. Sci. USA 91:3082–3086.

    Article  PubMed  CAS  Google Scholar 

  156. Kameoka, J., Sato, T., Torimoto, Y., Sugita, K., Soiffer, R. J., Schlossman, S. F., Ritz, J., and Morimoto, C. 1995. Differential CD26-mediated activation of the CD3 and CD2 pathways after CD6-depleted allogeneic bone marrow transplantation. Blood 85:1132–1137.

    PubMed  CAS  Google Scholar 

  157. Martin, M., Huguet, J., Centelles, J. J., and Franco, R. 1995. Expression of ecto-adenosine deaminase and CD26 in human T cells triggered by the TCR-CD3 complex. Possible role of adenosine deaminase as costimulatory molecule. J. Immunol. 155:4630–4643.

    PubMed  CAS  Google Scholar 

  158. Gutheil, W. G., Subramanyam, M., Flentke, G. R., Sanford, D. G., Munoz, E., Huber, B. T., and Bachovchin, W. W. 1994. Human immunodeficiency virus 1 Tat binds to dipeptidyl aminopeptidase IV (CD26): A possible mechanism for Tat’s immunosuppressive activity. Proc. Natl. Acad. Sci. USA 91:6594–6598.

    Article  PubMed  CAS  Google Scholar 

  159. Oravecz, T., Roderiquez, G., Koffi, J., Wang, J., Ditto, M., Bou Habib, D. C., Lusso, P., and Norcross, M. A. 1995. CD26 expression correlates with entry, replication and cytopathicity of monocytotrophic HIV-1 strains in a T-cell line. Nat. Med. 1:919–926.

    Article  PubMed  CAS  Google Scholar 

  160. Callebaut, C., Krust, B., Jacotot, E., and Hovanessian, A. G. 1993. T cell activation antigen, CD26, as a cofactor for entry of HIV in CD4+ cells. Science 262:2045–2050.

    Article  PubMed  CAS  Google Scholar 

  161. Agematsu, K., Kobata, T., Sugita, K., Freeman, G. J., Beckmann, M. P., Schlossman, S. F., and Morimoto, C. 1994. Role of CD27 in T cell immune response. Analysis by recombinant soluble CD27. J. Immunol. 153:1421–1429.

    PubMed  CAS  Google Scholar 

  162. Bowman, M. R., Crimmins, M. A., Yetz Aldape, J., Kriz, R., Kelleher, K., and Herrmann, S. 1994. The cloning of CD70 and its identification as the ligand for CD27. J. Immunol. 152:1756–1761.

    PubMed  CAS  Google Scholar 

  163. Yang, F. C., Agematsu, K., Nakazawa, T., Mori, T., Ito, S., Kobata, T., Morimoto, C., and Komiyama, A. 1996. CD27/CD70 interaction directly induces natural killer cell killing activity. Immunology 88:289–293.

    Article  PubMed  CAS  Google Scholar 

  164. Agematsu, K., Kobata, T., Yang, F. C., Nakazawa, T., Fukushima, K., Kitahara, M., Mori, T., Sugita, K., Morimoto, C., and Komiyama, A. 1995. CD27/CD70 interaction directly drives B cell IgG and IgM synthesis. Eur. J. Immunol. 25:2825–2829.

    Article  PubMed  CAS  Google Scholar 

  165. Gravestein, L. A., Vanewijk, W., Ossendorp, F., and Borst, J. 1996. CD27 cooperates with the pre-T cell-receptor in the regulation of murine T-cell development. J. Exp. Med. 184:675–685.

    Article  PubMed  CAS  Google Scholar 

  166. Hintzen, R. Q., Lens, S. M., Lammers, K., Kuiper, H., Beckmann, M. P., and van Lier, R. A. 1995. Engagement of CD27 with its ligand CD70 provides a second signal for T cell activation. J. Immunol. 154:2612–2623.

    PubMed  CAS  Google Scholar 

  167. Kobata, T., Jacquot, S., Kozlowski, S., Agematsu, K., Schlossman, S. F., and Morimoto, C. 1995. CD27-CD70 interactions regulate B-cell activation by T cells. Proc. Natl Acad. Sci. USA 92:11249–11253.

    Article  PubMed  CAS  Google Scholar 

  168. Agematsu, K., Kobata, T., Sugita, K., Hirose, T., Schlossman, S. F., and Morimoto, C. 1995. Direct cellular communications between CD45R0 and CD45RA T cell subsets via CD27/CD70. J. Immunol. 154:3627–3635.

    PubMed  CAS  Google Scholar 

  169. Tortorella, C., Schulze Koops, H., Thomas, R., Splawski, J. B., Davis, L. S., Picker, L. J., and Lipsky, P. E. 1995. Expression of CD45RB and CD27 identifies subsets of CD4+ memory T cells with different capacities to induce B cell differentiation. J. Immunol. 155:149–162.

    PubMed  CAS  Google Scholar 

  170. Gross, J. A., St John, T., and Allison, J. P. 1990. The murine homologue of the T lymphocyte antigen CD28. Molecular cloning and cell surface expression. J. Immunol. 144:3201–3210.

    PubMed  CAS  Google Scholar 

  171. Gross, J. A., Callas, E., and Allison, J. P. 1992. Identification and distribution of the costimulatory receptor CD28 in the mouse. J. Immunol. 149:380–388.

    PubMed  CAS  Google Scholar 

  172. Turka, L. A., Ledbetter, J. A., Lee, K., June, C. H., and Thompson, C. B. 1990. CD28 is an inducible T cell surface antigen that transduces a proliferative signal in CD3+ mature thymocytes. J. Immunol. 144:1646–1653.

    PubMed  CAS  Google Scholar 

  173. Peach, R. J., Bajorath, J., Naemura, J., Leytze, G., Greene, J., Aruffo, A., and Linsley, P. S. 1995. Both extracellular immunoglobin-like domains of CD80 contain residues critical for binding T cell surface receptors CTLA-4 and CD28. J. Biol. Chem. 270:21181–21187.

    Article  PubMed  CAS  Google Scholar 

  174. Lanier, L. L., O’Fallon, S., Somoza, C., Phillips, J. H., Linsley, P. S., Okumura, K., Ito, D., and Azuma, M. 1995. CD80 (B7) and CD86 (B70) provide similar costimulatory signals for T cell proliferation, cytokine production, and generation of CTL. J. Immunol. 154:97–105.

    PubMed  CAS  Google Scholar 

  175. Hathcock, K. S., Laszlo, G., Pucillo, C., Linsley, P., and Hodes, R. J. 1994. Comparative analysis of B7-1 and B7-2 costimulatory ligands: Expression and function. J. Exp. Med. 180:631–640.

    Article  PubMed  CAS  Google Scholar 

  176. Linsley, P. S., Brady, W., Grosmaire, L., Aruffo, A., Damle, N. K., and Ledbetter, J. A. 1991. Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J. Exp. Med. 173:721–730.

    Article  PubMed  CAS  Google Scholar 

  177. Schwartz, R. H. 1996. Models of T-cell anergy—Is there a common molecular mechanism? J. Exp. Med. 184:1–8.

    Article  PubMed  CAS  Google Scholar 

  178. McArthur, J. G., and Raulet, D. H. 1993. CD28-induced costimulation of T helper type 2 cells mediated by induction of responsiveness to interleukin 4. J. Exp. Med. 178:1645–1653.

    Article  PubMed  CAS  Google Scholar 

  179. Thompson, C. B., Lindsten, T., Ledbetter, J. A., Kunkel, S. L., Young, H. A., Emerson, S. G., Leiden, J. M., and June, C. H. 1989. CD28 activation pathway regulates the production of multiple T-cell-derived lymphokines/cytokines. Proc. Natl. Acad. Sci. USA 86:1333–1337.

    Article  PubMed  CAS  Google Scholar 

  180. Linsley, P. S., and Ledbetter, J. A. 1993. The role of the CD28 receptor during T cell responses to antigen. Annu. Rev. Immunol. 11:191–212.

    PubMed  CAS  Google Scholar 

  181. Kundig, T. M., Shahinian, A., Kawai, K., Mittrucker, H. W., and Sebzda, E. 1996. Duration of TCR stimulation determines costimulatory requirement of T-cells. Immunity 5:41–52.

    Article  PubMed  CAS  Google Scholar 

  182. Lenschow, D. J., and Bluestone, J. A. 1993. T cell co-stimulation and in vivo tolerance. Curr. Opin. Immunol. 5:747–752.

    Article  PubMed  CAS  Google Scholar 

  183. Gao, J. X., and Issekutz, A. C. 1995. Polymorphonuclear leucocyte migration through human dermal fibroblast monolayers is dependent on both beta 2-integrin (CD11/CD18) and beta 1-integrin (CD29) mechanisms. Immunology 85:485–494.

    PubMed  CAS  Google Scholar 

  184. Chuluyan, H. E., Schall, T. J., Yoshimura, T., and Issekutz, A. C. 1995. IL-1 activation of endothelium supports VLA-4 (CD49d/CD29)-mediated monocyte transendothelial migration to C5a, MIP-1 alpha, RANTES, and PAF but inhibits migration to MCP-1: A regulatory role for endothelium-derived MCP-1. J. Leukoc. Biol. 58:71–79.

    PubMed  CAS  Google Scholar 

  185. Gao, J. X., Wilkins, J., and Issekutz, A. C. 1995. Migration of human polymorphonuclear leukocytes through a synovial fibroblast barrier is mediated by both beta 2 (CD11/CD18) integrins and the beta 1 (CD29) integrins VLA-5 and VLA-6. Cell. Immunol. 163:178–186.

    Article  PubMed  CAS  Google Scholar 

  186. Lecomte, O., Hauss, P., Barbat, C., Mazerolles, F., and Fischer, A. 1994. Role of LFA-1, CD2, VLA-5/CD29, and CD43 surface receptors in CD4+ T cell adhesion to B cells. Cell. Immunol. 158:376–388.

    Article  PubMed  CAS  Google Scholar 

  187. Ellis, T. M., Simms, P. E., Slivnick, D. J., Jack, H. M., and Fisher, R. I. 1993. CD30 is a signal-transducing molecule that defines a subset of human activated CD45RO+ T cells. J. Immunol. 151:2380–2389.

    PubMed  CAS  Google Scholar 

  188. Froese, P., Lemke, H., Gerdes, J., Havsteen, B., Schwarting, R., Hansen, H., and Stein, H. 1987. Biochemical characterization and biosynthesis of the Ki-1 antigen in Hodgkin-derived and virus-transformed human B and T lymphoid cell lines. J. Immunol. 139:2081–2087.

    PubMed  CAS  Google Scholar 

  189. Nawrocki, J. F., Kirsten, E. S., and Fisher, R. I. 1988. Biochemical and structural properties of a Hodgkin’s disease-related membrane protein. J. Immunol. 141:672–680.

    PubMed  CAS  Google Scholar 

  190. Durkop, H., Latza, U., Hummel, M., Eitelbach, F., Seed, B., and Stein, H. 1992. Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin’s disease. Cell 68:421–427.

    Article  PubMed  CAS  Google Scholar 

  191. Schwab, U., Stein, H., Gerdes, J., Lemke, H., Kirchner, H., Schaadt, M., and Diehl, V. 1982. Production of a monoclonal antibody specific for Hodgkin and Sternberg-Reed cells of Hodgkin’s disease and a subset of normal lymphoid cells. Nature 299:65–67.

    Article  PubMed  CAS  Google Scholar 

  192. Pallesen, G. 1990. The diagnostic significance of the CD30 (Ki-1) antigen. Histopathology 16:409–413.

    Article  PubMed  CAS  Google Scholar 

  193. Manetti, R., Annunziato, F., Biagiotti, R., Giudizi, M. G., Piccinni, M. P., Giannarini, L., Sampognaro, S., Parronchi, P., Vinante, F., Pizzolo, G., Maggi, E., and Romagnani, S. 1994. CD30 expression by CD8+ T cells producing type 2 helper cytokines. Evidence for large numbers of CD8+CD30+ T cell clones in human immunodeficiency virus infection. J. Exp. Med. 180:2407–2411.

    Article  PubMed  CAS  Google Scholar 

  194. Maggi, E., Giudizi, M. G., Biagiotti, R., Annunziato, F., Manetti, R., Piccinni, M. P., Parronchi, P., Sampognaro, S., Giannarini, L., Zuccati, G., and Romagnani, S. 1994. Th2-like CD8+ T cells showing B cell helper function and reduced cytolytic activity in human immunodeficiency virus type 1 infection. J. Exp. Med. 180:489–495.

    Article  PubMed  CAS  Google Scholar 

  195. Pizzolo, G., Vinante, F., Morosato, L., Nadali, G., Chilosi, M., Gandini, G., Sinicco, A., Raiteri, R., Semenzato, G., Stein, H., and Perona, G. 1994. High serum level of the soluble form of CD30 molecule in the early phase of HIV-1 infection as an independent predictor of progression to AIDS. AIDS 8:741–745.

    Article  PubMed  CAS  Google Scholar 

  196. Del Prete, G., De Carli, M., Almerigogna, F., Daniel, C. K., D’Elios, M. M., Zancuoghi, G., Vinante, F., Pizzolo, G., and Romagnani, S. 1995. Preferential expression of CD30 by human CD4+ T cells producing Th2-type cytokines. FASEB J. 9:81–86.

    PubMed  Google Scholar 

  197. Schuurman, H. J., van Wichen, D., and de Weger, R. A. 1989. Expression of activation antigens on thymocytes in the ‘common thymocyte’ stage of differentiation. Thymus 14:43–53.

    PubMed  CAS  Google Scholar 

  198. Amakawa, R., Hakem, A., Kundig, T., Matsuyama, T., Simard, J. J. L., Timms, E., Wakeham, A., Mittrucker, H. W., Griesser, H., Takimoto, H., Schmits, R., Shahinian, A., Ohashi, P., Penninger, J., and Mak, T. W. 1996. Impaired negative selection of T cells in Hodgkin’s disease antigen CD30-deficient mice. Cell 84:551–562.

    Article  PubMed  CAS  Google Scholar 

  199. Smith, C. A., Gruss, H. J., Davis, T., Anderson, D., Farrah, T., Baker, E., Sutherland, G. R., Brannan, C. I., Copeland, N. G., Jenkins, N. A., Grabstein, K. H., Gliniak, B., McAlister, I. B., Fanslow, W., Alderson, M., Falk, B., Gimpel, S., Gillis, S., Din, W. S., Goodwin, R. G., and Armitage, R. J. 1993. CD30 antigen, a marker for Hodgkin’s lymphoma, is a receptor whose ligand defines an emerging family of cytokines with homology to TNF. Cell 73:1349–1360.

    Article  PubMed  CAS  Google Scholar 

  200. Gruss, H. J., Boiani, N., Williams, D. E., Armitage, R. J., Smith, C. A., and Goodwin, R. G. 1994. Pleiotropic effects of the CD30 ligand on CD30-expressing cells and lymphoma cell lines. Blood 83:2045–2056.

    PubMed  CAS  Google Scholar 

  201. Goldberger, A., Middleton, K. A., Oliver, J. A., Paddock, C., Yan, H. C, DeLisser, H. M., Albelda, S. M., and Newman, P. J. 1994. Biosynthesis and processing of the cell adhesion molecule PECAM-1 includes production of a soluble form. J. Biol. Chem. 269:17183–17191.

    PubMed  CAS  Google Scholar 

  202. Yan, H. C., Baldwin, H. S., Sun, J., Buck, C. A., Albelda, S. M., and DeLisser, H. M. 1995. Alternative splicing of a specific cytoplasmic exon alters the binding characteristics of murine platelet/endothelial cell adhesion molecule-1 (PECAM-1). J. Biol. Chem. 270:23672–23680.

    Article  PubMed  CAS  Google Scholar 

  203. Tanaka, Y., Albelda, S. M., Horgan, K. J., van Seventer, G. A., Shimizu, Y., Newman, W., Hallam, J., Newman, P. J., Buck, C. A., and Shaw, S. 1992. CD31 expressed on distinctive T cell subsets is a preferential amplifier of beta 1 integrin-mediated adhesion. J. Exp. Med. 176:245–253.

    Article  PubMed  CAS  Google Scholar 

  204. Piali, L., Hammel, P., Uherek, C., Bachmann, F., Gisler, R. H., Dunon, D., and Imhof, B. A. 1995. CD31/PECAM-1 is a ligand for alpha v beta 3 integrin involved in adhesion of leukocytes to endothelium. J. Cell Biol. 130:451–460.

    Article  PubMed  CAS  Google Scholar 

  205. Zocchi, M. R., Ferrero, E., Leone, B. E., Rovere, P., Bianchi, E., Toninelli, E., and Pardi, R. 1996. CD31/PECAM-1-driven chemokine-independent transmigration of human T lymphocytes. Eur. J. Immunol. 26:759–767.

    Article  PubMed  CAS  Google Scholar 

  206. Watt, S. M., Gschmeissner, S. E., and Bates, P. A. 1995. PECAM-1: Its expression and function as a cell adhesion molecule on hemopoietic and endothelial cells. Leuk. Lymphoma 17:229–244.

    PubMed  CAS  Google Scholar 

  207. Berman, M. E., Xie, Y., and Muller, W. A. 1996. Roles of platelet/endothelial cell adhesion molecule-1 (PECAM-1, CD31) in natural killer cell transendothelial migration and beta 2 integrin activation. J. Immunol. 156:1515–1524.

    PubMed  CAS  Google Scholar 

  208. Liao, F., Huynh, H. K., Eiroa, A., Greene, T., Polizzi, E., and Muller, W. A. 1995. Migration of monocytes across endothelium and passage through extracellular matrix involve separate molecular domains of PECAM-1. J. Exp. Med. 182:1337–1343.

    Article  PubMed  CAS  Google Scholar 

  209. Mantzioris, B. X., Berger, M. F., Sewell, W., and Zola, H. 1993. Expression of the Fc receptor for IgG (Fc gamma RII/CDw32) by human circulating T and B lymphocytes. J. Immunol. 150:5175–5184.

    PubMed  CAS  Google Scholar 

  210. Sandor, M., and Lynch, R. G. 1993.Lymphocyte Fc receptors: The special case of T cells. Immunol. Today 14:227–231.

    Article  PubMed  CAS  Google Scholar 

  211. Hulett, M. D., Witort, E., Brinkworth, R. I., McKenzie, I. F., and Hogarth, P. M. 1995. Multiple regions of human Fc gamma RII (CD32) contribute to the binding of IgG. J. Biot. Chem. 270:21188–21194.

    Article  CAS  Google Scholar 

  212. Gergely, J., and Sarmay, G. 1996. Fc gamma RII-mediated regulation of human B cells. Scand. J. Immunol. 44:1–10.

    PubMed  CAS  Google Scholar 

  213. Liu, C., Gosselin, E. J., and Guyre, P. M. 1996. Fc gamma RII on human B cells can mediate enhanced antigen presentation. Cell. Immunol. 167:188–194.

    Article  PubMed  CAS  Google Scholar 

  214. Fridman, W. H. 1993. Regulation of B-cell activation and antigen presentation by Fc receptors. Curr. Opin. Immunol. 5:355–360.

    Article  PubMed  CAS  Google Scholar 

  215. Takai, T., Ono, M., Hikida, M., Ohmori, H., and Ravetch, J. V. 1996. Augmented humoral and anaphylactic responses in Fc gamma RII-deficient mice. Nature 379:346–349.

    Article  PubMed  CAS  Google Scholar 

  216. Tchilian, E. Z., Beverley, P. C., Young, B. D., and Watt, S. M. 1994. Molecular cloning of two isoforms of the murine homolog of the myeloid CD33 antigen. Blood 83:3188–3198.

    PubMed  CAS  Google Scholar 

  217. Freeman, S. D., Kelm, S., Barber, E. K., and Crocker, P. R. 1995. Characterization of CD33 as a new member of the sialoadhesin family of cellular interaction molecules. Blood 85:2005–2012.

    PubMed  CAS  Google Scholar 

  218. Nakase, K., Kita, K., Shiku, H., Tanaka, I., Nasu, K., Dohy, H., Kyo, T., Tsutani, H., and Kamada, N. 1996. Myeloid antigen, CD13, CD14, and/or CD33 expression is restricted to certain lymphoid neoplasms. Am. J. Clin. Pathol. 105:761–768.

    PubMed  CAS  Google Scholar 

  219. Hara, J., Hosoi, G., Okamura, T., Osugi, Y., Ishihara, S., Yumura Yagi, K., Kawa Ha, K., and Tawa, A. 1995. CD33+ B-cell precursor acute lymphoblastic leukemia in children: A distinct subgroup of B-cell precursor acute lymphoblastic leukemia. Int. J. Hematol. 61:77–84.

    Article  PubMed  CAS  Google Scholar 

  220. Knapp, W., Strobl, H., Scheinecker, C., Bello Fernandez, C., and Majdic, O. 1995. Molecular characterization of CD34+ human hematopoietic progenitor cells. Ann. Hematol. 70:281–296.

    PubMed  CAS  Google Scholar 

  221. Krause, D. S., Fackler, M. J., Civin, C. I., and May, W. S. 1996. CD34: Structure, biology, and clinical utility. Blood 87:1–13.

    PubMed  CAS  Google Scholar 

  222. Stella, C. C., Cazzola, M., De Fabritiis, P., De Vincentiis, A., Gianni, A. M., Lanza, F., Lauria, F., Lemoli, R. M., Tarella, C., Zanon, P., et al. 1995. CD34-positive cells: Biology and clinical relevance. Haematologica 367–387.

    Google Scholar 

  223. Strauss, L. C., Rowley, S. D., La Russa, V. F., Sharkis, S. J., Stuart, R. K., and Civin, C. I. 1986. Antigenic analysis of hematopoiesis, V. Characterization of My-10 antigen expression by normal lymphohematopoietic progenitor cells. Exp. Hematol. 14:878–886.

    PubMed  CAS  Google Scholar 

  224. Andrews, R. G., Singer, J. W., and Bernstein, I. D. 1986. Monoclonal antibody 12-8 recognizes a 115-kd molecule present on both unipotent and multipotent hematopoietic colony-forming cells and their precursors. Blood 67:842–845.

    PubMed  CAS  Google Scholar 

  225. Osawa, M., Hanada, K., Hamada, H., and Nakauchi, H. 1996. Long-term lymphohematopoietic reconstitution by a single CD34- low/negative hematopoietic stem cell. Science 273:242–245.

    Article  PubMed  CAS  Google Scholar 

  226. Freedman, A. R., Zhu, H., Levine, J. D., Kalams, S., and Scadden, D. T., 1996. Generation of human T lymphocytes from bone marrow CD34+ cells in vitro. Nat. Med. 2:46–51.

    Article  PubMed  CAS  Google Scholar 

  227. Young, J. W., Szabolcs, P., and Moore, M. A. 1995. Identification of dendritic cell colony-forming units among normal human CD34+ bone marrow progenitors that are expanded by c-kit-ligand and yield pure dendritic cell colonies in the presence of granulocyte/macrophage colony-stimulating factor and tumor necrosis factor alpha. J. Exp. Med. 182:1111–1119.

    Article  PubMed  CAS  Google Scholar 

  228. Healy, L., May, G., Gale, K., Grosveld, F., Greaves, M., and Enver, T. 1995. The stem cell antigen CD34 functions as a regulator of hemopoietic cell adhesion. Proc. Natl. Acad. Sci. USA 92:12240–12244.

    Article  PubMed  CAS  Google Scholar 

  229. Reilly, B. D., Makrides, S. C., Ford, P. J., Marsh, H. C., Jr., and Mold, C. 1994. Quantitative analysis of C4b dimer binding to distinct sites on the C3b/C4b receptor (CRI). J. Biol. Chem. 269:7696–7701.

    PubMed  CAS  Google Scholar 

  230. Krych, M., Clemenza, L., Howdeshell, D., Hauhart, R., Hourcade, D., and Atkinson, J. P. 1994. Analysis of the functional domains of complement receptor type 1 (C3b/C4b receptor; CD35) by substitution mutagenesis. J. Biol. Chem. 269:13273–13278.

    PubMed  CAS  Google Scholar 

  231. Lanza, F., and Castoldi, G. 1992. Complement receptor 1 (CRI) expression in chronic myeloid leukemia. Lenk. Lymphoma 8:35–41.

    CAS  Google Scholar 

  232. Matsuno, K., Diaz Ricart, M., Montgomery, R. R., Aster, R. H., Jamieson, G. A., and Tandon, N. N. 1996. Inhibition of platelet adhesion to collagen by monoclonal anti-CD36 antibodies. Br. J. Haematol. 92:960–967.

    Article  PubMed  CAS  Google Scholar 

  233. Baruch, D. I., Gormely, J. A., Ma, C., Howard, R. J., and Pasloske, B. L. 1996. Plasmodium falciparum erythrocyte membrane protein 1 is a parasitized erythrocyte receptor for adherence to CD36, thrombospondin, and intercellular adhesion molecule 1. Proc. Natl. Acad. Sci. USA 93:3497–3502.

    Article  PubMed  CAS  Google Scholar 

  234. Rogers, N. J., Daramola, O., Targett, G. A., and Hall, B. S. 1996. CD36 and intercellular adhesion molecule I mediate adhesion of developing Plasmodium falciparum gametocytes. Infect. Immun. 64:1480–1483.

    PubMed  CAS  Google Scholar 

  235. Navazo, M. D., Daviet, L., Savill, J., Ren, Y., Leung, L. L., and McGregor, J. L. 1996. Identification of a domain (155-183) on CD36 implicated in the phagocytosis of apoptotic neutrophils. J. Biol. Chem. 271:15381–15385.

    Article  PubMed  CAS  Google Scholar 

  236. Armesilla, A. L., and Vega, M. A. 1994. Structural organization of the gene for human CD36 glycoprotein. J. Biol. Chem. 269:18985–18991.

    PubMed  CAS  Google Scholar 

  237. Asch, A. S., Liu, I., Briccetti, F. M., Barnwell, J. W., Kwakye Berko, F., Dokun, A., Goldberger, J., and Pernambuco, M. 1993. Analysis of CD36 binding domains: Ligand specificity controlled by dephosphorylation of an ectodomain. Science 262:1436–1440.

    Article  PubMed  CAS  Google Scholar 

  238. Simon, M., Jr., Juhasz, I., Herlyn, M., and Hunyadi, J. 1996. Thrombospondin receptor (CD36) expression of human keratinocytes during wound healing in a SCID mouse/human skin repair model. J. Dermatol. 23:305–309.

    PubMed  CAS  Google Scholar 

  239. Schwartz-Albiez, R., Doerken, B., Hofmann, W., and Moldenhauer, G. 1988. The B cell-associated CD37 antigen (gp40-52). Structure and subcellular expression of an extensively glycosylated glycoprotein. J. Immunol. 140:905–914.

    PubMed  CAS  Google Scholar 

  240. Virtaneva, K. I., Angelisova, P., Baumruker, T., Horejsi, V., Nevanlinna, H., and Schroeder, J. 1993. The genes for CD37, CD53, and R2, all members of a novel gene family, are located on different chromosomes. Immunogenetics 37:461–465.

    Article  PubMed  CAS  Google Scholar 

  241. Randall, T. D., Lund, F. E., Howard, M. C., and Weissman, I. L. 1996. Expression of murine CD38 defines a population of long-term reconstituting hematopoietic stem cells. Blood 87:4057–4067.

    PubMed  CAS  Google Scholar 

  242. Ramaschi, G., Torti, M., Festetics, E. T., Sinigaglia, F., Malavasi, F., and Balduini, C. 1996. Expression of cyclic ADP-ribose-synthetizing CD38 molecule on human platelet membrane. Blood 87:2308–2313.

    PubMed  CAS  Google Scholar 

  243. Koguma, T., Takasawa, S., Tohgo, A., Karasawa, T., Furuya, Y., Yonekura, H., and Okamoto, H. 1994. Cloning and characterization of cDNA encoding rat ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase (homologue to human CD38) from islets of Langerhans. Biochim. Biophys. Acta 1223:160–162.

    Article  PubMed  CAS  Google Scholar 

  244. Grimaldi, J. C., Balasubramanian, S., Kabra, N. H., Shanafelt, A., Bazan, J. F., Zurawski, G., and Howard, M. C. 1995. CD38-mediated ribosylation of proteins. J. Immunol. 155:811–817.

    PubMed  CAS  Google Scholar 

  245. Howard, M., Grimaldi, J. C., Bazan, J. F., Lund, F. E., Santos Argumendo, L., Parkhouse, R. M., Walseth, T. F., and Lee, H. C. 1993. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 262:1056–1059.

    Article  PubMed  CAS  Google Scholar 

  246. Umar, S., Malavasi, F., and Mehta, K. 1996. Post-translational modification of CD38 protein into a high molecular weight form alters its catalytic properties. J. Biol. Chem. 271:15922–15927.

    Article  PubMed  CAS  Google Scholar 

  247. Malavasi, F., Funaro, A., Roggero, S., Horenstein, A., Calosso, L., and Mehta, K. 1994. Human CD38: A glycoprotein in search of a function. Immunol. Today 15:95–97.

    Article  PubMed  CAS  Google Scholar 

  248. Deaglio, S., Dianzani, U., Horenstein, A. L., Fernandez, J. E., Van Kooten, C., Bragardo, M., Funaro, A., Garbarino, G., Di Virgilio, F., Banchereau, J., and Malavasi, F. 1996. Human CD38 ligand. A 120-KDA protein predominantly expressed on endothelial cells. J. Immunol. 156:727–734.

    PubMed  CAS  Google Scholar 

  249. Zupo, S., Rugari, E., Dono, M., Taborelli, G., Malavasi, F., and Ferrarini, M. 1994. CD38 signaling by agonistic monoclonal antibody prevents apoptosis of human germinal center B cells. Eur. J. Immunol. 24:1218–1222.

    Article  PubMed  CAS  Google Scholar 

  250. Kikuchi, Y., Yasue, T., Miyake, K., Kimoto, M., and Takatsu, K. 1995. CD38 ligation induces tyrosine phosphorylation of Bruton tyrosine kinase and enhanced expression of interleukin 5-receptor alpha chain: Synergistic effects with interleukin 5. Proc. Natl. Acad. Sci. USA 92:11814–11818.

    Article  PubMed  CAS  Google Scholar 

  251. Gouttefangeas, C., Mansur, I., Schmid, M., Dastot, H., Gelin, C., Mahouy, G., Boumsell, L., and Bensussan, A. 1992. The CD39 molecule defines distinct cytotoxic subsets within alloactivated human CD8-positive cells. Eur. J. Immunol. 22:2681–2685.

    Article  PubMed  CAS  Google Scholar 

  252. Maliszewski, C. R., Delespesse, G. J., Schoenborn, M. A., Armitage, R. J., Fanslow, W. C., Nakajima, T., Baker, E., Sutherland, G. R., Poindexter, K., Birks, C., Alpert, A., Friend, D., Gimpel, S. D., and Gayle, R. B., III. 1994. The CD39 lymphoid cell activation antigen. Molecular cloning and structural characterization. J. Immunol. 153:3574–3583.

    PubMed  CAS  Google Scholar 

  253. Wang, T. F., and Guidotti, G. 1996. CD39 is an ecto-(CA2+,Mg2+)-apyrase. J. Biol. Chem. 271:9898–9901.

    Article  PubMed  CAS  Google Scholar 

  254. Hasbold, J., Johnson Leger, C., Atkins, C. J., Clark, E. A., and Klaus, G. G. 1994. Properties of mouse CD40: Cellular distribution of CD40 and B cell activation by monoclonal anti-mouse CD40 antibodies. Eur. J. Immunol. 24:1835–1842.

    Article  PubMed  CAS  Google Scholar 

  255. Noelle, R. J., Ledbetter, J. A., and Aruffo, A. 1992. CD40 and its ligand. an essential ligand-receptor pair for thymus-dependent B-cell activation. Immunol. Today 13:431–433.

    Article  PubMed  CAS  Google Scholar 

  256. Fanslow, W. C., Clifford, K. N., Seaman, M., Alderson, M. R., Spriggs, M. K., Armitage, R. J., and Ramsdell, F. 1994. Recombinant CD40 ligand exerts potent biologic effects on T cells. J. Immunol. 152:4262–4269.

    PubMed  CAS  Google Scholar 

  257. Durie, F. H., Fava, R. A., Foy, T. M., Aruffo, A., Ledbetter, J. A., and Noelle, R. J. 1993. Prevention of collagen-induced arthritis with an antibody to gp39, the ligand for CD40. Science 261:1328–1330.

    Article  PubMed  CAS  Google Scholar 

  258. Tang, A., Judge, T. A., Nickoloff, B. J., and Turka, L. A. 1996. Suppression of murine allergic contact dermatitis by CTLA41g. Tolerance induction of Th2 responses requires additional blockade of CD40-ligand. J. Immunol. 157:117–125.

    PubMed  CAS  Google Scholar 

  259. Grewal, I. S., Xu, J. C., and Flavell, R. A. 1995. Impairment of antigen-specific T-cell priming in mice lacking CD40 ligand. Nature 378:617–620.

    Article  PubMed  CAS  Google Scholar 

  260. Xu, J., Foy, T. M., Laman, J. D., Elliot, E. A., Dunn, J. J., Waldschmidt, T. J., Elsemore, J., Noelle, R. J., and Flavell, R. A. 1994. Mice deficient for the CD40 ligand. Immunity 1:423–431.

    Article  PubMed  CAS  Google Scholar 

  261. Larsen, C. P., Elwood, E. T., Alexander, D. Z., Ritchie, S. C., Hendrix, R., Tucker Burden, C., Cho, H. R., Aruffo, A., Hollenbaugh, D., Linsley, P. S., Winn, K. J., and Pearson, T. C. 1996. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381:434–438.

    Article  PubMed  CAS  Google Scholar 

  262. Kieffer, N., and Phillips, D. R. 1990. Platelet membrane glycoproteins: Functions in cellular interactions. Annu. Rev. Cell Biol. 6:329–357.

    Article  PubMed  CAS  Google Scholar 

  263. Phillips, D. R., Charo, I. F., and Scarborough, R. M. 1991. GPIIb-IIIa: The responsive integrin. Cell 65:359–362.

    Article  PubMed  CAS  Google Scholar 

  264. Calvete, J. J., McLane, M. A., Stewart, G. J., and Niewiarowski, S. 1994. Characterization of the cross-linking site of disintegrins albolabrin, bitistatin, echistatin, and eristostatin on isolated human platelet integrin GPIIb/IIIa. Biochem. Biophys. Res. Commun. 202:135–140.

    Article  PubMed  CAS  Google Scholar 

  265. Berliner, S., Niiya, K., Roberts, J. R., Houghten, R. A., and Ruggeri, Z. M. 1988. Generation and characterization of peptide-specific antibodies that inhibit von Willebrand factor binding to glycoprotein IIb-IIIa without interacting with other adhesive molecules. Selectivity is conferred by Pro1743 and other amino acid residues adjacent to the sequence Arg 1744-Gly1745-Asp 1746. J. Biol. Chem. 263:7500–7505.

    PubMed  CAS  Google Scholar 

  266. Sakariassen, K. S., Nievelstein, P. F., Coller, B. S., and Sixma, J. J. 1986. The role of platelet membrane glycoproteins Ib and IIb-IIIa in platelet adherence to human artery subendothelium. Br. J. Haematol. 63:681–691.

    PubMed  CAS  Google Scholar 

  267. Berndt, M. C., Ward, C. M., Booth, W. J., Castaldi, P. A., Mazurov, A. V., and Andrews, R. K. 1992. Identification of aspartic acid 514 through glutamic acid 542 as a glycoprotein Ib-IX complex receptor recognition sequence in von Willebrand factor. Mechanism of modulation of von Willebrand factor by ristocetin and botrocetin. Biochemistry 31:11144–11151.

    Article  PubMed  CAS  Google Scholar 

  268. Mohri, H., Yoshioka, A., Zimmerman, T. S., and Ruggeri, Z. M. 1989. Isolation of the von Willebrand factor domain interacting with platelet glycoprotein Ib, heparin, and collagen and characterization of its three distinct functional sites. J. Biol. Chem. 264:17361–17367.

    PubMed  CAS  Google Scholar 

  269. Rosenstein, Y., Park, J. K., Hahn, W. C., Rosen, F. S., Bierer, B. E., and Burakoff, S. J. 1991. CD43, a molecule defective in Wiskott-Aldrich syndrome, binds ICAM-1. Nature 354:233–235.

    Article  PubMed  CAS  Google Scholar 

  270. Siminovitch, K. A., Greer, W. L., Axelsson, B., Rubin, L. A., Novogrodsky, A., and Peacocke, M. 1993. Selective impairment of CD43-mediated T cell activation in the Wiskott-Aldrich syndrome. Immunodeficiency 4:99–108.

    PubMed  CAS  Google Scholar 

  271. Fox, S. B., Fawcett, J., Jackson, D. G., Collins, I., Gatter, K. C., Harris, A. L., Gearing, A., and Simmons, D. L. 1994. Normal human tissues, in addition to some tumors, express multiple different CD44 isoforms. Cancer Res. 54:4539–4546.

    PubMed  CAS  Google Scholar 

  272. Lesley, J., Howes, N., Perschl, A., and Hyman, R. 1994. Hyaluronan binding function of CD44 is transiently activated on T cells during an in vivo immune response. J. Exp. Med. 180:383–387.

    Article  PubMed  CAS  Google Scholar 

  273. Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C. B., and Seed, B. 1990. CD44 is the principal cell surface receptor for hyaluronate. Cell 61:1303–1313.

    Article  PubMed  CAS  Google Scholar 

  274. Liu, D., and Sy, M. S. 1996. A cysteine residue located in the transmembrane domain of CD44 is important in binding of CD44 to hyaluronic acid. J. Exp. Med. 183:1987–1994.

    Article  PubMed  CAS  Google Scholar 

  275. DeGrendele, H. C., Estess, P., Picker, L. J., and Siegelman, M. H. 1996. CD44 and its ligand hyaluronate mediate rolling under physiologic flow: A novel lymphocyte-endothelial cell primary adhesion pathway. J. Exp. Med. 183:1119–1130.

    Article  PubMed  CAS  Google Scholar 

  276. Bartolazzi, A., Peach, R., Aruffo, A., and Stamenkovic, I. 1994. Interaction between CD44 and hyaluronate is directly implicated in the regulation of tumor development. J. Exp. Med. 180:53–66.

    Article  PubMed  CAS  Google Scholar 

  277. Pingel, J. T., and Thomas, M. L. 1989. Evidence that the leukocyte-common antigen is required for antigen-induced T lymphocyte proliferation. Cell 58:1055–1065.

    Article  PubMed  CAS  Google Scholar 

  278. Justement, L. B., Campbell, K. S., Chien, N. C., and Cambier, J. C. 1991. Regulation of B cell antigen receptor signal transduction and phosphorylation by CD45. Science 252:1839–1842.

    Article  PubMed  CAS  Google Scholar 

  279. Trowbridge, I. S., and Thomas, M. L. 1994. CD45: An emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu. Rev. Immunol. 12:85–116.

    Article  PubMed  CAS  Google Scholar 

  280. Chan, A. C., Desai, D. M., and Weiss, A. 1994. The role of protein tyrosine kinases and protein tyrosine phosphatases in T cell antigen receptor signal transduction. Annu. Rev. Immunol. 12:555–592.

    Article  PubMed  CAS  Google Scholar 

  281. Dorig, R. E., Marcil, A., Chopra, A., and Richardson, C. D. 1993. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75:295–305.

    Article  PubMed  CAS  Google Scholar 

  282. Manchester, M., Liszewski, M. K., Atkinson, J. P., and Oldstone, M. B. 1994. Multiple isoforms of CD46 (membrane cofactor protein) serve as receptors for measles virus. Proc. Natl. Acad. Sci. USA 91:2161–2165.

    Article  PubMed  CAS  Google Scholar 

  283. Karp, C. L., Wysocka, M., Wahl, L. M., Ahearn, J. M., Cuomo, P. J., Sherry, B., Trinchieri, G., and Griffin, D. E. 1996. Mechanism of suppression of cell-mediated immunity by measles virus. Science 273:228–231.

    Article  PubMed  CAS  Google Scholar 

  284. Reinhold, M. I., Lindberg, F. P., Plas, D., Reynolds, S., Peters, M. G., and Brown, E. J. 1995. In vivo expression of alternatively spliced forms of integrin-associated protein (CD47). J. Cell Sci. 108:3419–3425.

    PubMed  CAS  Google Scholar 

  285. Mawby, W. J., Holmes, C. H., Anstee, D. J., Spring, F. A., and Tanner, M. J. 1994. Isolation and characterization of CD47 glycoprotein: A multispanning membrane protein which is the same as integrin-associated protein (IAP) and the ovarian tumor marker OA3. Biochem. J. 304:525–530.

    PubMed  CAS  Google Scholar 

  286. Parkos, C. A., Colgan, S. P., Liang, T. W., Nusrat, A., Bacarra, A. E., Cames, D. K., and Madara, J. L. 1996. CD47 mediates post-adhesive events required for neutrophil migration across polarized intestinal epithelia. J. Cell Biol. 132:437–450.

    Article  PubMed  CAS  Google Scholar 

  287. Cooper, D., Lindberg, F. P., Gamble, J. R., Brown, E. J., and Vadas, M. A. 1995. Transendothelial migration of neutrophils involves integrin-associated protein (CD47). Proc. Natl. Acad. Sci. USA 92:3978–3982.

    Article  PubMed  CAS  Google Scholar 

  288. Lindberg, F. P., Lublin, D. M., Telen, M. J., Veile, R. A., Miller, Y. E., Donis Keller, H., und Brown, E. J. 1994. Rh-related antigen CD47 is the signal-transducer integrin-associated protein. J. Biol. Chem. 269:1567–1570.

    PubMed  CAS  Google Scholar 

  289. Bonomo, A., and Matzinger, P. 1993. Thymus epithelium induces tissue-specific tolerance. J. Exp. Med. 177:1153–1164.

    Article  PubMed  CAS  Google Scholar 

  290. Qin, L., Chavin, K. D., Lin, J., Yagita, H., and Bromberg, J. S. 1994. Anti-CD2 receptor and anti-CD2 ligand (CD48) antibodies synergize to prolong allograft survival. J. Exp. Med. 179:341–346.

    Article  PubMed  CAS  Google Scholar 

  291. Garnett, D., and Williams, A. F. 1994. Homotypic adhesion of rat B cells, but not T cells, in response to cross-linking of CD48. Immunology 81:103–110.

    PubMed  CAS  Google Scholar 

  292. Stefanova, I., Horejsi, V., Ansotegui, I. J., Knapp, W., and Stockinger, H. 1991. GPl-anchored cell-surface molecules complexed to protein tyrosine kinases. Science 254:1016–1019.

    Article  PubMed  CAS  Google Scholar 

  293. Garnett, D., Barclay, A. N., Carmo, A. M., and Beyers, A. D. 1993. The association of the protein tyrosine kinases p561ck and p60fyn with the glycosyl phosphatidylinositol-anchored proteins Thy-1 and CD48 in rat thymocytes is dependent on the state of cellular activation. Eur. J. Immunol. 23:2540–2544.

    Article  PubMed  CAS  Google Scholar 

  294. Li, Y., Hellstrom, K. E., Newby, S. A., and Chen, L. 1996. Constimulation by CD48 and B7-1 induces immunity against poorly immunogenic tumors. J. Exp. Med. 183:639–644.

    Article  PubMed  CAS  Google Scholar 

  295. van der Merwe, P. A., McNamee, P. N., Davies, E. A., Barclay, A. N., and Davis, S. J. 1995. Topology of the CD2-CD48 cell-adhesion molecule complex: Implications for antigen recognition by T cells. Curr. Biol. 5:74–84.

    Article  PubMed  Google Scholar 

  296. Carter, W. G., Ryan, M. C., and Gahr, P. J. 1991. Epilegrin, a new cell adhesion ligand for integrin (a3bl) in epithelial basement membranes. Cell 65:599–610.

    Article  PubMed  CAS  Google Scholar 

  297. Hemler, M. E. 1990. VLA proteins in the integrin family: Structures, functions, and their role on leukocytes. Annu. Rev. Immunol. 8:365–400.

    Article  PubMed  CAS  Google Scholar 

  298. Salomon, D. R., Mojcik, C. F., Chang, A. C., Wadsworth, S., Adams, D. H., Coligan, J. E., and Shevach, E. M. 1994. Constitutive activation of integrin alpha 4 beta 1 defines a unique stage of human thymocyte development. J. Exp. Med. 179:1573–1584.

    Article  PubMed  CAS  Google Scholar 

  299. Dietsch, M. T., Chan, P. Y., Kanner, S. B., Gilliland, L. K., Ledbetter, J. A., Linsley, P. S., and Aruffo, A. 1994. Coengagement of CD2 with LFA-I or VLA-4 by bispecific ligand fusion proteins primes T cells to respond more effectively to T cell receptor-dependent signals. J. Leukoc. Biol. 56:444–452.

    PubMed  CAS  Google Scholar 

  300. de Fougerolles, A. R., Qin, X., and Springer, T. A. 1994. Characterization of the function of intercellular adhesion molecule (ICAM)-3 and comparison with ICAM-1 and ICAM-2 in immune responses. J. Exp. Med. 179:619–629.

    Article  PubMed  Google Scholar 

  301. Campanero, M. R., Sanchez Mateos, P., del Pozo, M. A., and Sanchez Madrid, F. 1994. ICAM-3 regulates lymphocyte morphology and integrin-mediated T cell interaction with endolhelial cell and extracellular matrix ligands. J. Cell Biol. 127:867–878.

    Article  PubMed  CAS  Google Scholar 

  302. Hernandez Caselles, T., Rubio, G., Campanero, M. R., del Pozo, M. A., Muro, M., Sanchez Madrid, F., and Aparicio, P. 1993. ICAM-3, the third LFA-1 counterreceptor, is a co-stimulatory molecule for both resting and activated T lymphocytes. Eur. J. Immunol. 23:2799–2806.

    Article  PubMed  CAS  Google Scholar 

  303. Cid, M. C., Esparza, J., Juan, M., Miralles, A., Ordi, J., Vilella, R., Urbano Marquez, A., Gaya, A., Vives, J., and Yaguee, J. 1994. Signaling through CD50 (ICAM-3) stimulates T lymphocyte binding to human umbilical vein endothelial cells and extracellular matrix proteins via an increase in beta 1 and beta 2 integrin function. Eur. J. Immunol. 24:1377–1382.

    Article  PubMed  CAS  Google Scholar 

  304. Griffiths, C. E., Railan, D., Gallatin, W. M., and Cooper, K. D. 1995. The ICAM-3/LFA-1 interaction is critical for epidermal Langerhans cell alloantigen presentation to CD4+ T cells. Br. J. Dermatol. 133:823–829.

    Article  PubMed  CAS  Google Scholar 

  305. Staquet, M. J., Peguet, J., Jacquet, C., Dezutter Dambuyant, C., and Schmitt, D. 1995. Expression of ICAM-3 on human epidermal dendritic cells. Immunobiology 192:249–261.

    PubMed  CAS  Google Scholar 

  306. Skubitz, K. M., Ahmed, K., Campbell, K. D., and Skubitz, A. P. 1995. CD50 (ICAM-3) is phosphorylated on tyrosine and is associated with tyrosine kinase activity in human neutrophils. J. Immunol. 154:2888–2895.

    PubMed  CAS  Google Scholar 

  307. Juan, M., Vinas, O., Pino-Otin, M. R., Places, L., Martinez-Caceres, E., Barcelo, J. J., Miralles, A., Vilella, R., de la Fuente, M. A., Vives, J., et al. 1994. CD50 (intercellular adhesion molecule 3) stimulation induces calcium mobilization and tyrosine phosphorylation through p59fyn and p56lck in Jurkat T cell line. J. Exp. Med. 179:1747–1756.

    Article  PubMed  CAS  Google Scholar 

  308. Thoma, S. J., Lamping, C. P., and Ziegler, B. L. 1994. Phenotype analysis of hematopoietic CD34+ cell populations derived from human umbilical cord blood using flow cytometry and cDNA-polymerase chain reaction. Blood 83:2103–2114.

    PubMed  CAS  Google Scholar 

  309. Horton, M. 1990. Vitronectin receptor: Tissue specific expression or adaptation to culture? Int. J. Exp. Pathol. 71:741–759.

    PubMed  CAS  Google Scholar 

  310. Murphy, J. F., Bordet, J. C., Wyler, B., Rissoan, M. C, Chomarat, P., DeFrance, T., Miossec, P., and McGregor, J. L. 1994. The vitronectin receptor (alpha v beta 3) is implicated, in cooperation with P-selectin and platelet-activating factor, in the adhesion of monocytes to activated endothelial cells. Biochem. J. 304:537–542.

    PubMed  CAS  Google Scholar 

  311. Brando, C., and Shevach, E. M. 1995. Engagement of the vitronectin receptor (alpha V beta 3) on murine T cells stimulates tyrosine phosphorylation of a 115-kDa protein. J. Immunol. 154:2005–2011.

    PubMed  CAS  Google Scholar 

  312. Rabinowich, H., Lin, W. C., Amoscato, A., Herberman, R. B., and Whiteside, T. L. 1995. Expression of vitronectin receptor on human NK cells and its role in protein phosphorylation, cytokine production, and cell proliferation. J. Immunol. 154:1124–1135.

    PubMed  CAS  Google Scholar 

  313. Nip, J., Rabbani, S. A., Shibata, H. R., and Brodt, P. 1995. Coordinated expression of the vitronectin receptor and the urokinase-type plasminogen activator receptor in metastatic melanoma cells. J. Clin. Invest. 95:2096–2103.

    PubMed  CAS  Google Scholar 

  314. Lafrenie, R. M., Podor, T. J., Buchanan, M. R., and Orr, F. W. 1992. Up-regulated biosynthesis and expression of endothelial cell vitronectin receptor enhances cancer cell adhesion. Cancer Res. 52:2202–2208.

    PubMed  CAS  Google Scholar 

  315. Treumann, A., Lifely, M. R., Schneider, P., and Ferguson, M. A. 1995. Primary structure of CD52. J. Biol. Chem. 270:6088–6099.

    Article  PubMed  CAS  Google Scholar 

  316. Lund Johansen, F., Olweus, J., Symington, F. W., Arli, A., Thompson, J. S., Vilella, R., Skubitz, K., and Horejsi, V. 1993. Activation of hyman monocytes and granulocytes by monoclonal antibodies to glycosylphosphatidylinositol-anchored antigens. Eur. J. Immunol. 23:2782–2791.

    Article  PubMed  CAS  Google Scholar 

  317. Deutsch, V. R., Nagler, A., Slavin, S., Condiotti, R., Levine, R. F., and Eldor, A. 1993. Effect of bone marrow T lymphocytes treated with CAMPATH 1G on megakaryocyte colony formation. Exp. Hematol. 21:1427–1435.

    PubMed  CAS  Google Scholar 

  318. Rowan, W. C., Hale, G., Tite, J. P., and Brett, S. J. 1995. Cross-linking of the CAMPATH-1 antigen (CD52) triggers activation of normal human T lymphocytes. Int. Immunol. 7:69–77.

    Article  PubMed  CAS  Google Scholar 

  319. Hale, G., and Waldmann, H. 1994. Control of graft-versus-host disease and graft rejection by T cell depletion of donor and recipient with Campath-1 antibodies. Results of matched sibling transplants for malignant diseases. Bone Marrow Transplant. 13:597–611.

    PubMed  CAS  Google Scholar 

  320. Osterborg, A., Fassas, A. S., Anagnostopoulos, A., Dyer, M. J., Catovsky, D., and Mellstedt, H. 1996. Humanized CD52 monoclonal antibody Campath-1H as first-line treatment in chronic lymphocytic leukaemia. Br. J. Haematol. 93:151–153.

    Article  PubMed  CAS  Google Scholar 

  321. Carmo, A. M., and Wright, M. D. 1995. Association of the transmembrane 4 superfamily molecule CD53 with a tyrosine phosphatase activity. Eur. J. Immunol. 25:2090–2095.

    Article  PubMed  CAS  Google Scholar 

  322. Bosca, L., and Lazo, P. A. 1994. Induction of nitric oxide release by MRC OX-44 (anti-CD53) through a protein kinase C-dependent pathway in rat macrophages. J. Exp. Med. 179:1119–1126.

    Article  PubMed  CAS  Google Scholar 

  323. Olweus, J., Lund Johansen, F., and Horejsi, V. 1993. CD53, a protein with four membrane-spanning domains, mediates signal transduction in human monocytes and B cells. J. Immunol. 151:707–716.

    PubMed  CAS  Google Scholar 

  324. Rasmussen, A. M., Blomhoff, H. K., Stokke, T., Horejsi, V., and Smeland, E. B. 1994. Cross-linking of CD53 promotes activation of resting human B lymphocytes. J. Immunol. 153:4997–5007.

    PubMed  CAS  Google Scholar 

  325. Tomlinson, M. G., Hanke, T., Hughes, D. A., Barclay, A. N., Scholl, E., Huenig, T., and Wright, M. D. 1995. Characterization of mouse CD53: Epitope mapping, cellular distribution and induction by T cell receptor engagement during repertoire selection. Eur. J. Immunol. 25:2201–2205.

    Article  PubMed  CAS  Google Scholar 

  326. Mitnacht, R., Tacke, M., and Hunig, T. 1995. Expression of cell-interaction molecules by immature rat thymocytes during passage through the CD4(+)8(+) compartment—Developmental regulation and induction by T-cell receptor engagement of CD2, CD5, CD28, CD11a, CD44 and CD53. Eur. J. Immunol. 25:328–332.

    Article  PubMed  CAS  Google Scholar 

  327. Angelisova, P., Hilgert, I., and Horejsi, V. 1994. Association of four antigens of the tetraspans family (CD37, CD53, TAPA-1, and R2/C33) with MHC class II glycoproteins. Immunogenetics 39:249–256.

    Article  PubMed  CAS  Google Scholar 

  328. Altmann, D. M., Hogg, N., Trowsdale, J., and Wilkinson, D. 1989. Cotransfection of ICAM-1 and HLA-DR reconstitutes human antigen-presenting cell function in mouse L cells. Nature 338:512–514.

    Article  PubMed  CAS  Google Scholar 

  329. Poudrier, J., and Owens, T. 1994. CD54/intercellular adhesion molecule 1 and major histocompatibility complex II signaling induces B cells to express interleukin 2 receptors and complements help provided through CD40 ligation. J. Exp. Med. 179:1417–1427.

    Article  PubMed  CAS  Google Scholar 

  330. Sligh, J. E., Jr., Ballantyne, C. M., Rich, S. S., Hawkins, H. K., Smith, C. W., Bradley, A., and Beaudet, A. L. 1993. Inflammatory and immune responses are impaired in mice deficient in intercellular adhesion molecule 1. Proc. Natl. Acad. Sci. USA 90:8529–8533.

    Article  PubMed  CAS  Google Scholar 

  331. Berendt, A. R., McDowall, A., Craig, A. G., Bates, P. A., Sternberg, M. J., Marsh, K., Newbold, C. I., and Hogg, N. 1992. The binding site on ICAM-1 for Plasmodium falciparum-infected erythrocytes overlaps, but is distinct from, the LFA-1-binding site. Cell 68:71–81.

    Article  PubMed  CAS  Google Scholar 

  332. Nickells, M. W., Alvarez, J. I., Lublin, D. M., and Atkinson, J. P. 1994. Characterization of DAF-2, a high molecular weight form of decay-accelerating factor (DAF; CD55), as a covalently cross-linked dimer of DAF-1. J. Immunol. 152:676–685.

    PubMed  CAS  Google Scholar 

  333. Bergelson, J. M., Chan, M., Solomon, K. R., St John, N. F., Lin, H., and Finberg, R. W. 1994. Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses. Proc. Natl. Acad. Sci. USA 91:6245–6248.

    Article  PubMed  CAS  Google Scholar 

  334. Lublin, D. M., and Atkinson, J. P. 1989. Decay-accelerating factor: Biochemistry, molecular biology, and function. Annu. Rev. Immunol. 7:35–58.

    Article  PubMed  CAS  Google Scholar 

  335. Cunningham, B. A., Hemperly, J. J., Murray, B. A., Prediger, E. A., Brackenbury, R., and Edelman, G. M. 1987. Neural cell adhesion molecule: Structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science 236:799–806.

    Google Scholar 

  336. Gorochov, G., Debre, P., Leblond, V., Sadat Sowti, B., Sigaux, F., and Autran, B. 1994. Oligoclonal expansion of CD8+ CD57+ T cells with restricted T-cell receptor beta chain variability after bone marrow transplantation. Blood 83:587–595.

    PubMed  CAS  Google Scholar 

  337. Labalette, M., Salez, F., Pruvot, F. R., Noel, C., and Dessaint, J. P. 1994. CD8 lymphocytosis in primary cytomegalovirus (CMV) infection of allograft recipients: Expansion of an uncommon CD8 CD57 subset and its progressive replacement by CD8+ CD57+ T cells. Clin. Exp. Immunol. 95:465–471.

    Article  PubMed  CAS  Google Scholar 

  338. Legac, E., Autran, B., Merle Beral, H., Katlama, C., and Debre, P. 1992. CD4+CD7-CD57+T cells: A new T-lymphocyte subset expanded during human immunodeficiency virus infection. Blood 79:1746–1753.

    PubMed  CAS  Google Scholar 

  339. Moller, J., Dickmeiss, E., Ryder, L. P., Jacobsen, N., and Svejgaard, A. 1991. Increased frequencies of the CD29 and CD57 markers and decreased frequency of CD45RA within CD4+ and CD8+ subsets after allogeneic bone marrow transplantation in man. Scand. J. Immunol. 33:499–504.

    Article  PubMed  CAS  Google Scholar 

  340. Kern, F., Odehakim, S., Vogt, K., Hoflich, C., Reinke, P., and Volk, H. D. 1996. The enigma of CD57+ CD28- T-cell expansion—Anergy or activation? Clin. Exp. Immunol. 104:180–184.

    Article  PubMed  CAS  Google Scholar 

  341. Wang, E. C., Lehner, P. J., Graham, S., and Borysiewicz, L. K. 1994. CD8high (CD57+) T cells in normal, healthy individuals specifically suppress the generation of cytotoxic T lymphocytes to Epstein-Barr virus-transformed B cell lines. Eur. J. Immunol. 24:2903–2909.

    Article  PubMed  CAS  Google Scholar 

  342. Sadat Sowti, B., Debre, P., Mollet, L., Quint, L., Hadida, F., Leblond, V., Bismuth, G., and Autran, B. 1994. An inhibitor of cytotoxic functions produced by CD8+CD57- T lymphocytes from patients suffering from AIDS and immunosuppressed bone marrow recipients. Eur. J. Immunol. 24:2882–2888.

    Article  PubMed  CAS  Google Scholar 

  343. Autran, B., Leblond, V., Sadat Sowti, B., Lefranc, E., Got, P., Sutton, L., Binet, J. L., and Debre, P. 1991. A soluble factor released by CD8+CD57+ lymphocytes from bone marrow transplanted patients inhibits cell-mediated cytolysis. Blood 77:2237–2241.

    PubMed  CAS  Google Scholar 

  344. Diaz Sanchez, D., Chegini, S., Zhang, K., and Saxon, A. 1994. CD58 (LFA-3) stimulation provides a signal for human isotype switching and IgE production distinct from CD40. J. Immunol. 153:10–20.

    PubMed  CAS  Google Scholar 

  345. Osborn, L., Day, E. S., Miller, G. T., Karpusas, M., Tizard, R., and Meuer, S. C. 1995. Amino-acid-residues required for binding of lymphocyte function-associated antigen-3 (CD58) to its counter-receptor CD2. J. Exp. Med. 181:429–434.

    Article  PubMed  CAS  Google Scholar 

  346. Arulanandam, A. R., Kister, A., McGregor, M. J., Wyss, D. F., Wagner, G., and Reinherz., E. L. 1994. Interaction between human CD2 and CD58 involves the major beta sheet surface of each of their respective adhesion domains. J. Exp. Med. 180:1861–1871.

    Article  PubMed  CAS  Google Scholar 

  347. Teunissen, M. B., Rongen, H. A., and Bos, J. D. 1994. Function of adhesion molecules lymphocyte function-associated anligen-3 and intercellular adhesion molecule-1 on human epidermal Langerhans cells in antigen-specific T cell activation. J. Immunol. 152:3400–3409.

    PubMed  CAS  Google Scholar 

  348. Hoffmann, J. C., Dengler, T. J., Knolle, P. A., Albert Wolf, M., Roux, M., Wallich, R., and Meuer, S. C. 1993. A soluble form of the adhesion receptor CD58 (LFA-3) is present in human body fluids. Eur. J. Immunol. 23:3003–3010.

    Article  PubMed  CAS  Google Scholar 

  349. Miller, G. T., Hochman, P. S., Meier, W., Tizard, R., Bixler, S. A., Rosa, M. D., and Wallner, B. P. 1993. Specific interaction of lymphocyte function-associated antigen 3 with CD2 can inhibit T cell responses. J. Exp. Med. 178:211–222.

    Article  PubMed  CAS  Google Scholar 

  350. Hill, B., Rozler, E., Travis, M., Chen, S., Zannetino, A., Simmons, P., Galy, A., Chen, B., and Hoffman, R. 1996. High-level expression of a novel epitope of CD59 identifies a subset of CD34+ bone marrow cells highly enriched for pluripotent stem cells. Exp. Hematol. 24:936–943.

    PubMed  CAS  Google Scholar 

  351. Husler, T., Lockert, D. H., and Sims, P. J. 1996. Role of a disulfide-bonded peptide loop within human-complement C9 in the species-selectivity of complement inhibitor CD59. Biochemistry 35:3263–3269.

    Article  PubMed  CAS  Google Scholar 

  352. Hahn, W. C., Menu, E., Bothwell, A. L., Sims, P. J., and Bierer, B. E. 1992. Overlapping but nonidentical binding sites on CD2 for CD58 and a second ligand CD59. Science 256:1805–1807.

    Article  PubMed  CAS  Google Scholar 

  353. Liversidge, J., Dawson, R., Hoey, S., McKay, D., Grabowski, P., and Forrester, J. V. 1996. CD59 and CD48 expressed by rat retinal-pigment epithelial-cells are major ligands for the CD2-mediated alternative pathway of T-cell activation. J. Immunol. 156:3696–3703.

    PubMed  CAS  Google Scholar 

  354. Deckert, M., Ticchioni, M., Mari, B., Mary, D., and Bernard, A. 1995. The glycosylphosphatidylinositol-anchored CD59 protein stimulates both T cell receptor zeta/ZAP-70-dependcnt and-independent signaling pathways in T cells. Eur. J. Immunol. 25:1815–1822.

    Article  PubMed  CAS  Google Scholar 

  355. Sugita, Y., Ito, K., Shiozuka, K., Suzuki, H., Gushima, H., Timita, M., and Masuho, Y. 1994. Recombinant soluble CD59 inhibits reactive haemolysis with complement. Immunology 82:34–41.

    PubMed  CAS  Google Scholar 

  356. Vaekevae, A., Jauhiainen, M., Ehnholm, C., Lehto, T., and Meri, S. 1994. High-density lipoproteins can act as carriers of glycophosphoinositol lipid-anchored CD59 in human plasma. Immunology 82:28–33.

    Google Scholar 

  357. Diamond, L. E., McCurry, K. R., Oldham, E. R., Tone, M., Waldmann, H., Platt, J. L., and Logan, J. S. 1995. Human CD59 expressed in transgenic mouse hearts inhibits the activation of complement. Transplant Immunol. 3:305–312.

    Article  CAS  Google Scholar 

  358. Heckl Ostreicher, B., Binder, R., and Kirschfink, M. 1995. Functional activity of the membrane-associated complement inhibitor CD59 in a pig-to-human in vitro model for hyperacute xenograft rejection. Clin. Exp. Immunol. 102:589–595.

    Article  PubMed  CAS  Google Scholar 

  359. Byrne, G. W., McCurry, K. R., Kagan, D., Quinn, C., Martin, M. J., Platt, J. L., and Logan, J. S. 1995. Protection of xenogeneic cardiac endothelium from human complement by expression of CD59 or DAF in transgenic mice. Transplantation 60:1149–1156.

    Article  PubMed  CAS  Google Scholar 

  360. Iwamoto, N., Kawaguchi, T., Nagakura, S., Hidaka, M., Horikawa, K., Kagimoto, T., Takatsuki, K., and Nakakuma, M. 1995. Markedly high population of affected reticulocytes negative for decay-accelerating factor and CD59 in paroxysmal nocturnal hemoglobinuria. Blood 85:2228–2232.

    PubMed  CAS  Google Scholar 

  361. Spear, G. T., Lurain, N. S., Parker, C. J., Ghassemi, M., Payne, G. H., and Saifuddin, M. 1995. Host cell-derived complement control proteins CD55 and CD59 are incorporated into the virions of two unrelated enveloped viruses. Human T cell leukemia/lymphoma virus type I (HTLV-1) and human cytomegalovirus (HCMV). J. Immunol. 155:4376–4381.

    PubMed  CAS  Google Scholar 

  362. Saifuddin, M., Parker, C. J., Peeples, M. E., Gorny, M. K., Zolla Pazncr, S., Ghassemi, M., Rooncy, I. A., Atkinson, J. P., and Spear, G. T. 1995. Role of virion-associated glycosylphosphatidylinositol-linked proteins CD55 and CD59 in complement resistance of cell line-derived and primary isolates of HIV-1. J. Exp. Med. 182:501–509.

    Article  PubMed  CAS  Google Scholar 

  363. Rieber, E. P., and Rank, G. 1994. CDw60: A marker for human CD8+ T helper cells. J. Exp. Med. 179:1385–1390.

    Article  PubMed  CAS  Google Scholar 

  364. Kniep, B., Flegel, W. A., Northoff, H., and Rieber, E. P. 1993. CDw60 glycolipid antigens of human leukocytes: Structural characterization and cellular distribution. Blood 82:1776–1786.

    PubMed  CAS  Google Scholar 

  365. Carr, K., Lowry, T., Li, L. L., Tsai, C., Stoolman, L., and Fox, D. A. 1995. Expression of CD60 on multiple cell lineages in inflammatory synovitis. Lab. Invest. 73:332–338.

    PubMed  CAS  Google Scholar 

  366. Steiner, B., Trzeciak, A., Pfenninger, G., and Kouns, W. C. 1993. Peptides derived from a sequence within beta 3 integrin bind to platelet alpha IIb beta 3 (GPIIb-IIIa) and inhibit ligand binding. J. Biol. Chem. 268:6870–6873.

    PubMed  CAS  Google Scholar 

  367. Revelle, B. M., Scott, D., Kogan, T. P., Zheng, J., and Beck, P. J. 1996. Structure-function analysis of P-selectin-sialyl LewisX binding interactions. Mutagenic alteration of ligand binding specificity. J. Biol. Chem. 271:4289–4297.

    Article  PubMed  CAS  Google Scholar 

  368. Kunkel, E. J., Jung, U., Bullard, D. C., Norman, K. E., Wolitzky, B. A., Vestweber, D., Beaudet, A. L., and Ley, K. 1996. Absence of trauma-induced leukocyte rolling in mice deficient in both P-selectin and intercellular adhesion molecule 1. J. Exp. Med. 183:57–65.

    Article  PubMed  CAS  Google Scholar 

  369. Norman, K. E., Moore, K. L., McEver, R. P., and Ley, K. 1995. Leukocyte rolling in vivo is mediated by P-selectin glycoprotein ligand-1. Blood 86:4417–4421.

    PubMed  CAS  Google Scholar 

  370. Nagata, K., Tsuji, T., Todoroki, N., Katagiri, Y., Tanoue, K., Yamazaki, H., Hanai, N., and Irimura, T. 1993. Activated platelets induce superoxide anion release by monocytes and neutrophils through P-selectin (CD62). J. Immunol. 151:3267–3273.

    PubMed  CAS  Google Scholar 

  371. Symon, F. A., Walsh, G. M., Watson, S. R., and Wardlaw, A. J. 1994. Eosinophil adhesion to nasal polyp endothelium is P-selectin-dependent. J. Exp. Med. 180:371–376.

    Article  PubMed  CAS  Google Scholar 

  372. Subramaniam, M., Frenette, P. S., Saffaripour, S., Johnson, R. C., Hynes, R. O., and Wagner, D. D. 1996. Defects in hemostasis in P-selectin-deficient mice. Blood 87:1238–1242.

    PubMed  CAS  Google Scholar 

  373. Bullard, D. C., Kunkel, E. J., Kubo, H., Hicks, M. J., Lorenzo, I., Doyle, N. A., Doerschuk, C. M., Ley, K., and Beaudet, A. L. 1996. Infectious susceptibility and severe deficiency of leukocyte rolling and recruitment in E-selectin and P-selectin double mutant mice. J. Exp. Med. 183:2329–2336.

    Article  PubMed  CAS  Google Scholar 

  374. Yao, L., Pan, J., Setiadi, H., Patel, K. D., and McEver, R. P. 1996. Interleukin 4 or oncostatin M induces a prolonged increase in P-selectin mRNA and protein in human endothelial cells. J. Exp. Med. 184:81–92.

    Article  PubMed  CAS  Google Scholar 

  375. Khew Goodall, Y., Butcher, C. M., Litwin, M. S., Newlands, S., Korpelainen, E. I., Noack, L. M., Berndt, M. C., Lopez, A. F., Gamble, J. R., and Vadas, M. A. 1996. Chronic expression of P-selectin on endothelial cells stimulated by the T-cell cytokine, interleukin-3. Blood 87:1432–1438.

    PubMed  CAS  Google Scholar 

  376. Li, F., Wilkins, P. P., Crawley, S., Weinstein, J., Cummings, R. D., and McEver, R. P. 1996. Post-translational modifications of recombinant P-selectin glycoprotein ligand-1 required for binding to P-and E-selectin. J. Biol. Chem. 271:3255–3264.

    Article  PubMed  CAS  Google Scholar 

  377. Yang, J., Galipeau, J., Kozak, C. A., Furie, B. C., and Furie, B. 1996. Mouse P-selectin glycoprotein ligand-I: Molecular cloning, chromosomal localization, and expression of a functional P-selectin receptor. Blood 87:4176–4186.

    PubMed  CAS  Google Scholar 

  378. Tipping, P. G., Huang, X. R., Berndt, M. C., and Holdsworth, S. R. 1996. P-selectin directs T lymphocyte-mediated injury in delayed-type hypersensitivity responses: Studies in glomerulonephritis and cutaneous delayed-type hypersensitivity. Eur. J. Immunol. 26:454–460.

    Article  PubMed  CAS  Google Scholar 

  379. Vischer, U. M., and Wagner, D. D. 1993. CD63 is a component of Weibel-Palade bodies of human endothelial cells. Blood 82:1184–1191.

    PubMed  CAS  Google Scholar 

  380. Radford, K. J., Mallesch, J., and Hersey, P. 1995. Suppression of human melanoma cell growth and metastasis by the melanoma-associated antigen CD63 (ME491). Int. J. Cancer 62:631–635.

    Article  PubMed  CAS  Google Scholar 

  381. Radford, K. J., Thorne, R. F., and Hersey, P. 1996. CD63 associates with transmembrane 4 superfamily members, CD9 and CD81, and with beta 1 integrins in human melanoma. Biochem. Biophys. Res. Commun. 222:13–18.

    Article  PubMed  CAS  Google Scholar 

  382. Berditchevski, F., Bazzoni, G., and Hemler, M. E. 1995. Specific association of CD63 with the VLA-3 and VLA-6 integrins. J. Biol. Chem. 270:17784–17790.

    Article  PubMed  CAS  Google Scholar 

  383. Indik, Z. K., Park, J. G., Hunter, S., and Schreiber, A. D. 1995. Structure/function relationships of Fc gamma receptors in phagocytosis. Semin. Immunol. 7:45–54.

    Article  PubMed  CAS  Google Scholar 

  384. Indik, Z. K., Hunter, S., Huang, M. M., Pan, X. Q., Chien, P., Kelly, C., Levinson, A. I., Kimberly, R. P., and Schreiber, A. D. 1994. The high affinity Fc gamma receptor (CD64) induces phagocytosis in the absence of its cytoplasmic domain: The gamma subunit of Fc gamma RIIIA imparts phagocytic function to Fc gamma RI. Exp. Hematol. 22:599–606.

    PubMed  CAS  Google Scholar 

  385. Masuda, M., and Roos, D. 1993. Association of all three types of Fc gamma R (CD64, CD32, and CD16) with a gamma-chain homodimer in cultured human monocytes. J. Immunol. 151:7188–7195.

    PubMed  CAS  Google Scholar 

  386. Fanger, M. W., and Erbe, D. V. 1992. Fc gamma receptors in cancer and infectious disease. Immunol. Res. 11:203–216.

    PubMed  CAS  Google Scholar 

  387. Unkeless, J.C. 1989. Function and heterogeneity of human Fc receptors for immunoglobulin G. J. Clin. Invest. 83:355–361.

    PubMed  CAS  Google Scholar 

  388. Landor, M. 1995. Maternal-fetal transfer of immunoglobulins. Ann. Allergy Asthma Immunol. 74:279–283.

    PubMed  CAS  Google Scholar 

  389. Saji, F., Koyama, M., and Matsuzaki, N. 1994. Current topic: Human placental Fc receptors. Placenta 15:453–466.

    Article  PubMed  CAS  Google Scholar 

  390. Galon, J., Bouchard, C., Fridman, W. H., and Sautes, C. 1995. Ligands and biological activities of soluble Fc gamma receptors. Immunol. Lett. 44:175–181.

    Article  PubMed  CAS  Google Scholar 

  391. Hashimoto, S., Koh, K., Tomita, Y., Amemiya, E., Sawada, S., Yodoi, J., and Horie, T. 1995. TNF-alpha regulates IL-4-induced Fc epsilon RII/CD23 gene expression and soluble Fc epsilon RII release by human monocytes. Int. Immunol. 7:705–713.

    Article  PubMed  CAS  Google Scholar 

  392. Papadea, C., and Check, I. J. 1989. Human immunoglobulin G and immunoglobulin G subclasses: Biochemical, genetic, and clinical aspects. Crit. Rev. Clin. Lab. Sci. 27:27–58. 363

    PubMed  CAS  Google Scholar 

  393. Punt, J. A., Roberts, J. L., Kearse, K. P., and Singer, A. 1994. Stoichiometry of the T cell antigen receptor (TCR) complex: Each TCR/CD3 complex contains one TCR alpha, one TCR beta, and two CD3 epsilon chains. J. Exp. Med. 180:587–593.

    Article  PubMed  CAS  Google Scholar 

  394. Greaves, D. R., Wilson, F. D., Lang, G., and Kioussis, D. 1989. Human CD2 3’-flanking sequences confer high-level, T cell-specific, position-independent gene expression in transgenic mice. Cell 56:979–986.

    Article  PubMed  CAS  Google Scholar 

  395. Liao, Z., Grimshaw, R. S., and Rosenstreich, D. L. 1984. Identification of a specific interleukin 1 inhibitor in the urine of febrile patients. J. Exp. Med. 159:126–136.

    Article  PubMed  CAS  Google Scholar 

  396. Clynes, R., and Ravetch, J. V. 1995. Cytotoxic antibodies trigger inflammation through Fc receptors. Immunity 3:21–26.

    Article  PubMed  CAS  Google Scholar 

  397. Rankin, B. M., Yocum, S. A., Mittler, R. S., and Kiener, P. A. 1993. Stimulation of tyrosine phosphorylation and calcium mobilization by Fc gamma receptor cross-linking. Regulation by the phosphotyrosine phosphatase CD45. J. Immunol. 150:605–616.

    PubMed  CAS  Google Scholar 

  398. Macher, B. A., Buehler, J., Scudder, P., Knapp, W., and Feizi, F. 1988. A novel carbohydrate, differentiation antigen on fucogangliosides of human myeloid cells recognized by monoclonal antibody VIM-2. J. Biol. Chem. 263:10186–10191.

    PubMed  CAS  Google Scholar 

  399. Prall, F., Nollau, P., Neumaier, M., Haubeck, H. D., Drzeniek, Z., Helmchen, U., Loening, T., and Wagener, C. 1996. CD66a (BGP), an adhesion molecule of the carcinoembryonic antigen family, is expressed in epithelium, endothelium, and myeloid cells in a wide range of normal human tissues. J. Histochem. Cytochem. 44:35–41.

    PubMed  CAS  Google Scholar 

  400. Kuijpers, T. W., van der Schoot, C. E., Hoogerwerf, M., and Roos, D. 1993. Cross-linking of the carcinoembryonic antigen-like glycoproteins CD66 and CD67 induces neutrophil aggregation. J. Immunol. 151:4934–4940.

    PubMed  CAS  Google Scholar 

  401. Teixeira, A. M., Fawcett, J., Simmons, D. L., and Watt, S. M. 1994, The N-domain of the biliary glycoprotein (BGP) adhesion molecule mediates homotypic binding: Domain interactions and epitope analysis of BGPc. Blood 84:211–219.

    PubMed  CAS  Google Scholar 

  402. Yamanka, T., Kuroki, M., Matsuo, Y., and Matsuoka, Y. 1996. Analysis of heterophilic cell adhesion mediated by CD66b and CD66c using their soluble recombinant proteins. Biochem. Biophys. Res. Commun. 219:842–847.

    Article  PubMed  CAS  Google Scholar 

  403. Jantscheff, P., Nagel, G., Thompson, J., Kleist, S. V., Embleton, M. J., Price, M. R., and Grunert, F. 1996. A CD66a-specific, activation-dependent epitope detected by recombinant human single chain fragments (scFvs) on CHO transfectants and activated granulocytes. J. Leukoc. Biol. 59:891–901.

    PubMed  CAS  Google Scholar 

  404. Skubitz, K. M., Campbell, K. D., Ahmed, K., and Skubitz, A. P. 1995. CD66 family members are associated with tyrosine kinase activity in human neutrophils. J. Immunol. 155:5382–5390.

    PubMed  CAS  Google Scholar 

  405. Stocks, S. C., Kerr, M. A., Haslett, C., and Dransfield, I. 1995. CD66-dependent neutrophil activation: A possible mechanism for vascular selectin-mediated regulation of neutrophil adhesion. J. Leukoc. Biol. 58:40–48.

    PubMed  CAS  Google Scholar 

  406. Leusch, H. G., Drzeniek, Z., Hefta, S. A., Markos Pusztai, Z., and Wagener, C. 1991. The putative role of members of the CEA-gene family (CEA, NCA and BGP) as ligands for the bacterial colonization of different human epithelial tissues. Int. J. Med. Microbiol. 275:118–122.

    CAS  Google Scholar 

  407. Leusch, H. G., Hefta, S. A., Drzeniek, Z., Hummel, K., Markos Pusztai, Z., and Wagener, C. 1990. Escherichia coli of human origin binds to carcinoembryonic antigen (CEA) and non-specific crossreacting antigen (NCA). FEBS Lett. 261:405–409.

    Article  PubMed  CAS  Google Scholar 

  408. Ducker, T. P., and Skubitz, K. M. 1992. Subcellular localization of CD66, CD67, and NCA in human neutrophils. J. Leukoc. Biol. 52:11–16.

    PubMed  CAS  Google Scholar 

  409. Jost, C. R., Gaillard, M. L., Fransen, J. A., Daha, M. R., and Ginsel, L. A. 1991. Intracellular localization of glycosyl-phosphatidylinositol-anchored CD67 and FcRIII (CD16) in affected neutrophil granulocytes of patients with paroxysmal nocturnal hemoglobinuria. Blood 78:3030–3036.

    PubMed  CAS  Google Scholar 

  410. Hasegawa, T., Hirose, T., Seki, K., Sano, T., and Hizawa, K. 1993. Transforming growth factor alpha and CD68 immunoreactivity in giant cell tumours of bone: A study on the nature of stromal and giant cells, and their interrelations. J. Pathol. 170:305–310.

    Article  PubMed  CAS  Google Scholar 

  411. Ramprasad, M. P., Fischer, W., Witztum, J. L., Sambrano, G. R., Quehenberger, O., and Steinberg, D. 1995. The 94-to 97-kDa mouse macrophage membrane protein that recognizes oxidized low density lipoprotein and phosphatidylserine-rich liposomes is identical to macrosialin, the mouse homologue of human CD68. Proc. Natl. Acad. Sci. USA 92:9580–9584.

    Article  PubMed  CAS  Google Scholar 

  412. Holness, C. L., and Simmons, D. L. 1993. Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood 81:1607–1613.

    PubMed  CAS  Google Scholar 

  413. Holness, C. L., da Silva, R. P., Fawcett, J., Gordon, S., and Simmons, D. L. 1993. Macrosialin, a mouse macrophage-restricted glycoprotein, is a member of the lamp/lgp family. J. Biol. Chem. 268:9661–9666.

    PubMed  CAS  Google Scholar 

  414. Santis, A. G., Lopez Cabrera, M., Hamann, J., Strauss, M., and Sanchez Madrid, F. 1994. Structure of the gene coding for the human early lymphocyte activation antigen CD69: AC-type lectin receptor evolutionarily related with the gene families of natural killer cell-specific receptors. Eur. J. Immunol. 24:1692–1697.

    Article  PubMed  CAS  Google Scholar 

  415. Vanhecke, D., Leclercq, G., Plum, J., and Vandekerckhove, B. 1995. Characterization of distinct stages during the differentiation of human CD69+CD3+ thymocytes and identification of thymic emigrants. J. Immunol. 155:1862–1872.

    PubMed  CAS  Google Scholar 

  416. Braendle, D., Mueller, S., Mueller, C., Hengartner, H., and Pircher, H. 1994. Regulation of RAG-1 and CD69 expression in the thymus during positive and negative selection. Eur. J. Immunol. 24:145–151.

    Article  Google Scholar 

  417. Lopez Cabrera, M., Munoz, E., Blazquez, M. V., Ursa, M. A., Santis, A. G., and Sanchez Madrid, F. 1995. Transcriptional regulation of the gene encoding the human C-type lectin leukocyte receptor AIM/CD69 and functional characterization of its tumor necrosis factor-alpha-responsive elements. J. Biol. Chem. 270:21545–21551.

    Article  PubMed  CAS  Google Scholar 

  418. D’Ambrosio, D., Cantrell, D. A., Frati, L., Santoni, A., and Testi, R. 1994. Involvement of p21ras activation in T cell CD69 expression. Eur. J. Immunol. 24:616–620.

    Article  PubMed  CAS  Google Scholar 

  419. D’Ambrosio, D., Trotta, R., Vacca, A., Frati, L., Santoni, A., Gulino, A., and Testi, R. 1993. Transcriptional regulation of interleukin-2 gene expression by CD69-generated signals. Eur. J. Immunol. 23:2993–2997.

    Article  PubMed  CAS  Google Scholar 

  420. Walsh, G. M., Williamson, M. L., Symon, F. A., Willars, G. B., and Wardlaw, A. J. 1996. Ligation of CD69 induces apoptosis and cell death in human eosinophils cultured with granulocyte-macrophage colony-stimulating factor. Blood 87:2815–2821.

    PubMed  CAS  Google Scholar 

  421. Hintzen, R. Q., Lens, S. M., Beckmann, M. P., Goodwin, R. G., Lynch, D., and van Lier, R. A. 1994 Characterization of the human CD27 ligand, a novel member of the TNF gene family. J. Immunol. 152:1762–1773.

    PubMed  CAS  Google Scholar 

  422. Hintzen, R. Q., Lens, S. M., Koopman, G., Pals, S. T., Spits, H., and van Lier, R. A. 1994. CD70 represents the human ligand for CD27. Int. Immunol. 6:477–480.

    Article  PubMed  CAS  Google Scholar 

  423. Goodwin, R. G., Alderson, M. R., Smith, C. A., Armitage, R. J., VandenBos, T., Jerzy, R., Tough, T. W., Schoenborn, M. A., Davis Smith, T., Hennen, K., et al. 1993. Molecular and biological characterization of a ligand for CD27 defines a new family of cytokines with homology to tumor necrosis factor. Cell 73:447–456.

    Article  PubMed  CAS  Google Scholar 

  424. Pytowski, B., Judge, T. W., and McGraw, T. E. 1995. An internalization motif is created in the cyloplasmic domain of the transferrin receptor by substitution of a tyrosine at the first position of a predicted tight turn. J. Biol. Chem. 270:9067–9073.

    Article  PubMed  CAS  Google Scholar 

  425. Benedetti, G., Bondesan, P., Caracciolo, D., Cherasco, C., Ruggieri, D., Gastaldi, M. E., Pileri, A., Gianni, A. M., and Tarella, C. 1994. Selection and characterization of early hematopoietic progenitors using an anti-CD71/S06 immunotoxin. Exp. Hematol. 22:166–173.

    PubMed  CAS  Google Scholar 

  426. Gagliardi, M. C., Nisini, R., Benvenuto, R., De Petrillo, G., Michel, M. L., and Barnaba, V. 1994. Soluble transferrin mediates targeting of hepatitis B envelope antigen to transferrin receptor and its presentation by activated T cells. Eur. J. Immunol. 24:1372–1376.

    Article  PubMed  CAS  Google Scholar 

  427. Brekelmans, P., van Soest, P., Voerman, J., Platenburg, P. P., Leenen, P. J., and van Ewijk, W. 1994. Transferrin receptor expression as a marker of immature cycling thymocytes in the mouse. Cell. Immunol. 159:331–339.

    Article  PubMed  CAS  Google Scholar 

  428. Testa, U., Conti, L., Sposi, N. M., Varano, B., Tritarelli, E., Malorni, W., Samoggia, P., Rainaldi, G., Peschle, C., Belardelli, F., et al. 1995. IFN-beta selectively down-regulates transferrin receptor expression in human peripheral blood macrophages by a post-translational mechanism. J. Immunol. 155:427–435.

    PubMed  CAS  Google Scholar 

  429. Salmeron, A., Borroto, A., Fresno, M., Crumpton, M. J., Ley, S. C., and Alarcon, B. 1995. Transferrin receptor induces tyrosine phosphorylation in T cells and is physically associated with the TCR zeta-chain. J. Immunol. 154:1675–1683.

    PubMed  CAS  Google Scholar 

  430. Gordon, J. 1994. B-cell signaling via the C-type lectins CD23 and CD72. Immunol. Today 15:411–417.

    Article  PubMed  CAS  Google Scholar 

  431. Ying, H., Nakayama, E., Robinson, W. H., and Parnes, J. R. 1995. Structure of the mouse CD72 (lyb-2) gene and its alternatively spliced transcripts. J. Immunol. 154:2743–2752.

    PubMed  CAS  Google Scholar 

  432. Resta, R., Hooker, S. W., Hansen, K. R., Laurent, A. B., Park, J. L., Blackburn, M. R., Knudsen, T. B., and Thompson, L. F. 1993. Murine ecto-5’-nucleotidase (CD73): cDNA cloning and tissue distribution. Gene 133:171–177.

    Article  PubMed  CAS  Google Scholar 

  433. Resta, R., Hooker, S. W., Laurent, A. B., Shuck, J. K., Misumi, Y., Ikehara, Y., Koretzky, G. A., and Thompson, L. F. 1994. Glycosyl phosphatidylinositol membrane anchor is not required for T cell activation through CD73. J. Immunol. 153:1046–1053.

    PubMed  CAS  Google Scholar 

  434. Christensen, L. D., and Andersen, V. 1992. Natural killer cells lack ecto-5’-nucleotidase. Nat. Immun. 11:1–6.

    PubMed  CAS  Google Scholar 

  435. Morkowski, S., Goldrath, A. W., Eastman, S., Ramachandra, L., Freed, D. C., Whiteley, P., and Rudensky, A. Y. 1995. T-cell recognition of major histocompatibility complex class-II complexes with invariant chain processing intermediates. J. Exp. Med. 182:1403–1413.

    Article  PubMed  CAS  Google Scholar 

  436. Viville, S., Neefjes, J., Lotteau, V., Dierich, A., LeMeur, M., Ploegh, H., Benoist, C, and Mathis, D. 1993. Mice lacking the MHC class II-associated invariant chain. Cell 72:635–648.

    Article  PubMed  CAS  Google Scholar 

  437. Bikoff, E. K., Huang, L. Y., Episkopou, V., van Meerwijk, J., Germain, R. N., and Robertson, E. J. 1993. Defective major histocompatibility complex class II assembly, transport, peptide acquisition, and CD4+ T cell selection in mice lacking invariant chain expression. J. Exp. Med. 177:1699–1712.

    Article  PubMed  CAS  Google Scholar 

  438. Newcomb, J. R., and Cresswell, P. 1993. Characterization of endogenous peptides bound to purified HLA-DR molecules and their absence from invariant chain-associated alpha beta dimers. J. Immunol. 150:499–507.

    PubMed  CAS  Google Scholar 

  439. De Lau, W. B., Kuipers, J., Voshol, H., Clevers, H., and Bast, B. J. 1993. HB4 antibody recognizes a carbohydrate structure on lymphocyte surface proteins related to HB6, CDw75, and CD76 antigens. J. Immunol. 150:4911–4919.

    PubMed  Google Scholar 

  440. Bast, B. J., Zhou, L. J., Freeman, G. J., Colley, K. J., Ernst, T. J., Munro, J. M., and Tedder, T. F. 1992. The HB-6, CDw75, and CD76 differentiation antigens are unique cell-surface carbohydrate determinants generated by the beta-galactoside alpha 2,6-sialyltransferase. J. Cell Biol. 116:423–435.

    Article  PubMed  CAS  Google Scholar 

  441. Keppler, O. T., Moldenhauer, G., Oppenlander, M., Schwartz Albiez, R., Berger, E. G., Funderud, S., and Pawlita, M. 1992. Human Golgi beta-galactoside alpha-2,6-sialyltransferase generates a group of sialylated B lymphocyte differentiation antigens. Eur. J. Immunol. 22:2777–2781.

    Article  PubMed  CAS  Google Scholar 

  442. Maloney, M. D., and Lingwood, C. A. 1994. CD19 has a potential CD77 (globotriaosyl ceramide)-binding site with sequence similarity to verotoxin B-subunits: Implications of molecular mimicry for B cell adhesion and enterohemorrhagic Escherichia coli pathogenesis. J. Exp. Med. 180:191–201.

    Article  PubMed  CAS  Google Scholar 

  443. Mangeney, M., Rousselet, G., Taga, S., Tursz, T., and Wiels, J. 1995. The fate of human CD77+ germinal center B lymphocytes after rescue from apoptosis. Mol. Immunol. 32:333–339.

    Article  PubMed  CAS  Google Scholar 

  444. Silins, S. L., and Sculley, T. B. 1994. Modulation of vimentin, the CD40 activation antigen and Burkitt’s lymphoma antigen (CD77) by the Epstein-Barr virus nuclear antigen EBNA-4. Virology 202:16–24.

    Article  PubMed  CAS  Google Scholar 

  445. Slack, J. L., Armitage, R. J., Ziegler, S. F., Dower, S. K., and Gruss, H. J. 1995. Molecular characterization of the pan-B cell antigen CDw78 as a MHC class II molecule by direct expression cloning of the transcription factor CIITA. Int. Immunol. 7:1087–1092.

    Article  PubMed  CAS  Google Scholar 

  446. Hashimoto, S., Gregersen, P. K., and Chiorazzi, N. 1993. The human Ig-beta cDNA sequence, a homologue of murine B29, is identical in B cell and plasma cell lines producing all the human Ig isotypes. J. Immunol. 150:491–498.

    PubMed  CAS  Google Scholar 

  447. Hombach, J., Lottspeich, F., and Reth, M. 1990. Identification of the genes encoding the IgM-alpha and Ig-beta components of the IgM antigen receptor complex by amino-terminal sequencing. Eur. J. Immunol. 20:2795–2799.

    Article  PubMed  CAS  Google Scholar 

  448. Yu, L. M., and Chang, T. W. 1992. Human mb-1 gene: Complete cDNA sequence and its expression in B cells bearing membrane Ig of various isotypes. J. Immunol. 148:633–637.

    PubMed  CAS  Google Scholar 

  449. Kashiwamura, S., Koyama, T., Matsuo, T., Steinmetz, M., Kimoto, M., and Sakaguchi, N. 1990. Structure of the murine mb-1 gene encoding a putative slgM-associated molecule. J. Immunol. 145:337–343.

    PubMed  CAS  Google Scholar 

  450. Gold, M. R., Matsuuchi, L., Kelly, R. B., and DeFranco, A. L. 1991. Tyrosine phosphorylation of components of the B-cell antigen receptors following receptor crosslinking. Proc. Nat. Acad. Sci. USA 88:3436–3440.

    Article  PubMed  CAS  Google Scholar 

  451. Tseng, J., Eisfelder, B. J., and Clark, M. R. 1994. The B-cell antigen receptor complex—Mechanisms and implications of tyrosine kinase activation. Immunol. Res. 13:299–310.

    PubMed  CAS  Google Scholar 

  452. Clark, M. R., Campbell, K. S., Kazlauskas, A., Johnson, S. A., Hertz, M., Potter, T. A., Pleiman, C, and Cambier, J. C. 1992. The B cell antigen receptor complex: Association of Ig-alpha and Ig-beta with distinct cytoplasmic effectors. Science 258:123–126.

    Article  PubMed  CAS  Google Scholar 

  453. Yellin, M. J., Sinning, J., Covey, L. R., Sherman, W., Lee, J. J., Glickman Nir, E., Sippel, K, C., Rogers, J., Cleary, A. M., Parker, M., Chess, L., and Lederman, S. 1994. T lymphocyte T cell-B cell-activating molecule/CD40-L molecules induce normal B cells or chronic lymphocytic leukemia B cells to express CD80 (B7/BB-1) and enhance their costimulatory activity. J. Immunol. 153:666–674.

    PubMed  CAS  Google Scholar 

  454. Harlan, D. M., Hengartner, H., Huang, M. L., Kang, Y. H., Abe, R., Moreadith, R. W., Pircher, H., Gray, G. S., Ohashi, P. S., Freeman, G. J., Nadler, L., June, C. H., and Aichele, P. 1994. Mice expressing both B7-1 and viral glycoprotein on pancreatic beta cells along with glycoprotein-specific transgenic T cells develop diabetes due to a breakdown of T-lymphocyte unresponsiveness. Proc. Natl. Acad. Sci. USA 91:3137–3141.

    Article  PubMed  CAS  Google Scholar 

  455. Finck, B. K., Linsley, P. S., and Wofsy, D. 1994. Treatment of murine lupus with CTLA41g. Science 265:1225–1227.

    Article  PubMed  CAS  Google Scholar 

  456. Freeman, G. J., Gribben, J. G., Boussiotis, V. A., Ng, J. W., Restivo, V. A., Jr., Lombard, L. A., Gray, G. S., and Nadler, L. M. 1993. Cloning of B7-2: A CTLA-4 counter-receptor that costimulates human T cell proliferation. Science 262:909–911.

    Article  PubMed  CAS  Google Scholar 

  457. Schick, M. R., and Levy, S. 1993. The TAPA-1 molecule is associated on the surface of B cells with HLA-DR molecules. J. Immunol. 151:4090–4097.

    PubMed  CAS  Google Scholar 

  458. Matsumoto, A. K., Martin, D. R., Carter, R. H., Klickstein, L. B., Ahearn, J. M., and Fearon, D. T. 1993. Functional dissection of the CD21/CD19/TAPA-1/Leu-13 complex of B lymphocytes. J. Exp. Med. 178:1407–1417.

    Article  PubMed  CAS  Google Scholar 

  459. Bradbury, L. E., Goldmacher, V. S., and Tedder, T. F. 1993. The CD19 signal transduction complex of B lymphocytes. Deletion of the CD19 cytoplasmic domain alters signal transduction but not complex formation with TAPA-1 and Leu 13. J. Immunol. 151:2915–2927.

    PubMed  CAS  Google Scholar 

  460. Boismenu, R., Rhein, M., Fischer, W. H., and Havran, W. L. 1996. A rote for CD81 in early T cell development. Science 271:198–200.

    Article  PubMed  CAS  Google Scholar 

  461. Lebel-Binay, S., Lagaudriere, C., Fradelizi, D., and Conjeaud, H. 1995. CD82, tetra-span-transmembrane protein, is a regulated transducing molecule on U937 monocytic cell line. J. Leukoc. Biol. 57:956–963.

    PubMed  CAS  Google Scholar 

  462. Lebel Binay, S., Gil, M. L., Lagaudriere, C., Miloux, B., Marchiol Fournigault, C., Quillet Mary, A., Lopez, M., Fradelizi, D., and Conjeaud, H. 1994. Further characterization of CD82/IA4 antigen (type III surface protein): An activation/differentiation marker of mononuclear cells. Cell. Immunol. 154:468–483

    Article  PubMed  CAS  Google Scholar 

  463. Nagira, M., Imai, T., Ishikawa, I., Uwabe, K. I., and Yoshie, O. 1994. Mouse homologue of C33 antigen (CD82), a member of the transmembrane 4 superfamily: Complementary DNA, genomic structure, and expression. Cell. Immunol. 157:144–157.

    Article  PubMed  CAS  Google Scholar 

  464. Imai, T., Kakizaki, M., Nishimura, M., and Yoshie, O. 1995. Molecular analyses of the association of CD4 with two members of the transmembrane 4 superfamily, CD81 and CD82. J. Immunol. 155:1229–1239.

    PubMed  CAS  Google Scholar 

  465. Lebel Binay, S., Lagaudriere, C., Fradelizi, D., and Conjeaud, H. 1995. CD82, member of the tetra-spantransmembrane protein family, is a costimulatory protein for T cell activation. J. Immunol. 155:101–110.

    PubMed  CAS  Google Scholar 

  466. Zhou, L. J., Schwarting, R., Smith, H. M., and Tedder, T. F. 1992. A novel cell-surface molecule expressed by human interdigitating reticulum cells. Langerhans cells, and activated lymphocytes is a new member of the Ig superfamily. J. Immunol. 149:735–742.

    PubMed  CAS  Google Scholar 

  467. Young, J. W., and Steinman, R. M. 1988. Accessory cell requirements for the mixed-leukocyte reaction and polyclonal mitogens, as studied with a new technique for enriching blood dendritic cells. Cell. Immunol. 111:167–182.

    Article  PubMed  CAS  Google Scholar 

  468. Zhou, L. J., and Tedder, T. F. 1995. Human blood dendritic cells selectively express CD83. a member of the immunoglobulin superfamily. J. Immunol. 154:3821–3835.

    PubMed  CAS  Google Scholar 

  469. Kozlow, E. J., Wilson, G. L., Fox, C. H., and Kehrl, J. H. 1993. Subtractive cDNA cloning of a novel member of the Ig gene superfamily expressed at high levels in activated B lymphocytes. Blood 81:454–461.

    PubMed  CAS  Google Scholar 

  470. Zhou, L. J., and Tedder, T. F. 1995. A distinct pattern of cytokine gene-expression by human CD83(+) blood dendritic cells. Blood 86:3295–3301.

    PubMed  CAS  Google Scholar 

  471. Engel, P., and Tedder, T. F. 1994. New CD from the B cell section of the Fifth International Workshop on Human Leukocyte Differentiation Antigens. Leuk. Lymphoma 13(Suppl. l):61–64.

    Article  PubMed  Google Scholar 

  472. Caux, C., Vanbervliet, B., Massacrier, C., Azuma, M., Okumura, K., Lanier, L. L., and Banchereau, J. 1994. B70/B7-2 is identical to CD86 and is the major functional ligand for CD28 expressed on human dendritic cells. J. Exp. Med. 180:1841–1847.

    Article  PubMed  CAS  Google Scholar 

  473. Buelens, C., Willems, F., Delvaux, A., Pierard, G., Delville, J. P., Velu, T., and Goldman, M. 1995. Interleukin-10 differentially regulates B7-1 (CD80) and B7-2 (CD86) expression on human peripheral-blood dendritic cells. Eur. J. Immunol. 25:2668–2672.

    Article  PubMed  CAS  Google Scholar 

  474. Inaba, K., Witmer-Pack, M., Inaba, M., Hathcock, K. S., Sakuta, H., Azuma, M., Yagita, H., Okumura, K., Linsley, P. S., and Ikehara, S. 1994. The tissue distribution of the B7-2 costimulator in mice: Abundant expression on dendritic cells in situ and during maturation in vitro. J. Exp. Med. 180:1849–1860.

    Article  PubMed  CAS  Google Scholar 

  475. Freeman, G. J., Borriello, F., Hodes, R. J., Reiser, H., Hatchcock, K. S., Laszlo, G., McKnight, A. J., Kim, J., Du, L., Lombard, D. B., et al. 1993. Uncovering of functional alternative CTLA-4 counter-receptor in B7-defecient mice. Science 262:907–909.

    Article  PubMed  CAS  Google Scholar 

  476. Hathcock, K. S., Laszlo, G., Dickler, H. B., Bradshaw, J., Linsley, P., and Hodes, R. J. 1993. Identification of an alternative CTLA-4 ligand costimulatory for T cell activation. Science 262:905–907.

    Article  PubMed  CAS  Google Scholar 

  477. Kuchroo, V. K., Das, M. P., Brown, J. A., Ranger, A. M., Zamvil, S. S., Sobel, R. A., Weiner, H. L., Nabavi, N., and Glimcher, L. H. 1995. B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell 80:707–718.

    Article  PubMed  CAS  Google Scholar 

  478. Sitrin, R. G., Todd, R. F., Mizukami, I. F., Gross, T. J., Shollenberger, S. B., and Gyetko, M. R. 1994. Cytokine-specific regulation of urokinase receptor (CD87) expression by U937 mononuclear phagocytes. Blood 84:1268–1275.

    PubMed  CAS  Google Scholar 

  479. Min, H. Y., Semnani, R., Mizukami, I. F., Watt, K., Todd, R. F., 3d, and Liu, D. Y. 1992. cDNA for Mo3, a monocyte activation antigen, encodes the human receptor for urokinase plasminogen activator. J. Immunol. 148:3636–3642.

    PubMed  CAS  Google Scholar 

  480. Roldan, A. L., Cubellis, M. V., Asucci, M. T., Behrendt, N., Lund, L. R., Dano, K., Appella, E., and Blasi, F. 1990. Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell surface, plasmin dependent proteolysis. EMBO J. 9:467–474.

    PubMed  CAS  Google Scholar 

  481. Kirchheimer, J. C., and Remold, H. G. 1989. Endogenous receptor-bound urokinase mediates tissue invasion of human monocytes. J. Immunol. 143:2634–2639.

    PubMed  CAS  Google Scholar 

  482. Gyetko, M. R., Sitrin, R. G., Todd, R. F., and Standiford, T. J. 1994. The role of the urokinase receptor (CD87) in pmn chemotaxis. Blood 84:A225.

    Google Scholar 

  483. Gyetko, M. R., Todd, R. F., 3rd, Wilkinson, C. C., and Sitrin, R. G. 1994. The urokinase receptor is required for human monocyte chemotaxis in vitro. J. Clin. Invest. 93:1380–1387.

    PubMed  CAS  Google Scholar 

  484. Mohanam, S., Sawaya, R., McCutcheon, I., Ali Osman, F., Boyd, D., and Rao, J. S. 1993. Modulation of in vitro invasion of human glioblastoma cells by urokinase-type plasminogen activator receptor antibody. Cancer Res. 53:4143–4147.

    PubMed  CAS  Google Scholar 

  485. Fuereder, W., Agis, H., Willheim, M., Bankl, H. C., Maier, U., Kishi, K., Mueller, M. R., Czerwenka, K., Radaszkiewicz, T., Butterfield, J. H., Klappacher, G. W., Sperr, W. R., Oppermann, M., Lechner, K., and Valent, P. 1995. Differential expression of complement receptors on human basophils and mast cells. Evidence for mast cell heterogeneity and CD88/C5aR expression on skin mast cells. J. Immunol. 155:3152–3160.

    Google Scholar 

  486. Wetsel, R. A. 1995. Structure, function and cellular expression of complement anaphylatoxin receptors. Curr. Opin. Immunol. 7:48–53.

    Article  PubMed  CAS  Google Scholar 

  487. Gerard, N. P., and Gerard, C. 1991. The chemotactic receptor for human C5a anaphylatoxin. Nature 349:614–617.

    Article  PubMed  CAS  Google Scholar 

  488. Boulay, F., Mery, L., Tardif, M., Brouchon, L., and Vignais, P. 1991. Expression cloning of a receptor for C5a anaphylatoxin on differentiated HL-60 cells. Biochemistry 30:2993–2999.

    Article  PubMed  CAS  Google Scholar 

  489. Hopken, U. E., Lu, B., Gerard, N. P., and Gerard, C. 1996. The C5a chemoauractant receptor mediates mucosal defence to infection. Nature 383:86–89.

    Article  PubMed  CAS  Google Scholar 

  490. Monteiro, R. C., Kubagawa, H., and Cooper, M. D. 1990. Cellular distribution, regulation, and biochemical nature of an Fc alpha receptor in humans. J. Exp. Med. 171:597–613.

    Article  PubMed  CAS  Google Scholar 

  491. Monteiro, R. C., Cooper, M. D., and Kubagawa, H. 1992. Molecular heterogeneity of Fc alpha receptors detected by receptor-specific monoclonal antibodies. J. Immunol. 148:1764–1770.

    PubMed  CAS  Google Scholar 

  492. Maliszewski, C. R., March, C. J., Schoenborn, M. A., Gimpel, S., and Shen, L. 1990. Expression cloning of a human Fc receptor for IgA. J. Exp. Med. 172:1665–1672.

    Article  PubMed  CAS  Google Scholar 

  493. Patry, C., Sibille, Y., Lehuen, A., and Monteiro, R. C. 1996. Identification of Fc-alpha receptor (CD89) isoforms generated by alternative splicing that are differentially expressed between blood monocytes and alveolar macrophages. J. Immunol. 156:4442–4448.

    PubMed  CAS  Google Scholar 

  494. Kerr, M. A. 1990. The structure and function of human IgA. Biochem. J. 271:285–296.

    PubMed  CAS  Google Scholar 

  495. Shen, L. 1992. Receptors for IgA on phagocytic cells. Immunol. Res. 11:273–282.

    PubMed  CAS  Google Scholar 

  496. Pfefferkorn, L. C., and Yeaman, G. R. 1994. Association of IgA-Fc receptors (Fc alpha R) with Fc epsilon RI gamma 2 subunits in U937 cells. Aggregation induces the tyrosine phosphorylation of gamma 2. J. Immunol. 153:3228–3236.

    PubMed  CAS  Google Scholar 

  497. Morton, H. C., Vandenherikoudijk, I. E., Vossebeld, P., and Snijders, A. 1995. Functional association between the human myeloid immunoglobulin A Fc receptor (CD89) and FcR gamma-chain: Molecular basis for CD89/FcR gamma-chain association. J. Biol. Chem. 270:29781–29787.

    Article  PubMed  CAS  Google Scholar 

  498. Muller Sieburg, C. E., Whitlock, C. A., and Weissman, I. L. 1986. Isolation of two early B lymphocyte progenitors from mouse marrow: A committed pre-pre-B cell and a clonogenic Thy-1-lo hematopoietic stem cell. Cell 44:653–662.

    Article  PubMed  CAS  Google Scholar 

  499. Nishimura, T., Takeuchi, Y., Gao, X. H., Urano, K., and Habu, S. 1991. Monoclonal antibody against actin cross-reacts with the Thy-1 molecule and inhibits lymphocyte function-associated antigen-1 dependent cell-cell interaction of T cells. J. Immunol. 147:2094–2099.

    PubMed  CAS  Google Scholar 

  500. He, H. T., Naquet, P., Caillol, D., and Pierres, M. 1991. Thy-l supports adhesion of mouse thymocytes to thymic epithelial cells through a Ca2(+)-independent mechanism. J. Exp. Med. 173:515–518.

    Article  PubMed  CAS  Google Scholar 

  501. Irlin, Y., and Peled, A. 1992. Thy-1 antigen-mediated adhesion of mouse lymphoid cells to stromal cells of haemopoietic origin. Immunol. Lett. 33:233–237.

    Article  PubMed  CAS  Google Scholar 

  502. Lancki, D. W., Qian, D., Fields, P., Gajewski, T., and Fitch, F. W. 1995. Differential requirement for protein tyrosine kinase Fyn in the functional activation of antigen-specific T lymphocyte clones through the TCR or Thy-1. J. Immunol. 154:4363–4370.

    PubMed  CAS  Google Scholar 

  503. Chen, S., Botteri, F., van der Putten, H., Landel, C. P., and Evans, G. A. 1987. A lymphoproliferative abnormality associated with inappropriate expression of the Thy-1 antigen in transgenic mice. Cell 51: 7–19.

    Article  PubMed  CAS  Google Scholar 

  504. Mayani, H., and Lansdorp, P. M. 1994. Thy-l expression is linked to functional properties of primitive hematopoietic progenitor cells from human umbilical cord blood. Blood 83:2410–2417.

    PubMed  CAS  Google Scholar 

  505. Nykjaer, A., Petersen, C. M., Moller, B., Andreasen, P. A., and Gliemann, J. 1992. Identification and characterization of urokinase receptors in natural killer cells and T-cell-derived lymphokine activated killer cells. FEBS Lett. 300:13–17.

    Article  PubMed  CAS  Google Scholar 

  506. Bonner, J. C., Badgett, A., Hoffman, M., and Lindroos, P. M. 1995. Inhibition of platelet-derived growth factor-BB-induced fibroblast proliferation by plasmin-activated alpha 2-macroglobulin is mediated via an alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein-dependent mechanism. J. Biol. Chem. 270:6389–6395.

    Article  PubMed  CAS  Google Scholar 

  507. Nykjaer, A., Petersen, C. M., Moller, B., Jensen, P. H., Moestrup, S. K., Holtet, T. L., Etzerodt, M., Thogersen, H. C., Munch, M., Andreasen, P. A., et al. 1992. Purified alpha 2-macroglobulin receptor/LDL receptor-related protein binds urokinase plasminogen activator inhibitor type-1 complex. Evidence that the alpha 2-macroglobulin receptor mediates cellular degradation of urokinase receptor-bound complexes. J. Biol. Chem. 267:14543–14546.

    PubMed  CAS  Google Scholar 

  508. Kounnas, M. Z., Henkin, J., Argraves, W. S., and Strickland, D. K. 1993. Low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor mediates cellular uptake of pro-urokinase. J. Biol. Chem. 268:21862–21867.

    PubMed  CAS  Google Scholar 

  509. Mikhailenko, I., Kounnas, M. Z., and Strickland, D. K. 1995. Low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor mediates the cellular internalization and degradation of thrombospondin. A process facilitated by cell-surface proteoglycans. J. Biol. Chem. 270:9543–9549.

    Article  PubMed  CAS  Google Scholar 

  510. Christensen, L., Wiborg Simonsen, A. C., Heegaard, C. W., Moestrup, S. K., Andersen, J. A., and Andreasen, P. A. 1996. Immunohistochemical localization of urokinase-type plasminogen activator, type-1 plasminogen-activator inhibitor, urokinase receptor and alpha(2)-macroglobulin receptor in human breast carcinomas. Int. J. Cancer 66:441–452.

    Article  PubMed  CAS  Google Scholar 

  511. Rubio, G., Aramburu, J., Ontanon, J., Lopez Botet, M., and Aparicio, P. 1993. A novel functional cell surface dimer (kp43) serves as accessory molecule for the activation of a subset of human gamma delta T cells. J. Immunol. 151:1312–1321.

    PubMed  CAS  Google Scholar 

  512. Chang, C., Rodriguez, A., Carretero, M., Lopez Botet, M., Phillips, J. H., and Lanier, L. L. 1995. Molecular characterization of human CD94: A type II membrane glycoprotein related to the C-type lectin superfamily. Eur. J. Immunol. 25:2433–2437.

    Article  PubMed  CAS  Google Scholar 

  513. Carbone, E., Terrazzano, G., Colonna, M., Tuosto, L., Piccolella, E., Franksson, L., Palazzolo, G., Perez Villar, J. J., Fontana, S., Kaerre, K., and Zappacosta, S. 1996. Natural killer clones recognize specific soluble HLA class I molecules. Eur. J. Immunol. 26:683–689.

    Article  PubMed  CAS  Google Scholar 

  514. Bottino, C., Vitale, M., Pende, D., Biassoni, R., and Moretta, A. 1995. Receptors for HLA class I molecules in human NK cells. Semin. Immunol. 7:67–73.

    Article  PubMed  CAS  Google Scholar 

  515. Perez Villar, J. J., Melero, I., Rodriguez, A., Carretero, M., Aramburu, J., Sivori, S., Orengo, A. M., Moretta, A., and Lopez Botet, M. 1995. Functional ambivalence of the Kp43 (CD94) NK cell-associated surface antigen. J. Immunol. 154:5779–5788.

    PubMed  CAS  Google Scholar 

  516. Moretta, A., Vitale, M., Sivori, S., Bottino, C., Morelli, L., Augugliaro, R., Barbaresi, M., Pende, D., Ciccone, E., Lopez Botet, M., et al. 1994. Human natural killer cell receptors for HLA-class I molecules. Evidence that the Kp43 (CD94) molecule functions as receptor for HLA-B alleles. J. Exp. Med. 180:545–555.

    Article  PubMed  CAS  Google Scholar 

  517. Aramburu, J., Balboa, M. A., Rodriguez, A., Melero, I., Alonso, M., Alonso, J. L., and Lopez Botet, M. 1993. Stimulation of IL-2-activated natural killer cells through the Kp43 surface antigen up-regulates TNF-alpha production involving the LFA-1 integrin. J. Immunol. 151:3420–3429.

    PubMed  CAS  Google Scholar 

  518. Yonehara, S., Ishii, A., and Yonehara, M. 1989. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J. Exp. Med. 169:1747–1756.

    Article  PubMed  CAS  Google Scholar 

  519. Gruss, H. J., Duyster, J., and Herrmann, F. 1996. Structural and biological features of the TNF receptor and TNF ligand superfamilies—Interactive signals in the pathobiology of Hodgkin’s disease. Ann. Oncol. 7(Suppl. 4): 19–26.

    PubMed  Google Scholar 

  520. Alderson, M. R., Tough, T. W., Davis-Smith, T., Braddy, S., Falk, B., Schooley, K. A., Goodwin, R. G., Smith, C. A., Ramsdell, F., and Lynch, D. H. 1995. Fas ligand mediates activation-induced cell death in human T lymphocytes. J. Exp. Med. 181:71–77.

    Article  PubMed  CAS  Google Scholar 

  521. Bellgrau, D., Gold, D., Selawry, H., Moore, J., Franzusoff, A., and Duke, R. C. 1995. A role for CD95 ligand in preventing graft-rejection. Nature 377:630–632.

    Article  PubMed  CAS  Google Scholar 

  522. Crispe, I. N. 1994. Fatal interactions: Fas-induced apoptosis of mature T cells. Immunity 1:347–349.

    Article  PubMed  CAS  Google Scholar 

  523. Singer, G. G., and Abbas, A. K. 1994. The fas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T cell receptor transgenic mice. Immunity 1:365–371.

    Article  PubMed  CAS  Google Scholar 

  524. Griffith, T. S., Brunner, T., Fletcher, S. M., Green, D. R., and Ferguson, T. A. 1995. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270:1189–1191.

    Article  PubMed  CAS  Google Scholar 

  525. Schattner, E. J., Elkon, K. B., Yoo, D. H., Tumang, K., Krammer, P. H., Crow, M. K., and Friedman, S. M. 1995. CD40 ligation induces Apo-1/Fas expression on human B lymphocytes and facilitates apoptosis through the Apo-1/Fas pathway. J. Exp. Med. 182:1557–1565.

    Article  PubMed  CAS  Google Scholar 

  526. Rathmell, J. C., Cooke, M. P., Ho, W. Y., Grein, J., Townsend, S. E., Davis, M. M., and Goodnow, C. C. 1995. CD95 (Fas)-dependent elimination of self-reactive B cells upon interaction with CD4+ T cells. Nature 376:181–184.

    Article  PubMed  CAS  Google Scholar 

  527. Lynch, D. H., Watson, M. L., Alderson, M. R., Baum, P. R., Miller, R. E., Tough, T., Gibson, M., Davis Smith, T., Smith, C. A., Hunter, K., Bhat, D., Din, W., Goodwin, R. G., and Seldin, M. F. 1994. The mouse Fas-ligand gene is mutated in gld mice and is part of a TNF family gene cluster. Immunity 1:131–136.

    Article  PubMed  CAS  Google Scholar 

  528. Watanabe, R., Brannan, C. I., Copeland, N. G., Jenkins, N. A., and Nagata, S. 1992. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356:314–316.

    Article  Google Scholar 

  529. Wang, P. L., O’Farrell, S., Clayberger, C., and Krensky, A. M. 1992. Identification and molecular cloning of tactile. A novel human T cell activation antigen that is a member of the Ig gene superfamily. J. Immunol. 148:2600–2608.

    PubMed  CAS  Google Scholar 

  530. Hamann, J., Eichler, W., Hamann, D., Kerstens, H. M., Poddighe, P. J., Hoovers, J. M., Hartmann, E., Strauss, M., and van Lier, R. A. 1995. Expression cloning and chromosomal mapping of the leukocyte activation antigen CD97, a new seven-span transmembrane molecule of the secretion receptor superfamily with an unusual extracellular domain. J. Immunol. 155:1942–1950.

    PubMed  CAS  Google Scholar 

  531. Hamann, J., Vogel, B., Vanschijndel, G. M. W., and Vanlier, R. A. W. 1996. The 7-span transmembrane receptor CD97 has a cellular ligand (CD55, DAF). J. Exp. Med. 184:1185–1189.

    Article  PubMed  CAS  Google Scholar 

  532. Warren, A. P., Patel, K., McConkey, D. J., and Palacios, R. 1996. CD98—A type-II transmembrane glycoprotein expressed from the beginning of primitive and definitive hematopoiesis may play a critical role in the development of hematopoietic cells. Blood 87:3676–3687.

    PubMed  CAS  Google Scholar 

  533. Ohgimoto, S., Tabata, N., Suga, S., Nishio, M., Ohta, H., Tsurudome, M., Komada, H., Kawano, M., Watanabe, N., and Ito, Y. 1995. Molecular characterization of fusion regulatory protein-1 (FRP-1) that induces multinucleated giant-cell formation of monocytes and HIV gp160-mediated cell fusion—FRP-1 and 4F2/CD98 are identical molecules. J. Immunol. 155:3585–3592.

    PubMed  CAS  Google Scholar 

  534. Darling, S. M., Banting, G. S., Pym, B., Wolfe, J., and Goodfellow, P. N. 1986. Cloning an expressed gene shared by the human sex chromosomes. Proc. Natl. Acad. Sci. USA 83:135–139.

    Article  PubMed  CAS  Google Scholar 

  535. Gelin, C., Zoccola, D., Valentin, H., Raynal, B., and Bernard, A. 1991. Isoforms of the E2 molecule: D44 monoclonal antibody defines an epitope on E2 and reacts differentially with T cell subsets. Eur. J. Immunol. 21:715–719.

    Article  PubMed  CAS  Google Scholar 

  536. Gelin, C., Aubrit, F., Phalipon, A., Raynal, B., Cole, S., Kaczorek, M., and Bernard, A. 1989. The E2 antigen, a 32 kd glycoprotein involved in T-cell adhesion processes, is the MIC2 gene product. EMBO J. 8:3253–3259.

    PubMed  CAS  Google Scholar 

  537. Bernard, G., Zoccola, D., Deckert, M., Breittmayer, J. P., Aussel, C., and Bernard, A. The E2 molecule (CD99) specifically triggers homotypic aggregation of CD4+ CD8+ thymocytes. J. Immunol. 154:26–32.

    Google Scholar 

  538. Bougeret, C., Mansur, I. G., Dastot, H., Schmid, M., Mahouy, G., Bensussan, A., and Boumsell, L. 1992. Increased surface expression of a newly identified 150-kDa dimer early after human T lymphocyte activation. J. Immunol. 148:318–323.

    PubMed  CAS  Google Scholar 

  539. Herold, C., Bismuth, G., Bensussan, A., and Boumsell, L. 1995. Activation signals are delivered through two distinct epitopes of CD 100, a unique 150 kDa human lymphocyte surface structure previously defined by BB18 mAb. Int. Immunol. 7:1–8.

    Article  PubMed  CAS  Google Scholar 

  540. Hall, K. T., Boumsell, L., Schultze, J. L., Boussiotis, V. A., and Dorfman, D. 1995. CD 100, the first human-leukocyte semaphorin is involved in germinal center development. Blood 86:480.

    Google Scholar 

  541. Martinelli, I., Charue, D., Boulland, M. L., Wechsler, J., and Boumsell, L. 1996. CDw 10l is a major antigen for T-lymphocyte activation by Langerhans cells. J. Invest. Dermatol. 107:279(38c).

    Google Scholar 

  542. Hart, D. N., and Prickett, T. C. 1993. Intercellular adhesion molecule-2 (ICAM-2) expression on human dendritic cells. Cell. Immunol. 148:447–454.

    Article  PubMed  CAS  Google Scholar 

  543. Li, R., Nortamo, P., Valmu, L., Tolvanen, M., Huuskonen, J., Kantor, C., and Gahmberg, C. G. 1993. A peptide from ICAM-2 binds to the leukocyte integrin CD11a/CD18 and inhibits endothelial cell adhesion. J. Biol. Chem. 268:17513–17518.

    PubMed  CAS  Google Scholar 

  544. de Fougerolles, A. R., Stacker, S. A., Schwarting, R., and Springer, T. A. 1991. Characterization of ICAM-2 and evidence for a third counter-receptor for LFA-1. J. Exp. Med. 174:253–267.

    Article  PubMed  Google Scholar 

  545. Tchilian, E. Z., Anderson, G., Moore, N. C., Owen, J. J., and Jenkinson, E. J. 1996. Involvement of LFA-1/ICAM-2 adhesive interactions and PKC in activation-induced cell death following SEB rechallenge. Immunology 87:566–572.

    Article  PubMed  CAS  Google Scholar 

  546. Tiisala, S., Paavonen, T., and Renkonen, R. 1995. Alpha E beta 7 and alpha 4 beta 7 integrins associated with intraepithelial and mucosal homing are expressed on macrophages. Eur. J. Immunol. 25:411–417.

    Article  PubMed  CAS  Google Scholar 

  547. Smith, T. J., Ducharme, L. A., Shaw, S. K., Parker, C. M., Brenner, M. B., Kilshaw, P. J., and Weis, J. H. 1994. Murine M290 integrin expression modulated by mast cell activation. Immunity 1:393–403.

    Article  PubMed  CAS  Google Scholar 

  548. Brew, R., West, D. C., Burthem, J., and Christmas, S. E. 1995. Expression of the human mucosal lymphocyte antigen, HML-1, by T cells activated with mitogen or specific antigen in vitro. Scand. J. Immunol. 41:553–562.

    Article  PubMed  CAS  Google Scholar 

  549. Chao, C. C., Sandor, M., and Dailey, M. O. 1994. Expression and regulation of adhesion molecules by gamma delta T cells from lymphoid tissues and intestinal epithelium. Eur. J. Immunol. 24:3180–3187.

    Article  PubMed  CAS  Google Scholar 

  550. Karecla, P. I., Bowden, S. J., Green, S. J., and Kilshaw, P. J. 1995. Recognition of E-cadherin on epithelial cells by the mucosal T cell integrin alpha M290 beta 7 (alpha E beta 7). Eur. J. Immunol. 25:852–856.

    Article  PubMed  CAS  Google Scholar 

  551. Simonitsch, I., Volc Platzer, B., Mosberger, I., and Radaszkiewicz, T. 1994. Expression of monoclonal antibody HML-1-defined alpha E beta 7 integrin in cutaneous T cell lymphoma. Am. J. Pathol. 145:1148–1158.

    PubMed  CAS  Google Scholar 

  552. Dietz, S. B., Whitaker-Menezes, D., and Lessin, S. R. 1996. The role of alpha-E-beta-7 integrin (CD103) and E-cadherin in epidermotropism in cutaneous T-cell lymphoma. J. Cutan. Pathol. 23:312–318.

    Article  PubMed  CAS  Google Scholar 

  553. Austrup, F., Rebstock, S., Kilshaw, P. J., and Hamann, A. 1995. Transforming growth factor-beta 1-induced expression of the mucosa-related integrin alpha E on lymphocytes is not associated with mucosa-specific homing. Eur. J. Immunol. 25:1487–1491.

    Article  PubMed  CAS  Google Scholar 

  554. Begue, B., Sarnacki, S., Le Deist, F., Buc, H., Gagnon, J., Meo, T., and Cerf Bensussan, N. 1995. HML-1, a novel integrin made of the beta 7 chain and of a distinctive alpha chain, exerts an accessory function in the activation of human IEL via the CD3-TCR pathway. Adv. Exp. Med. Biol. 371:67–75.

    Google Scholar 

  555. Kitajima, S., Tokunaga, M., Goto, M., Sato, E., Utsunomiya, A., Ohtsuka, M., Hanada, S., and Arima, T. 1994. Monoclonal antibody HML-1 reactivity with adult T-cell leukaemia/lymphoma and other lymphomas. Histopathology 25:229–236.

    Article  PubMed  CAS  Google Scholar 

  556. Mainiero, F., Pepe, A., Wary, K. K., Spinardi, L., Mohammadi, M., Schlessinger, J., and Giancotti, F. G. 1995. Signal transduction by the alpha 6 beta 4 integrin: Distinct beta 4 subunit sites mediate recruitment of Shc/Grb2 and association with the cytoskeleton of hemidesmosomes. EMBO J. 14:4470–4481.

    PubMed  CAS  Google Scholar 

  557. Clarke, A. S., Lotz, M. M., Chao, C., and Mercurio, A. M. 1995. Activation of the p21 pathway of growth arrest and apoptosis by the beta 4 integrin cytoplasmic domain. J. Biol. Chem. 270:22673–22676.

    Article  PubMed  CAS  Google Scholar 

  558. De Luca, M., Tamura, R. N., Kajiji, S., Bondanza, S., Rossino, P., Cancedda, R., Marchisio, P. C. and Quaranta, V. 1990. Polarized integrin mediates human keratinocyte adhesion to basal lamina. Proc. Natl. Acad. Sci. USA 87:6888–6892.

    Article  PubMed  Google Scholar 

  559. Vidal, F., Aberdam, D., Miquel, C., Christiano, A. M., Pulkkinen, L., Uitto, J., Ortonne, J. P. and Meneguzzi, G. 1995. Integrin beta 4 mutations associated with junctional epidermolysis bullosa with pyloric atresia. Nat. Genet. 10:229–234.

    Article  PubMed  CAS  Google Scholar 

  560. O’Connell, P. J., McKenzie, A., Fisicaro, N., Rockman, S. P., Pearse, M. J., and d’Apice, A. J. 1992. Endoglin: A 180-kD endothelial cell and macrophage restricted differentiation molecule. Clin. Exp. Immunol. 90:154–159.

    Article  PubMed  CAS  Google Scholar 

  561. Robledo, M. M., Hidalgo, A., Lastres, P., Arroyo, A. G., Bernabeu, C., Sanchez Madrid, F., and Teixido, J. 1996. Characterization of TGF-beta 1-binding proteins in human bone marrow stromal cells. Br. J. Haematol. 93:507–514.

    Article  PubMed  CAS  Google Scholar 

  562. Rokhlin, O. W., Cohen, M. B., Kubagawa, H., Letarte, M., and Cooper, M. D. 1995. Differential expression of endoglin on fetal and adult hematopoietic cells in human bone marrow. J. Immunol. 154:4456–4465.

    PubMed  CAS  Google Scholar 

  563. Yamashita, H., Ichijo, H., Grimsby, S., Moren, A., ten Dijke, P., and Miyazono, K. 1994. Endoglin forms a heteromeric complex with the signaling receptors for transforming growth factor-beta. J. Biol. Chem. 269:1995–2001.

    PubMed  CAS  Google Scholar 

  564. Cheifetz, S., Bellon, T., Cales, C., Vera, S., Bernabeu, C., Massague, J., and Letarte, M. 1992. Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J. Biol. Chem. 267:19027–19030.

    PubMed  CAS  Google Scholar 

  565. Wang, X. F., Lin, H. Y., Ng Eaton, E., Downward, J., Lodish, H. F., and Weinberg, R. A. 1991. Expression cloning and characterization of the TGF-beta type III receptor. Cell 67:797–805.

    Article  PubMed  CAS  Google Scholar 

  566. Lopez Casillas, F., Cheifetz, S., Doody, J., Andres, J. L., Lane, W. S., and Massague, J. 1991. Structure and expression of the membrane proteoglycan betaglycan, a component of the TGF-beta receptor system. Cell 67:785–795.

    Article  PubMed  CAS  Google Scholar 

  567. McAllister, K. A., Baldwin, M. A., Thukkani, A. K., Gallione, C. J., Berg, J. N., Porteous, M. E., Guttmacher, A. E., and Marchuk, D. A. 1995. Six novel mutations in the endoglin gene in hereditary hemorrhagic telangiectasia type 1 suggest a dominant-negative effect of receptor function. Hum. Mol. Genet. 4:1983–1985.

    Article  PubMed  CAS  Google Scholar 

  568. McAllister, K. A., Grogg, K. M., Johnson, D. W., Gallione, C. J., Baldwin, M. A., Jackson, C. E., Helmbold, E. A., Markel, D. S., McKinnon, W. C., Murrell, J., et al. 1994. Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat. Genet. 8:345–351.

    Article  PubMed  CAS  Google Scholar 

  569. Dahlgren, C., Carlsson, S. R., Karlsson, A., Lundqvist, H., and Sjoelin, C. 1995. The lysosomal membrane glycoproteins Lamp-1 and Lamp-2 are present in mobilizable organelles, but are absent from the azurophil granules of human neutrophils. Biochem. J. 311:667–674.

    PubMed  CAS  Google Scholar 

  570. Holcombe, R. F., Baethge, B. A., Wolf, R. E., Betzing, K. W., Stewart, R. M., Hall, V. C., and Fukuda, M. 1994. Correlation of serum interleukin-8 and cell surface lysosome-associated membrane protein expression with clinical disease activity in systemic lupus erythematosus. Lupus 3:97–102.

    PubMed  CAS  Google Scholar 

  571. Holcombe, R. F., Baethge, B. A., Stewart, R. M., Betzing, K., Hall, V. C., Fukuda, M., and Wolf, R. E. 1993. Cell surface expression of lysosome-associated membrane proteins (LAMPs) in scleroderma: Relationship of lamp2 to disease duration, anti-Sc170 antibodies, serum interleukin-8, and soluble interleukin-2 receptor levels. Clin. Immunol. Immunopathol. 67:31–39.

    Article  PubMed  CAS  Google Scholar 

  572. Lin, K. Y., Guarnieri, F. G., Staveley, O’Carroll, K. F., Levitsky, H. I., August, J. T., Pardoll, D. M., and Wu, T. C. 1996. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res. 56:21–26.

    PubMed  CAS  Google Scholar 

  573. Karlsson, A., Carlsson, S. R., and Dahlgren, C. 1996. Identification of the lysosomal membrane glycoprotein Lamp-1 as a receptor for type-1-fimbriated (mannose-specific) Escherichia coli. Biochem. Biophys. Res. Commun. 219:168–172.

    Article  PubMed  CAS  Google Scholar 

  574. Mudad, R., Rao, N., Angelisova, P., Horejsi, V., and Telen, M. J. 1995. Evidence that CDw l08 membrane protein bears the JMH blood group antigen. Transfusion 35:566–570.

    Article  PubMed  CAS  Google Scholar 

  575. Bobolis, K. A., Moulds, J. J., and Telen, M. J. 1992. Isolation of the JMH antigen on a novel phosphatidylinositol-linked human membrane protein. Blood 79:1574–1581.

    PubMed  CAS  Google Scholar 

  576. Telen, M. J., Rosse, W. F., Parker, C. J., Moulds, M. K., and Moulds, J. J. 1990. Evidence that several high-frequency human blood group antigens reside on phosphatidylinositol-linked erythrocyte membrane proteins. Blood 75:1404–1407.

    PubMed  CAS  Google Scholar 

  577. Haregewoin, A., Solomon, K., Hom, R. C., Soman, G., Bergelson, J. M., Bhan, A. K., and Finberg, R. W. 1994. Cellular expression of a GPI-linked T cell activation protein. Cell. Immunol. 156:357–370.

    Article  PubMed  CAS  Google Scholar 

  578. Murray, L. J., Bruno, E., Yeo, E. L., Tsukamoto, A., Hoffman, R., and Sutherland, D. R.1994. CDw109 antibody 8A3 identifies a minor subset of CD34+ fetal bone-marrow cells that includes multilineage and megakaryocyte progenitor cells as well as hematopoietic stem cells. Blood 84:A327.

    Google Scholar 

  579. Smith, J. W., Hayward, C. P., Horsewood, P., Warkentin, T. E., Denomme, G. A., and Kelton, J. G. 1995. Characterization and localization of the Gova/b alloantigens to the glycosylphosphatidylinositol-anchored protein CDwl09 on human platelets. Blood 86:2807–2814.

    PubMed  CAS  Google Scholar 

  580. Yoshikawa, A., Murakami, H., and Nagata, S. 1995. Distinct signal transduction through the tyrosinecontaining domains of the granulocyte colony-stimulating factor receptor. EMBO J. 14:5288–5296.

    PubMed  CAS  Google Scholar 

  581. Fukunaga, R., Ishizaka Ikeda, E., and Nagata, S. 1993. Growth and differentiation signals mediated by different regions in the cytoplasmic domain of granulocyte colony-stimulating factor receptor. Cell 74:1079–1087.

    Article  PubMed  CAS  Google Scholar 

  582. Shimoda, K., Okamura, S., Harada, N., Kubota, A., Iwasaki, H., Ohno, Y., and Niho, Y. 1995. High-frequency granuloid colony-forming ability of G-CSF receptor possessing CD34 antigen positive human umbilical cord blood hematopoietic progenitors. Exp. Hematol. 23:226–228.

    PubMed  CAS  Google Scholar 

  583. Steinman, R. A., and Tweardy, D. J. 1994. Granulocyte colony-stimulating factor receptor mRNA upregulation is an immediate early marker of myeloid differentiation and exhibits dysfunctional regulation in leukemic cells. Blood 83:119–127.

    PubMed  CAS  Google Scholar 

  584. Inukai, T., Sugita, K., Iijima, K., Tezuka, T., Goi, K., Kojika, S., Shiraishi, K., Kagami, K., and Nakazawa, S. 1995. Expression of granulocyte colony-stimulating factor receptor on CD10-positive human B-cell precursors. Br. J. Haematol. 89:623–626.

    PubMed  CAS  Google Scholar 

  585. McCracken, S., Layton, J. E., Shorter, S. C., Starkey, P. M., Barlow, D. H., and Mardon, H. J. 1996. Expression of granulocyte-colony stimulating factor and its receptor is regulated during the development of the human placenta. J. Endocrinol. 149:249–258.

    Article  PubMed  CAS  Google Scholar 

  586. Baker, A. H., Ridge, S. A., Hoy, T., Cachia, P. G., Culligan, D., Baines, P., Whittaker, J. A., Jacobs, A., and Padua, R. A. 1993. Expression of the colony-stimulating factor 1 receptor in B lymphocytes. Oncogene 8:371–378.

    PubMed  CAS  Google Scholar 

  587. Qiu, F. H., Ray, P., Brown, K., Barker, P. E., Jhanwar, S., Ruddle, F. H., and Besmer, P. 1988. Primary structure of c-kit: Relationship with the CSF-1/PDGF receptor kinase family—oncogenic activation of v-kit involves deletion of extracellular domain and C terminus. EMBO J. 7:1003–1011.

    PubMed  CAS  Google Scholar 

  588. Yarden, Y., Kuang, W. J., Yang Feng, T., Coussens, L., Munemitsu, S., Dull, T. J., Chen, E., Schlessinger, J., Francke, U., and Ullrich, A. 1987. Human proto-oncogene c-kit: A new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J. 6:3341–3351.

    PubMed  CAS  Google Scholar 

  589. Wang, Z. E., Myles, G. M., Brandt, C. S., Lioubin, M. N., and Rohrschneider, L. 1993. Identification of the ligand-binding regions in the macrophage colony-stimulating factor receptor extracellular domain. Mol. Cell. Biol. 13:5348–5359.

    PubMed  CAS  Google Scholar 

  590. Bourette, R. P., Myles, G. M., Carlberg, K., Chen, A. R., and Rohrschneider, L. R. 1995. Uncoupling of the proliferation and differentiation signals mediated by the murine macrophage colony-stimulating factor receptor expressed in myeloid FDC-P1 cells. Cell Growth Differ. 6:631–645.

    PubMed  CAS  Google Scholar 

  591. von Rueden, T., Mouchiroud, G., Bourette, R. P., Ouazanba, R., Blanchet, J. P., and Wagner, E. F. 1991. Expression of human CSF-1 receptor induces CSF-1-dependent proliferation in murine myeloid but not in T-lymphoid cells. Leukemia 5:3–7.

    Google Scholar 

  592. Uemura, N., Ozawa, K., Takahashi, K., Tojo, A., Tani, K., Harigaya, K., Suzu, S., Motoyoshi, K., Matsuda, H., Yagita, H., et al. 1993. Binding of membrane-anchored macrophage colony-stimulating factor (M-CSF) to its receptor mediates specific adhesion between stromal cells and M-CSF receptor-bearing hematopoietic cells. Blood 82:2634–2640.

    PubMed  CAS  Google Scholar 

  593. van Daalen Wetters, T., Hawkins, S. A., Roussel, M. F., and Sherr, C. J. 1992. Random mutagenesis of CSF-1 receptor (FMS) reveals multiple sites for activating mutations within the extracellular domain. EMBO J. 11:551–557.

    PubMed  Google Scholar 

  594. Sherr, C. J., and Rettenmier, C. W. 1986. The fms gene and the CSF-1 receptor. Cancer Surv. 5:221–232.

    PubMed  CAS  Google Scholar 

  595. Kodama, H., Yamasaki, A., Nose, M., Niida, S., Ohgame, Y., Abe, M., Kumegawa, M., and Suda, T. 1991. Congenital osteoclast deficiency in osteopetrotic (op/op) mice is cured by injections of macrophage colony-stimulating factor. J. Exp. Med. 173:269–272.

    Article  PubMed  CAS  Google Scholar 

  596. Witmer Pack, M. D., Hughes, D. A., Schuler, G., Lawson, L., McWilliam, A., Inaba, K., Steinman, R. M., and Gordon, S. 1993. Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse. J. Cell Sci. 104:1021–1029.

    PubMed  Google Scholar 

  597. Gearing, D. P., King, J. A., Gough, N. M., and Nicola, N. A. 1989. Expression cloning of a receptor for human granulocyte-macrophage colony-stimulating factor. EMBO J. 8:3667–3676.

    PubMed  CAS  Google Scholar 

  598. Park, L. S., Martin, U., Sorensen, R., Luhr, S., Morrissey, P. J., Cosman, D., and Larsen, A. 1992. Cloning of the low-affinity murine granulocyte-macrophage colony-stimulating factor receptor and reconstitution of a high-affinity receptor complex. Proc. Natl. Acad. Sci. USA 89:4295–4299.

    Article  PubMed  CAS  Google Scholar 

  599. Copra, R., Kendall, G., Gale, R. E., Thomas, N. S., and Linch, D. C. 1996. Expression of two alternatively spliced forms of the 5’-untranslated region of the GM-CSF receptor alpha chain mRNA. Exp. Hematol. 24:755–762.

    Google Scholar 

  600. Dranoff, G., Jaffee, E., Lazenby, A., Golumbek, P., Levitsky, H., Brose, K., Jackson, V., Hamada, H., Pardoll, D., and Mulligan, R. C. 1993. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl. Acad. Sci. USA 90:3539–3543.

    Article  PubMed  CAS  Google Scholar 

  601. Gasson, J. C. 1991. Molecular physiology of granulocyte-macrophage colony-stimulating factor. Blood 77:1131–1145.

    PubMed  CAS  Google Scholar 

  602. Orr Urtreger, A., Avivi, A., Zimmer, Y., Givol, D., Yarden, Y., and Lonai, P. 1990. Developmental expression of c-kit, a proto-oncogene encoded by the W locus. Development 109:911–923.

    PubMed  CAS  Google Scholar 

  603. Motro, B., van der Kooy, D., Rossant, J., Reith, A., and Bernstein, A. 1991. Contiguous patterns of c-kit and steel expression: Analysis of mutations at the W and SI loci. Development 113:1207–1221.

    PubMed  CAS  Google Scholar 

  604. Keshet, E., Lyman, S. D., Williams, D. E., Anderson, D. M., Jenkins, N. A., Copeland, N. G., and Parada, L. F. 1991. Embryonic RNA expression patterns of the c-kit receptor and its cognate ligand suggest multiple functional roles in mouse development. EMBO J. 10:2425–2435.

    PubMed  CAS  Google Scholar 

  605. Gaboriaud, C., Uze, G., Lutfalla, G., and Mogensen, K. 1990. Hydrophobic cluster analysis reveals duplication in the external structure of human alpha-interferon receptor and homology with gamma-interferion receptor external domain. FEBS Lett. 269:1–3.

    Article  PubMed  CAS  Google Scholar 

  606. Uze, G., Lutfalla, G., Bandu, M. T., Proudhon, D., and Mogensen, K. E. 1992. Behavior of a cloned murine interferon alpha/beta receptor expressed in homospecific or heterospecific background. Proc. Natl. Acad. Sci. USA 89:4774–4778.

    Article  PubMed  CAS  Google Scholar 

  607. Russell-Harde, D., Pu, H., Betts, M., Harkins, R. N., Perez, H. D., and Croze, E. 1995. Reconstitution of a high affinity binding site for type I interferons. J. Biol. Chem. 270:26033–26036.

    Article  PubMed  CAS  Google Scholar 

  608. Abramovich, C., Shulman, L. M., Ratovitski, E., Harroch, S., Tovey, M., Eid, P., and Revel, M. 1994. Differential tyrosine phosphorylation of the IFNAR chain of the type I interferon receptor and of an associated surface protein in response to IFN-alpha and IFN-beta. EMBO J. 13:5871–5877.

    PubMed  CAS  Google Scholar 

  609. Bach, E. A., Tanner, J. W., Marsters, S., Ashkenazi, A., Aguet, M., Shaw, A. S., and Schreiber, R. D. 1996. Ligand-induced assembly and activation of the gamma interferon receptor in intact cells. Mol. Cell. Biol. 16:3214–3221.

    PubMed  CAS  Google Scholar 

  610. Greenlund, A. C., Schreiber, R. D., Goeddel, D. V., and Pennica, D. 1993. Interferon-gamma induces receptor dimerization in solution and on cells. J. Biol. Chem. 268:18103–18110.

    PubMed  CAS  Google Scholar 

  611. Farrar, M. A., Fernandez Luna, J., and Schreiber, R. D. 1991. Identification of two regions within the cytoplasmic domain of the human interferon-gamma receptor required for function. J. Biol. Chem. 266:19626–19635.

    PubMed  CAS  Google Scholar 

  612. Farrar, M. A., Campbell, J. D., and Schreiber, R. D. 1992. Identification of a functionally important sequence in the C terminus of the interferon-gamma receptor. Proc. Natl. Acad. Sci. USA 89:11706–11710.

    Article  PubMed  CAS  Google Scholar 

  613. Briscoe, J., Rogers, N. C., Witthuhn, B. A., Watling, D., Harpur, A. G., Wilks, A. F., Stark, G. R., Ihle, J. N., and Kerr, I. M. 1996. Kinase-negative mutants of JAK1 can sustain interferon-gamma-inducible gene expression but not an antiviral state. EMBO J. 15:799–809.

    PubMed  CAS  Google Scholar 

  614. Greenlund, A. C., Morales, M. O., Viviano, B. L., Yan, H., Krolewski, J., and Schreiber, R. D. 1995. Stat recruitment by tyrosine-phosphorylated cytokine receptors: An ordered reversible affinity-driven process. Immunity 2:677–687.

    Article  PubMed  CAS  Google Scholar 

  615. Meraz, M. A., White, J. M., Sheehan, K. C., Bach, E. A., Rodig, S. J., Dighe, A. S., Kaplan, D. H., Riley, J. K., Greenlund, A. C., Campbell, D., Carver Moore, K., DuBois, R. N., Clark, R., Aguet, M., and Schreiber, R. D. 1996. Targeted disruption of the Statl gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84:431–442.

    Article  PubMed  CAS  Google Scholar 

  616. Medvedev, A. E., Espevik, T., Ranges, G., and Sundan, A. 1996. Distinct roles of the 2 tumor-necrosis-factor (TNF) receptors in modulating TNF and lymphotoxin-alpha effects. J. Biol. Chem. 271:9778–9784.

    Article  PubMed  CAS  Google Scholar 

  617. Van Zee, K. J., Kohno, T., Fischer, E., Rock, C. S., Moldawer, L. L., and Lowry, S. F. 1992. Tumor necrosis factor soluble receptors circulate during experimental and clinical inflammation and can protect against excessive tumor necrosis factor alpha in vitro and in vivo. Proc. Natl. Acad. Sci. USA 89:4845–4849.

    Article  PubMed  Google Scholar 

  618. Pfeffer, K., Matsuyama, T., Kündig, T. M., Wakeham, A., Kishihara, K., Shahinian, A., Wiegmann, K., Ohashi, P. S., Kronke, M., and Mak, T. W. 1993. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73:457–467.

    Article  PubMed  CAS  Google Scholar 

  619. Matsumoto, M., Mariathasan, S., Nahm, M. H., Baranyay, F., Peschon, J. J., and Chaplin, D. D. 1996. Role of lymphotoxin and the type I TNF receptor in the formation of germinal centers. Science 271:1289–1291.

    Article  PubMed  CAS  Google Scholar 

  620. Greenfeder, S. A., Nunes, P., Kwee, L., Labow, M., Chizzonite, R. A., and Ju, G. 1995. Molecular cloning and characterization of a second subunit of the interleukin 1 receptor complex. J. Biol. Chem. 270:13757–13765.

    Article  PubMed  CAS  Google Scholar 

  621. Re, F., Sironi, M., Muzio, M., Matteucci, C, Introna, M., Orlando, S., Penton Rol, G., Dower, S. K., Sims, J. E., Colotta, F., and Mantovani, A. 1996. Inhibition of interleukin-1 responsiveness by type II receptor gene transfer: A surface “receptor” with anti-interleukin-1 function. J. Exp. Med. 183:1841–1850.

    Article  PubMed  CAS  Google Scholar 

  622. Alcami, A., and Smith, G. L. 1992. A soluble receptor for interleukin-1 beta encoded by vaccinia virus: A novel mechanism of virus modulation of the host response to infection. Cell 71:153–167.

    Article  PubMed  CAS  Google Scholar 

  623. Spriggs, M. K., Hruby, D. E., Maliszewski, C. R., Pickup, D. J., Sims, J. E., Buller, R. M, and VanSlyke, J. 1992. Vaccinia and cowpox viruses encode a novel secreted interleukin-1-binding protein. Cell 71:145–152.

    Article  PubMed  CAS  Google Scholar 

  624. Nakamura, Y., Russell, S. M., Mess, S. A., Friedmann, M., Erdos, M, Francois, C., Jacques, Y., Adelstein, S., and Leonard, W. J. 1994. Heterodimerization of the IL-2 receptor beta-and gamma-chain cytoplasmic domains is required for signalling. Nature 369:330–333.

    Article  PubMed  CAS  Google Scholar 

  625. Nelson, B. H., Lord, J. D., and Greenberg, P. D. 1994. Cytoplasmic domains of the interleukin-2 receptor beta and gamma chains mediate the signal for T-cell proliferation. Nature 369:333–336.

    Article  PubMed  CAS  Google Scholar 

  626. Suzuki, H., Kundig, T. M., Furlonger, C., Wakeham, A., Timms, E., Matsuyama, T., Schmits, R., Simard, J. J. L., Ohashi, P. S., Griesser, H., Taniguchi, T., Paige, C. J., and Mak, T. W. 1995. Deregulated T-cell activation and autoimmunity in mice lacking interleukin-2 receptor-beta. Science 268:1472–1476.

    Article  PubMed  CAS  Google Scholar 

  627. Macardle, P. J., Chen, Z., Shih, C. Y., Huang, C. M., Weedon, H., Sun, Q., Lopez, A. F., and Zola, H. 1996. Characterization of human leukocytes bearing the IL-3 receptor. Cell. Immunol. 168:59–68.

    Article  PubMed  CAS  Google Scholar 

  628. Kurata, H., Arai, T., Yokota, T., and Arai, K. 1995. Differential expression of granulocyte-macrophage colony-stimulating factor and IL-3 receptor subunits on human CD34+ cells and leukemic cell lines. J. Allergy Clin. Immunol. 96:1083–1099.

    Article  PubMed  CAS  Google Scholar 

  629. Miresluis, A., Page, K. A., Wadhwa, M., and Thorpe, R. 1996. Evidence for a signaling role for the alpha-chains of granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 receptors—Divergent signaling pathways between GM-CSF/IL-3 and IL-5. Blood 86:2679–2688.

    Google Scholar 

  630. Itoh, N., Yonehara, S., Schreurs, J., Gorman, D. M., Maruyama, K., Ishii, A., Yahara, I., Arai, K., and Miyajima, A. 1990. Cloning of an interleukin-3 receptor gene: A member of a distinct receptor gene family. Science 247:324–327.

    Article  PubMed  CAS  Google Scholar 

  631. Mosley, B., Beckmann, M. P., March, C. J., Idzerda, R. L., Gimpel, S. D., VandenBos, T., Friend, D., Alpert, A., Anderson, D., Jackson, J., et al. 1989. The murine interleukin-4 receptor: Molecular cloning and characterization of secreted and membrane bound forms. Cell 59:335–348.

    Article  PubMed  CAS  Google Scholar 

  632. Idzerda, R. L., March, C. J., Mosley, B., Lyman, S. D., Vanden Bos, T., Gimpel, S. D., Din, W. S., Grabstein, K. H., Widmer, M. B., Park, L. S., et al. 1990. Human interleukin 4 receptor confers biological responsiveness and defines a novel receptor superfamily. J. Exp. Med. 171:861–873.

    Article  PubMed  CAS  Google Scholar 

  633. Baumgartner, J. W., Wells, C. A., Chen, C. M., and Waters, M. J. 1994. The role of the WSXWS equivalent motif in growth hormone receptor function. J. Biol. Chem. 269:29094–29101.

    PubMed  CAS  Google Scholar 

  634. Kaplan, M. H., Schindler, U., Smiley, S. T., and Grusby, M. J. 1996. State is required for mediating responses to IL-4 and for the development of TH2 cells. Immunity 4:313–319.

    Article  PubMed  CAS  Google Scholar 

  635. Ingley, E., and Young, I. G. 1991. Characterization of a receptor for interleukin-5 on human eosinophils and the myeloid leukemia line HL-60. Blood 78:339–344.

    PubMed  CAS  Google Scholar 

  636. Johanson, K., Appelbaum, E., Doyle, M., Hensley, P., Zhao, B., Abdelmeguid, S. S., Young, P., Cook, R., Carr, S., Matico, R., Cusimano, D., Dul, E., Angelichio, M., Brooks, I., Winborne, E., McDonnell, P., Morton, T., Bennett, D., Sokoloski, T., McNulty, D., Rosenberg, M., and Chaiken, I. 1996. Binding interactions of human interleukin-5 with its receptor alpha-subunit—large-scale production, structural, and functional studies of drosophila-expressed recombinant proteins. J. Biol. Chem. 270:9459–9471.

    Google Scholar 

  637. Murata, Y., Takaki, S, Migita, M., Kikuchi, Y., Tominaga, A., and Takatsu, K. 1992. Molecular cloning and expression of the human interleukin 5 receptor. J. Exp. Med. 175:341–351.

    Article  PubMed  CAS  Google Scholar 

  638. Devos, R., Guisez, Y., Cornelis, S., Verhee, A., Van der Heyden, J., Manneberg, M., Lahm, H. W., Fiers, W., Tavernier, J., and Plaetinck, T. 1993. Recombinant soluble human interleukin-5 (hIL-5) receptor molecules. Cross-linking and stoichiometry of binding to IL-5. J. Biol. Chem. 268:6581–6587.

    PubMed  CAS  Google Scholar 

  639. Kikuchi, Y., Yasue, T., Miyake, K., Kimoto, M., and Takatsu, K. 1995. CD38 ligation induces tyrosine phosphorylation of Bruton tyrosine kinase and enhanced expression of interleukin 5-receptor alpha-chain—Synergistic effects with interleukin-5. Proc. Natl. Acad. Sci. USA 92:11814–11818.

    Article  PubMed  CAS  Google Scholar 

  640. Murakami, M., Hibi, M., Nakagawa, N., Nakagawa, T., Yasukawa, K., Yamanishi, K., Taga, T., and Kishimoto, T. 1993. IL-6-induced homodimerization of gp130 and associated activation of a tyrosine kinase. Science 260:1808–1810.

    Article  PubMed  CAS  Google Scholar 

  641. Honda, M., Yamamoto, S., Cheng, M., Yasukawa, K., Suzuki, H., Saito, T., Osugi, Y., Tokunaga, T., and Kishimoto, T. 1992. Human soluble IL-6 receptor: Its detection and enhanced release by HIV infection. J. Immunol. 148:2175–2180.

    PubMed  CAS  Google Scholar 

  642. Gabay, C, Silacci, P., Genin, B., Mentha, G., Lecoultre, C., and Guerne, P. A. 1995. Soluble interleukin-6 receptor strongly increases the production of acute-phase protein by hepatoma cells but exerts minimal changes on human primary hepatocytes. Eur. J. Immunol. 25:2378–2383.

    Article  PubMed  CAS  Google Scholar 

  643. Goodwin, R. G., Friend, D., Ziegler, S. F., Jerzy, R., Falk, B. A., Gimpel, S., Cosman, D., Dower, S. K., March, C. J., Namen, A. E., et al. 1990. Cloning of the human and murine interleukin-7 receptors: Demonstration of a soluble form and homology to a new receptor superfamily. Cell 60:941–951.

    Article  PubMed  CAS  Google Scholar 

  644. Park, L. S., Friend, D. J., Schmierer, A. E., Dower, S. K., and Namen, A. E. 1990. Murine interleukin 7 (IL-7) receptor. Characterization on an IL-7-dependent cell line. J. Exp. Med. 171:1073–1089.

    Article  PubMed  CAS  Google Scholar 

  645. Uckun, F. M., Tuel Ahlgren, L., Obuz, V., Smith, R., Dibirdik, I., Hanson, M., Langue, M. C., and Ledbetter, J. A. 1991. Interleukin 7 receptor engagement stimulates tyrosine phosphorylation, inositol phospholipid turnover, proliferation, and selective differentiation to the CD4 lineage by human fetal thymocytes. Proc. Natl. Acad. Sci. USA 88:6323–6327.

    Article  PubMed  CAS  Google Scholar 

  646. Peschon, J. J., Morrissey, P. J., Grabstein, K. H., Ramsdell, F. J., Maraskovsky, E., Gliniak, B. C., Park, L. S., Ziegler, S. F., Williams, D. E., Ware, C. B., Meyer, J. D., and Davison, B. L. 1994. Early lymphocyte expansion is severely impaired in interleukin-7 receptor-deficient mice. J. Exp. Med. 180:1955–1960.

    Article  PubMed  CAS  Google Scholar 

  647. Maki, K., Sunaga, S., Komagata, Y., Kodaira, Y., Mabuchi, A., and Karasuyama, H. 1996. Interleukin-7 receptor-deficient mice lack gamma-delta T-cells. Proc. Natl. Acad. Sci. USA 93:7172–7177.

    Article  PubMed  CAS  Google Scholar 

  648. He, Y. W., and Malek, T. R. 1996. Interleukin-7 receptor-alpha is essential for the development of gamma-delta(+) T-cells, but not natural-killer-cells. J. Exp. Med. 184:289–293.

    Article  PubMed  CAS  Google Scholar 

  649. Holmes, W. E., Lee, J., Kuang, W. J., Rice, G. C., and Wood, W. I. 1991. Structure and functional expression of a human interleukin-8 receptor. Science 253:1278–1280.

    Article  PubMed  CAS  Google Scholar 

  650. Murphy, P. M., and Tiffany, H. L. 1991. Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science 253:1280–1283.

    Article  PubMed  CAS  Google Scholar 

  651. Hibi, M., Murakami, M., Saito, M., Hirano, T., Taga, T., and Kishimoto, T. 1990. Molecular cloning and expression of an IL-6 signal transducer, gp130. Cell 63:1149–1157.

    Article  PubMed  CAS  Google Scholar 

  652. Kishimoto, T., Akira, S., Narazaki, M., and Taga, T. 1995. Interleukin-6 family of cytokines and gp130. Blood 86:1243–1254.

    PubMed  CAS  Google Scholar 

  653. Taga, T., Hibi, M., Hirata, Y., Yamasaki, K., Yasukawa, K., Matsuda, T., Hirano, T., and Kishimoto, T. 1989. Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp 130. Cell 58:573–581.

    Article  PubMed  CAS  Google Scholar 

  654. Tavernier, J., Devos, R., Cornelis, S., Tuypens, T., Van der Heyden, J., Fiers, W., and Plaetinck, G. 1991. A human high affinity interleukin-5 receptor (IL5R) is composed of an IL5-specific alpha chain and a beta chain shared with the receptor for GM-CSF. Cell 66:1175–1184.

    Article  PubMed  CAS  Google Scholar 

  655. Kitamura, T., Sato, N., Arai, K.-I., and Miyajima, A. 1991. Expression cloning of the human IL-3 receptor cDNA reveals a shared b subunit for the human IL-3 and GM-CSF receptors. Cell 66:1165–1174.

    Article  PubMed  CAS  Google Scholar 

  656. Watanabe, Y., Kitamura, T., Hayashida, K., and Miyajima, A. 1992. Monoclonal antibody against the common beta subunit (beta c) of the human interleukin-3 (IL-3), IL-5, and granulocyte-macrophage colony-stimulating factor receptors shows upregulation of beta c by IL-1 and tumor necrosis factor-alpha. Blood 80:2215–2220.

    PubMed  CAS  Google Scholar 

  657. Smith, W. B., Guida, L., Sun, Q., Korpelainen, E. I., van den Heuvel, C., Gillis, D., Hawrylowicz, C. M., Vadas, M. A., and Lopez, A. F. 1995. Neutrophils activated by granulocyte-macrophage colony-stimulating factor express receptors for interleukin-3 which mediate class II expression. Blood 86:3938–3944.

    PubMed  CAS  Google Scholar 

  658. Kondo, M., Takeshita, T., Ishii, N., Nakamura, M., Watanabe, S., Arai, K., and Sugamura, K. 1993. Sharing of the interleukin-2 (IL-2) receptor gamma chain between receptors for IL-2 and IL-4. Science 262:1874–1877.

    Article  PubMed  CAS  Google Scholar 

  659. Russell, S. M., Keegan, A. D., Harada, N., Nakamura, Y., Noguchi, M., Leland, P., Friedmann, M. C., Miyajima, A., Puri, R. K., Paul, W. E., et al. 1993. Interleukin-2 receptor gamma chain: A functional component of the interleukin-4 receptor. Science 262:1880–1883.

    Article  PubMed  CAS  Google Scholar 

  660. Noguchi, M., Nakamura, Y., Russell, S. M., Ziegler, S. F., Tsang, M., Cao, X., and Leonard, W. J. 1993. Interleukin-2 receptor gamma chain: A functional component of the interleukin-7 receptor. Science 262:1877–1880.

    Article  PubMed  CAS  Google Scholar 

  661. Siegel, J. P., Sharon, M., Smith, P. L., and Leonard, W. J. 1987. The IL-2 receptor beta chain (p70): Role in mediating signals for LAK, NK, and proliferative activities. Science 238:75–78.

    Article  PubMed  CAS  Google Scholar 

  662. Leonard, W. J., Shores, E. W., and Love, P. E. 1995. Role of the common cytokine receptor-gamma chain in cytokine signaling and lymphoid development. Immunol. Rev. 148:97–114.

    Article  PubMed  CAS  Google Scholar 

  663. Sugamura, K., Asao, H., Kondo, M., Tanaka, N., Ishii, N., Ohbo, K., Nakamura, M., and Takeshita, T. 1996. The interleukin-2 receptor-gamma chain—its role in the multiple cytokine receptor complexes and T-cell development in XSCID. Annu. Rev. Immunol. 14:179–205.

    Article  PubMed  CAS  Google Scholar 

  664. Noguchi, M., Yi, H., Rosenblatt, H. M., Filipovich, A. H., Adelstein, S., Modi, W. S., McBride, O. W., and Leonard, W. J. 1993. Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73:147–157.

    Article  PubMed  CAS  Google Scholar 

  665. al Shamkhani, A., Birkeland, M. L., Puklavec, M., Brown, M. H., James, W., and Barclay, A. N. 1996. OX40 is differentially expressed on activated rat and mouse T cells and is the sole receptor for the OX40 ligand. Eur. J. Immunol. 26:1695–1699.

    Article  Google Scholar 

  666. Imura, A., Hori, T., Imada, K., Ishikawa, T., Tanaka, Y., Maeda, M., Imamura, S., and Uchiyama, T. 1996. The human OX40/gp34 system directly mediates adhesion of activated T cells to vascular endothelial cells. J. Exp. Med. 183:2185–2195.

    Article  PubMed  CAS  Google Scholar 

  667. Stueber, E., and Strober, W. 1996. The T cell-B cell interaction via OX40-OX40L is necessary for the T cell-dependent humoral immune response. J. Exp. Med. 183:979–989.

    Article  Google Scholar 

  668. Stueber, E., Neurath, M., Calderhead, D., Fell, H. P., and Strober, W. 1995. Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity 2:507–521.

    Article  Google Scholar 

  669. Baum, P. R., Gayle, R. B-3rd, Ramsdell, F., Srinivasan, S., Sorensen, R. A., Watson, M. L., Seldin, M. F., Baker, E., Sutherland, G. R., Clifford, K. N., el al. 1994. Molecular characterization of murine and human OX40/OX40 ligand systems: Identification of a human OX40 ligand as the HTLV-1-regulated protein gp34. EMBO J. 13:3992–4001.

    PubMed  CAS  Google Scholar 

  670. Lyman, S. D. 1995. Biology of FLT3 ligand and receptor. Int. J. Hematol. 62:63–73.

    Article  PubMed  CAS  Google Scholar 

  671. Veiby, O. P., Lyman, S. D., and Jacobsen, S. E. 1996. Combined signaling through interleukin-7 receptors and FLT3 but not c-kit potently and selectively promotes B-cell commitment and differentiation from uncommitted murine bone marrow progenitor cells. Blood 88:1256–1265.

    PubMed  CAS  Google Scholar 

  672. Ohishi, K., Katayama, N., Itoh, R., Mahmud, N., Miwa, H., Kita, K., Minami, N., Shirakawa, S., Lyman, S. D., and Shiku, H. 1996. Accelerated cell-cycling of hematopoietic progenitors by the FLT3 ligand that is modulated by transforming growth factor-beta. Blood 87:1718–1727.

    PubMed  CAS  Google Scholar 

  673. Shah, A. J., Smogorzewska, E. M., Hannum, C., and Crooks, G. M. 1996. Flt3 ligand induces proliferation of quiescent human bone marrow CD34+CD38- cells and maintains progenitor cells in vitro. Blood 87:3563–3570.

    PubMed  CAS  Google Scholar 

  674. Rusten, L. S., Lyman, S. D., Veiby, O. P., and Jacobsen, S. E. 1996. The FLT3 ligand is a direct and potent stimulator of the growth of primitive and committed human CD34+ bone marrow progenitor cells in vitro. Blood 87:1317–1325.

    PubMed  CAS  Google Scholar 

  675. Mackarehtschian, K., Hardin, J. D., Moore, K. A., Boast, S., Goff, S. P., and Lemischka, I. R. 1995. Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity 3:147–161.

    Article  PubMed  CAS  Google Scholar 

  676. Wang, M. H., Iwama, A., Skeel, A., Suda, T., and Leonard, E. J. 1995. The murine stk gene product, a transmembrane protein tyrosine kinase, is a receptor for macrophage-stimulating protein. Proc. Natl. Acad. Sci. USA 92:3933–3937.

    Article  PubMed  CAS  Google Scholar 

  677. Wang, M. H., Ronsin, C., Gesnel, M. C., Coupey, L., Skeel, A., Leonard, E. J., and Breathnach, R. 1994. Identification of the ron gene product as the receptor for the human macrophage stimulating protein. Science 266:117–119.

    Article  PubMed  CAS  Google Scholar 

  678. Iwama, A., Wang, M. H., Yamaguchi, N., Ohno, N., Okano, K., Sudo, T., Takeya, M., Gervais, F., Morissette, C., Leonard, E. J., et al. 1995. Terminal differentiation of murine resident peritoneal macrophages is characterized by expression of the STK protein tyrosine kinase, a receptor for macrophage-stimulating protein. Blood 86:3394–3403.

    PubMed  CAS  Google Scholar 

  679. Skeel, A., and Leonard, E. J. 1994. Action and target cell specificity of human macrophage-stimulating protein (MSP). J. Immunol. 152:4618–4623.

    PubMed  CAS  Google Scholar 

  680. Skeel, A., Yoshimura, T., Showalter, S. D., Tanaka, S., Appella, E., and Leonard, E. J. 1991. Macrophage stimulating protein: Purification, partial amino acid sequence, and cellular activity. J. Exp. Med. 173:1227–1234.

    Article  PubMed  CAS  Google Scholar 

  681. Wang, M. H., Dlugosz, A. A., Sun, Y., Suda, T., Skeel, A., and Leonard, E. J. 1996. Maerophage-stimulating protein induces proliferation and migration of murine keratinocytes. Exp. Cell. Res. 226:39–46.

    Article  PubMed  CAS  Google Scholar 

  682. Banu, N., Price, D. J., London, R., Deng, B., Mark, M., Godowski, P. J., and Avraham, H. 1996. Modulation of megakaryocytopoiesis by human macrophage-stimulating protein, the ligand for the RON receptor. J. Immunol. 156:2933–2940.

    PubMed  CAS  Google Scholar 

  683. Broxmeyer, H. E., Cooper, S., Li, Z. H., Lu, L., Sarris, A., Wang, M. H., Chang, M. S., Donner, D. B, and Leonard, E. J. 1996. Macrophage-stimulating protein, a ligand for the RON receptor protein tyrosine kinase, suppresses myeloid progenitor cell proliferation and synergizes with vascular endothelial cell growth factor and members of the chemokine family. Ann. Hematol. 73:1–9.

    Article  PubMed  CAS  Google Scholar 

  684. Kurihara, N., Iwama, A., Tatsumi, J., Ikeda, K., and Suda, T. 1996. Macrophage-stimulating protein activates STK receptor tyrosine kinase on osteoclasts and facilitates bone resorption by osteoclast-like cells. Blood 87:3704–3710.

    PubMed  CAS  Google Scholar 

  685. Kwon, B. S., Kozak, C. A., Kim, K. K., and Pickard, R. T. 1994. Genomic organization and chromosomal localization of the T-cell antigen 4-1BB. J. Immunol. 152:2256–2262.

    PubMed  CAS  Google Scholar 

  686. Setareh, M., Schwarz, H., and Lotz, M. 1995. A mRNA variant encoding a soluble form of 4-1BB, a member of the murine NGF/TNF receptor family. Gene 164:311–315.

    Article  PubMed  CAS  Google Scholar 

  687. Zhou, Z., Pollok, K. E., Kim, K. K., Kim, Y. J., and Kwon, B. S. 1994. Functional analysis of T-cell antigen 4-1BB in activated intestinal intra-epithelial T lymphocytes. Immunol. Lett. 41:177–184.

    Article  PubMed  CAS  Google Scholar 

  688. Pollok, K. E., Kim, S. H., and Kwon, B. S. 1995. Regulation of 4-1BB expression by cell-cell interactions and the cytokines, interleukin-2 and interleukin-4. Eur. J. Immunol. 25:488–494.

    Article  PubMed  CAS  Google Scholar 

  689. Schwarz, H., Valbracht, J., Tuckwell, J., von Kempis, J., and Lotz, M. 1995. ILA, the human 4-1BB homologue, is inducible in lymphoid and other cell lineages. Blood 85:1043–1052.

    PubMed  CAS  Google Scholar 

  690. Pollok, K. E., Kim, Y. J., Zhou, Z., Hurtado, J., Kim, K. K., Pickard, R. T., and Kwon, B. S. 1993. Inducible T cell antigen 4-1BB. Analysis of expression and function. J. Immunol. 150:771–781.

    PubMed  CAS  Google Scholar 

  691. DeBenedette, M. A., Chu, N. R., Pollok, K. E., Hurtado, J., Wade, W. F., Kwon, B. S., and Watts, T. H. 1995. Role of 4-1BB ligand in costimulation of T lymphocyte growth and its upregulation on M12 B lymphomas by CAMP. J. Exp. Med. 181:985–992.

    Article  PubMed  CAS  Google Scholar 

  692. Hurtado, J. C., Kim, S. H., Pollok, K. E., Lee, Z. H., and Kwon, B. S. 1995. Potential role of 4-1BB in T cell activation. Comparison with the costimulatory molecule CD28. J. Immunol. 155:3360–3367.

    PubMed  CAS  Google Scholar 

  693. Alderson, M. R., Smith, C. A., Tough, T. W., Davis Smith, T., Armitage, R. J., Falk, B., Roux, E., Baker, E., Sutherland, G. R., Din, W. S., et al. 1994. Molecular and biological characterization of human 4-1BB and its ligand. Eur. J. Immunol. 24:2219–2227.

    Article  PubMed  CAS  Google Scholar 

  694. Pollok, K. E., Kim, Y. J., Hurtado, J., Zhou, Z., Kim, K. K., and Kwon, B. S. 1994. 4-1BB T-cell antigen binds to mature B cells and macrophages, and costimulates anti-mu-primed splenic B cells. Eur. J. Immunol. 24:367–374.

    Article  PubMed  CAS  Google Scholar 

  695. Goodwin, R. G., Din, W. S., Davis Smith, T., Anderson, D. M., Gimpel, S. D., Sato, T. A., Maliszewski, C. R., Brannan, C. I., Copeland, N. G., Jenkins, N. A., et al. 1993. Molecular cloning of a ligand for the inducible T cell gene 4-1BB: a member of an emerging family of cytokines with homology to tumor necrosis factor. Eur. J. Immunol. 23:2631–2641.

    Article  PubMed  CAS  Google Scholar 

  696. Lebakken, C. S., and Rapraeger, A. C. 1996. Syndecan-1 mediates cell spreading in transfected human lymphoblastoid (Raji) cells. J. Cell Biol. 132:1209–1221.

    Article  PubMed  CAS  Google Scholar 

  697. Kato, M., Saunders, S., Nguyen, H., and Bernfield, M. 1995. Loss of cell surface syndecan-1 causes epithelia to transform into anchorage-independent mesenchyme-like cells. Mol. Biol. Cell 6:559–576.

    PubMed  CAS  Google Scholar 

  698. Carey, D. J., Stahl, R. C., Cizmeci Smith, G., and Asundi, V. K. 1994. Syndecan-1 expressed in Schwann cells causes morphological transformation and cytoskeletal reorganization and associates with actin during cell spreading. J. Cell. Biol. 124:161–170.

    Article  PubMed  CAS  Google Scholar 

  699. Vihinen, T., Auvinen, P., Alanen Kurki, L., and Jalkanen, M. 1993. Structural organization and genomic sequence of mouse syndecan-1 gene. J. Biol. Chem. 268:17261–17269.

    PubMed  CAS  Google Scholar 

  700. Kainulainen, V., Nelimarkka, L., Jaervelaeinen, H., Laato, M., Jalkanen, M., and Elenius, K. 1996. Suppression of syndecan-1 expression in endothelial cells by tumor necrosis factor-alpha. J. Biol. Chem. 271:18759–18766.

    Article  PubMed  CAS  Google Scholar 

  701. Sneed, T. B., Stanley, D. J., Young, L. A., and Sanderson, R. D. 1994. Interleukin-6 regulates expression of the syndecan-1 proteoglycan on B lymphoid cells. Cell. Immunol. 153:456–467.

    Article  PubMed  CAS  Google Scholar 

  702. Carey, D. J., Bendt, K. M., and Stahl, R. C. 1996. The cytoplasmic domain of syndecan-1 is required for cytoskeleton association but not detergent insolubility. Identification of essential cytoplasmic domain residues. J. Biol. Chem. 271:15253–15260.

    Article  PubMed  CAS  Google Scholar 

  703. Carey, D. J., Stahl, R. C., Tucker, B., Bendt, K. A., and Cizmeci Smith, G. 1994. Aggregation-induced association of syndecan-1 with microfilaments mediated by the cytoplasmic domain. Exp. Cell Res. 214:12–21.

    Article  PubMed  CAS  Google Scholar 

  704. Liebersbach, B. F., and Sanderson, R. D. 1994. Expression of syndecan-1 inhibits cell invasion into type I collagen. J. Biol. Chem. 269:20013–20019.

    PubMed  CAS  Google Scholar 

  705. Uren, A., Uy, J. C, Gholami, N. S., Pierce, J. H., and Heidaran, M. A. 1994. The alpha PDGFR tyrosine kinase mediates locomotion of two different cell types through chemotaxis and chemokinesis. Biochem. Biophys. Res. Commun. 204:628–634.

    Article  PubMed  CAS  Google Scholar 

  706. Brunkow, M. E., Nagle, D. L., Bernstein, A., and Bucan, M. 1995. A 1.8-Mb YAC contig spanning three members of the receptor tyrosine kinase gene family (Pdgfra, Kit, and Flk 1) on mouse chromosome 5. Genomics 25:421–432.

    Article  PubMed  CAS  Google Scholar 

  707. Spritz, R. A., Strunk, K. M., Lee, S. T., Lu Kuo, J. M., Ward, D. C., Le Paslier, D., Altherr, M. R., Dorman, T. E., and Moir, D. T. 1994. A-YAC contig spanning a cluster of human type III receptor protein tyrosine kinase genes (PDGFRA-KIT-KDR) in chromosome segment 4q12. Genomics 22:431–436.

    Article  PubMed  CAS  Google Scholar 

  708. Spritz, R. A., Droetto, S., and Fukushima, Y. 1992. Deletion of the KIT and PDGFRA genes in a patient with piebaldism. Am. J. Med. Genet. 44:492–495.

    Article  PubMed  CAS  Google Scholar 

  709. Stephenson, D. A., Mercola, M., Anderson, E., Wang, C. Y., Stiles, C. D., Bowen Pope, D. F., and Chapman, V. M. 1991. Platelet-derived growth factor receptor alpha-subunit gene (PDGFRa) is deleted in the mouse patch (Ph) mutation. Proc. Natl. Acad. Sci. USA 88:6–10.

    Article  PubMed  CAS  Google Scholar 

  710. Healy, A. M., Rayburn, H. B., Rosenberg, R. D., and Weiler, H. 1995. Absence of the blood-clotting regulator thrombomodulin causes embryonic lethality in mice before development of a functional cardiovascular system. Proc. Natl. Acad. Sci. USA 92:850–854.

    Article  PubMed  CAS  Google Scholar 

  711. Rinno, H., Kuramoto, T., Iijima, T., Yagame, M., and Tomino, Y. 1996. Measurement of soluble thrombomodulin in sera from various clinical stages of diabetic nephropathy. J. Clin. Lab. Anal. 10:119–124.

    Article  PubMed  CAS  Google Scholar 

  712. Herrick, A. L., Illingworth, K., Blann, A., Hay, C. R., Hollis, S., and Jayson, M. I. 1996. Von Willebrand factor, thrombomodulin, thromboxane, beta-thromboglobulin and markers of fibrinolysis in primary Raynaud’s phenomenon and systemic sclerosis. Ann. Rheum. Dis. 55:122–127.

    Article  PubMed  CAS  Google Scholar 

  713. Gando, S., Kameue, T., Nanzaki, S., and Nakanishi, Y., 1995. Cytokines, soluble thrombomodulin and disseminated intravascular coagulation in patients with systemic inflammatory response syndrome. Thromb. Res. 80:519–526.

    Article  PubMed  CAS  Google Scholar 

  714. Sawyerr, A. M., Smith, M. S., Hall, A., Hudson, M., Hay, C. R., Wakefield, A. J., Brook, M. G., Tomura, H., and Pounder, R. E. 1995. Serum concentrations of von Willebrand factor and soluble thrombomodulin indicate alteration of endothelial function in inflammatory bowel diseases. Dig. Dis. Sci. 40:793–799.

    Article  PubMed  CAS  Google Scholar 

  715. Hsu, C. D., Chan, D. W., Iriye, B., Johnson, T. R., Hong, S. F., and Petri, M. 1995. Plasma thrombomodulin levels in women with systemic lupus erythematosus. Am. J. Perinatol. 12:27–29.

    PubMed  CAS  Google Scholar 

  716. Tsukada, N., Matsuda, M., Miyagi, K., and Yanagisawa, N. 1995. Thrombomodulin in the sera of patients with multiple sclerosis and human lymphotropic virus type-1-associated myelopathy. J. Neuroimmunol. 56:113–116.

    Article  PubMed  CAS  Google Scholar 

  717. Esmon, C. T. 1995. Thrombomodulin as a model of molecular mechanisms that modulate protease specificity and function at the vessel surface. FASEB J. 9:946–955.

    PubMed  CAS  Google Scholar 

  718. Martin, D. M., Boys, C. W., and Ruf, W. 1995. Tissue factor: molecular recognition and cofactor function. FASEB J. 9:852–859.

    PubMed  CAS  Google Scholar 

  719. Muller, Y. A., Ultsch, M. H., and de Vos, A. M. 1996. The crystal structure of the extracellular domain of human tissue factor refined to 1.7 A resolution. J. Mol. Biol. 256:144–159.

    Article  PubMed  CAS  Google Scholar 

  720. Carmeliet, P., Mackman, N., Moons, L., Luther, T., Gressens, P., Van Vlaenderen, I., Demunck, H., Kasper, M., Breier, G., Evrard, P., Mueller, M., Risau, W., Edgington, T., and Collen, D. 1996. Role of tissue factor in embryonic blood vessel development. Nature 383:73–75.

    Article  PubMed  CAS  Google Scholar 

  721. Bugge, T. H., Xiao, Q., Kombrinck, K. W., Flick, M. J., Holmbaeck, K., Danton, M. J., Colbert, M. C., Witte, D. P., Fujikawa, K., Davie, E. W., and Degen, J. L. 1996. Fatal embryonic bleeding events in mice lacking tissue factor, the cell-associated initiator of blood coagulation. Proc. Natl. Acad. Sci. USA 93:6258–6263.

    Article  PubMed  CAS  Google Scholar 

  722. Luther, T., Floessel, C, Mackman, N., Bierhaus, A., Kasper, M., Albrecht, S., Sage, E. H., Iruela Arispe, L., Grossmann, H., Stroehlein, A., Zhang, Y., Nawroth, P. P., Carmeliet, P., Loskutoff, D. J., and Mueller, M. 1996. Tissue factor expression during human and mouse development. Am. J. Pathol. 149:101–113.

    PubMed  CAS  Google Scholar 

  723. Clauss, M., Grell, M., Fangmann, C., Fiers, W., Scheurich, P., and Risau, W. 1996. Synergistic induction of endothelial tissue factor by tumor necrosis factor and vascular endothelial growth factor: Functional analysis of the tumor necrosis factor receptors. FEBS Lett. 390:334–338.

    Article  PubMed  CAS  Google Scholar 

  724. Berecek, K. H., and Zhang, L. 1995. Biochemistry and cell biology of angiotensin-converting enzyme and converting enzyme inhibitors. Adv. Exp. Med. Biol. 377:141–168.

    PubMed  CAS  Google Scholar 

  725. Hooper, N. M. 1991. Angiotensin converting enzyme: Implications from molecular biology for its physiological functions. Int. J. Biochem. 23:641–647.

    Article  PubMed  CAS  Google Scholar 

  726. Caveda, L., Martin Padura, I., Navarro, P., Breviario, F., Corada, M., Gulino, D., Lampugnani, M. G., and Dejana, E. 1996. Inhibition of cultured cell growth by vascular endothelial cadherin (cadherin-5/VE-cadherin). J. Clin. Invest. 98:886–893.

    PubMed  CAS  Google Scholar 

  727. Navarro, P., Caveda, L., Breviario, F., Mandoteanu, I., Lampugnani, M. G., and Dejana, E. 1995. Catenin-dependent and-independent functions of vascular endothelial cadherin. J. Biol. Chem. 270:30965–30972.

    Article  PubMed  CAS  Google Scholar 

  728. Breier, G., Breviario, F., Caveda, L., Berthier, R., Schnuerch, H., Gotsch, U., Vestweber, D., Risau, W., and Dejana, E. 1996. Molecular cloning and expression of murine vascular endothelial-cadherin in early stage development of cardiovascular system. Blood 87:630–641.

    PubMed  CAS  Google Scholar 

  729. Lehmann, J. M., Rielhmueller, G., and Johnson, J. P. 1989. MUC18, a marker of tumor progression in human melanoma, shows sequence similarity to the neural cell adhesion molecules of the immunoglobulin superfamily. Proc. Natl. Acad. Sci. USA 86:9891–9895.

    Article  PubMed  CAS  Google Scholar 

  730. Sers, C, Kirsch, K., Rothbaecher, U., Riethmueller, G., and Johnson, J. P. 1993. Genomic organization of the melanoma-associated glycoprotein MUC18: Implications for the evolution of the immunoglobulin domains. Proc. Natl. Acad. Sci. USA 90:8514–8518.

    Article  PubMed  CAS  Google Scholar 

  731. Johnson, J. P., Rummel, M. M., Rothbaecher, U., and Sers, C. 1996. MUC18: A cell adhesion molecule with a potential role in tumor growth and tumor cell dissemination. Curr. Top. Microbiol. Immunol. 213:95–105.

    PubMed  CAS  Google Scholar 

  732. Schlosshauer, B., Bauch, H., and Frank, R. 1995. Amino acid sequence, cell surface dynamics and actin colocalization. Eur. J. Cell Biol. 68:159–166.

    PubMed  CAS  Google Scholar 

  733. Schlosshauer, B. 1993. The blood-brain barrier: Morphology, molecules, and neurothelin. Bioessays 15:341–346.

    Article  PubMed  CAS  Google Scholar 

  734. Schlosshauer, B., and Herzog, K. H. 1990. Neurothelin: An inducible cell surface glycoprotein of blood-brain barrier-specific endothelial cells and distinct neurons. J. Cell. Biol. 110:1261–1274.

    Article  PubMed  CAS  Google Scholar 

  735. Wang, Y., and Pallen, C. J. 1992. Expression and characterization of wild type, truncated, and mutant forms of the intracellular region of the receptor-like protein tyrosine phosphatase HPTP beta. J. Biol. Chem. 267:16696–16702.

    PubMed  CAS  Google Scholar 

  736. Honda, H., Inazawa, J., Nishida, J., Yazaki, Y., and Hirai, H. 1994. Molecular cloning, characterization, and chromosomal localization of a novel protein-tyrosine phosphatase, HPTP eta. Blood 84:4186–4194.

    PubMed  CAS  Google Scholar 

  737. Sidorenko, S. P., and Clark, E. A. 1993. Characterization of a cell surface glycoprotein IPO-3, expressed on activated human B and T lymphocytes. J. Immunol. 151:4614–4624.

    PubMed  CAS  Google Scholar 

  738. Fitter, S., Tetaz, T. J., Berndt, M. C., and Ashman, L. K. 1995. Molecular cloning of cDNA encoding a novel platelet-endothelial cell tetra-span antigen, PETA-3. Blood 86:1348–1355.

    PubMed  CAS  Google Scholar 

  739. Roberts, J. J., Rodgers, S. E., Drury, J., Ashman, L. K., and Lloyd, J. V. 1995. Platelet activation induced by a murine monoclonal antibody directed against a novel tetra-span antigen. Br. J. Haematol. 89:853–860.

    Article  PubMed  CAS  Google Scholar 

  740. Brunet, J. F., Denizot, F., Luciani, M. F., Roux Dosseto, M., Suzan, M., Mattei, M. G., and Golstein, P. 1987. A new member of the immunoglobulin superfamily—CTLA-4. Nature 328:267–270.

    Article  PubMed  CAS  Google Scholar 

  741. Howard, T. A., Rochelle, J. M., and Seldin, M. F. 1991. CD28 and CTLA-4, two related members of the Ig supergene family, are tightly linked on proximal mouse chromosome 1. Immunogenetics 33:74–76.

    Article  PubMed  CAS  Google Scholar 

  742. Lafage Pochitaloff, M., Costello, R., Couez, D., Simonetti, J., Mannoni, P., Mawas, C., and Olive, D. 1990. Human CD28 and CTLA-4 Ig superfamily genes are located on chromosome 2 at bands q.33–q34. Immunogenetics 31:198–201.

    Article  PubMed  CAS  Google Scholar 

  743. Harper, K., Balzano, C., Rouvier, E., Mattei, M. G., Luciani, M. F., and Goldstein, P. 1991. CTLA-4 and CD28 activated lymphocyte molecules are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal location. J. Immunol. 147:1037–1044.

    PubMed  CAS  Google Scholar 

  744. Linsley, P. S., Greene, J. L., Tan, P., Bradshaw, J., Ledbetter, J. A., Anasetti, C., and Damle, N. K. 1992. Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes. J. Exp. Med. 176:1595–1604.

    Article  PubMed  CAS  Google Scholar 

  745. Kearney, E. R., Walunas, T. L., Karr, R. W., Morton, P. A., Loh, D. Y., Bluestone, J. A., and Jenkins, M. K. 1995. Antigen-dependent clonal expansion of a trace population of antigen-specific CD4+ T-cells in-vivo is dependent on CD28 costimulation and inhibited by CTLA-4. J. Immunol. 155:1032–1036.

    PubMed  CAS  Google Scholar 

  746. Waterhouse, P., Penninger, J. M., Timms, E., Wakeham, A., Shahinian, A., Lee, K. P., Thompson, C. B., Griesser, H., and Mak, T. W. 1995. Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science 270:985–988.

    Article  PubMed  CAS  Google Scholar 

  747. Younes, A., Consoli, U., Zhao, S., Snell, V., Thomas, E., Gruss, H. J., Cabanillas, F., and Andreeff, M. 1996. CD30 ligand is expressed on resting normal and malignant human B lymphocytes. Br. J. Haematol. 93:569–571.

    Article  PubMed  CAS  Google Scholar 

  748. Shanebeck, K. D., Maliszewski, C. R., Kennedy, M. K., Picha, K. S., Smith, C. A., Goodwin, R. G., and Grabstein, K. H. 1995. Regulation of murine B-cell growth and differentiation by CD30 ligand. Eur. J. Immunol. 25:2147–2153.

    Article  PubMed  CAS  Google Scholar 

  749. Pinto, A., Aldinucci, D., Gloghini, A., Zagonel, V., Degan, M., and Improta, S. 1996. Human eosinophils express functional CD30 ligand and stimulate proliferation of a Hodgkin’s-disease cell-line. Blood 88:3299–3305.

    PubMed  CAS  Google Scholar 

  750. Fuleihan, R., Ramesh, N., and Geha, R. S. 1993. Role of CD40-CD40-ligand interaction in Ig-isotype switching. Curr. Opin. Immunol. 5:963–967.

    Article  PubMed  CAS  Google Scholar 

  751. Foy, T. M., Shepherd, D. M., Durie, F. H., Aruffo, A., Ledbetter, J. A., and Noelle, R. J. 1993. In vivo CD40-gp39 interactions are essential for thymus-dependent humoral immunity. II. Prolonged suppression of the humoral immune response by an antibody to the ligand for CD40, gp39. J. Exp. Meet. 178:1567–1575.

    Article  CAS  Google Scholar 

  752. Van den Eertwegh, A. J., Noelle, R. J., Roy, M., Shepherd, D. M., Aruffo, A., Ledbetter, J. A., Boersma, W. J., and Ciaassen, E. 1993. In vivo CD40-gp39 interactions are essential for thymus-dependent humoral immunity. 1. In vivo expression of CD40 ligand, cytokines, and antibody production delineates sites of cognate T-B cell interactions. J. Exp. Med. 178:1555–1565.

    Article  PubMed  Google Scholar 

  753. Klaus, S. J., Pinchuk, L. M., Ochs, H. D., Law, C. L., Fanslow, W. C., Armitage, R. J., and Clark, E. A. 1994. Costimulation through CD28 enhances T cell-dependent B cell activation via CD40-CD40L interaction. J. Immunol. 152:5643–5652.

    PubMed  CAS  Google Scholar 

  754. Borrow, P., Tishon, A., Lee, S., Xu, J., Grewal, I. S., Oldstone, M. B., and Flavell, R. A. 1996. CD40L-deficient mice show deficits in antiviral immunity and have an impaired memory CD8+ CTL response. J. Exp. Med. 183:2129–2142.

    Article  PubMed  CAS  Google Scholar 

  755. Callard, R. E., Armitage, R. J., Fanslow, W. C., and Spriggs, M. K. 1993. CD40 ligand and its role in X-linked hyper-IgM syndrome. Immunol. Today 14:559–564.

    Article  PubMed  CAS  Google Scholar 

  756. Aoki, J., Koike, S., Ise, I., Sato Yoshida, Y., and Nomoto, A. 1994. Amino acid residues on human poliovirus receptor involved in interaction with poliovirus. J. Biol. Chem. 269:8431–8438.

    PubMed  CAS  Google Scholar 

  757. Racaniello, V. R. 1996. Early events in poliovirus infection-virus-receptor interactions. Proc. Natl. Acad. Sci. USA 93:11378–11381.

    Article  PubMed  CAS  Google Scholar 

  758. Freistadt, M. S., Stoltz, D. A., and Eberle, K. E. 1995. Role of poliovirus receptors in the spread of the infection. Ann. N.Y. Acad. Sci. 753:37–47.

    Article  PubMed  CAS  Google Scholar 

  759. Koike, S., Taya, C., Aoki, J., Matsuda, Y., Ise, I., Takeda, H., Matsuzaki, T., Amanuma, H., Yonekawa, H., and Nomoto, A. 1991. Characterization of three different transgenic mouse lines that carry human poliovirus receptor gene—influence of the transgene expression on pathogenesis. Arch. Virol. 139:351–363.

    Article  Google Scholar 

  760. Gromeier, M., Lu, H. H., Bernhardt, G., Harber, J. J., Bibb, J. A., and Wimmer, E. 1995. The human poliovirus receptor. Receptor-virus interaction and parameters of disease specificity. Ann. N.Y. Acad. Sci. 753:19–36.

    Article  PubMed  CAS  Google Scholar 

  761. Racaniello, V. R., and Ren, R. 1994. Transgenic mice and the pathogenesis of poliomyelitis. Arch. Virol. Suppl. 9:79–86.

    PubMed  CAS  Google Scholar 

  762. Yoshida, S., Setoguchi, M., Higuchi, Y., Akizuki, S., and Yamamoto, S. 1990. Molecular cloning of cDNA encoding MS2 antigen, a novel cell surface antigen strongly expressed in murine monocytic lineage. Int. Immunol. 2:585–591.

    Article  PubMed  CAS  Google Scholar 

  763. Higuchi, Y., Kataoka, M., and Yamamoto, S. 1996. MS2 (ADAM-8) a myelomonocytic cell-surface antigen-expression, chromosomal localization and production of truncated ADAM-8 transgenic mice. Tissue Antigens 48:MC105.

    Google Scholar 

  764. Furuya, Y., Takasawa, S., Yonekura, H., Tanaka, T., Takahara, J., and Okamoto, H. 1995. Cloning of a cDNA encoding rat bone marrow stromal cell antigen 1 (BST-1) from the islets of Langerhans. Gene 165:329–330.

    Article  PubMed  CAS  Google Scholar 

  765. Itoh, M., Ishihara, K., Tomizawa, H., Tanaka, H., Kobune, Y., Ishikawa, J., Kaisho, T., and Hirano, T. 1994. Molecular cloning of murine BST-1 having homology with CD38 and Aplysia ADP-ribosyl cyclase. Biochem. Biophys. Res. Commun. 203:1309–1317.

    Article  PubMed  CAS  Google Scholar 

  766. Hirata, Y., Kimura, N., Sato, K., Ohsugi, Y., Takasawa, S., Okamoto, H., Ishikawa, J., Kaisho, T., Ishihara, K., and Hirano, T. 1994. ADP ribosyl cyclase activity of a novel bone marrow stromal cell surface molecule, BST-I. FEBS Lett. 356:244–248.

    Article  PubMed  CAS  Google Scholar 

  767. Clark, E. A., Grabstein, K. H., Gown, A. M., Skelly, M., Kaisho, T., Hirano, T., and Shu, G. L. 1995. Activation of B lymphocyte maturation by a human follicular dendritic cell line, FDC-1. J. Immunol. 155:545–555.

    PubMed  CAS  Google Scholar 

  768. Ishikawa, J., Kaisho, T., Tomizawa, H., Lee, B. O., Kobune, Y., Inazawa, J., Oritani, K., Itoh, M., Ochi, T., Ishihara, K., et al. 1995. Molecular cloning and chromosomal mapping of a bone marrow stromal cell surface gene, BST2, that may be involved in pre-B-cell growth. Genomics 26:527–534.

    Article  PubMed  CAS  Google Scholar 

  769. Kaisho, T., Ishikawa, J., Oritani, K., Inazawa, J., Tomizawa, H., Muraoka, O., Ochi, T., and Hirano, T. 1994. BST-1, a surface molecule of bone marrow stromal cell lines thai facilitates pre-B-cell growth. Proc. Natl. Acad. Sci. USA 91:5325–5329.

    Article  PubMed  CAS  Google Scholar 

  770. Diacovo, T. G., Roth, S. J., Morita, C. T., Rosat, J. P., Brenner, M. B., and Springer, T. A. 1996. Interactions of human alpha/beta and gamma/delta T lymphocyte subsets in shear flow with E-selectin and P-selectin. J. Exp. Med. 183:1193–1203.

    Article  PubMed  CAS  Google Scholar 

  771. Vachino, G., Chang, X. J., Veldman, G. M., Kumar, R., Sako, D., Fouser, L. A., Berndt, M. C., and Cumming, D. A. 1995. P-selectin glycoprotein ligand-1 is the major counter-receptor for P-selectin on stimulated T cells and is widely distributed in non-functional form on many lymphocytic cells. J. Biol. Chem. 270:21966–21974.

    Article  PubMed  CAS  Google Scholar 

  772. Li, F., Erickson, H. P., James, J. A., Moore, K. L., Cummings, R. D., and McEver, R. P. 1996. Visualization of P-selection glycoprotein ligand-1 as a highly extended molecule and mapping of protein epitopes for monoclonal antibodies. J. Biol. Chem. 271:6342–6348.

    Article  PubMed  CAS  Google Scholar 

  773. Wilkins, P. P., Moore, K. L., McEver, R. P., and Cummings, R. D. 1995. Tyrosine sulfation of P-selectin glycoprotein ligand-1 is required for high affinity binding to P-selectin. J. Biol. Chem. 270:22677–22680.

    Article  PubMed  CAS  Google Scholar 

  774. Law, S. K., Micklem, K. J., Shaw, J. M., Zhang, X. P., Dong, Y., Willis, A. C., and Mason, D. Y. 1993. A new macrophage differentiation antigen which is a member of the scavenger receptor superfamily. Eur. J. Immunol. 23:2320–2325.

    Article  PubMed  CAS  Google Scholar 

  775. Masuzawa, Y., Miyauchi, T., Hamanoue, M., Ando, S., Yoshida, J., Takao, S., Shimazu, H., Adachi, M., and Muramatsu, T. 1992. A novel core protein as well as polymorphic epithelial mucin carry peanut agglutinin binding sites in human gastric carcinoma cells: Sequence analysis and examination of gene expression. J. Biochem. (Tokyo) 112:609–615.

    CAS  Google Scholar 

  776. Merlino, G. T. 1990. Epidermal growth factor receptor regulation and function. Semin. Cancer Biol. 1:277–284.

    PubMed  CAS  Google Scholar 

  777. Velu, T. J. 1990. Structure, function and transforming potential of the epidermal growth factor receptor. Mol. Cell. Endocrinol. 70:205–216.

    Article  PubMed  CAS  Google Scholar 

  778. Wiley, L. M., Adamson, E. D., and Tsark, E. C. 1995. Epidermal growth factor receptor function in early mammalian development. Bioessays 17:839–846.

    Article  PubMed  CAS  Google Scholar 

  779. Miettinen, P. J., Berger, J. E., Meneses, J., Phung, Y., Pedersen, R. A., Werb, Z., and Derynck, R. 1995. Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature 376:337–341.

    Article  PubMed  CAS  Google Scholar 

  780. Bajorath, J., Bowen, M. A., and Aruffo, A. 1995. Molecular model of the N-terminal receptor-binding domain of the human CD6 ligand ALCAM. Protein Sci. 4:1644–1647.

    Article  PubMed  CAS  Google Scholar 

  781. Bowen, M. A., Bajorath, J., Siadak, A. W., Modrell, B., Malacko, A. R., Marquardt, H., Nadler, S. G., and Aruffo, A. 1996. The amino-terminal immunoglobulin-like domain of activated leukocyte cell adhesion molecule binds specifically to the membrane-proximal scavenger receptor cysteine-rich domain of CD6 with a 1:1 stoichiometry. J. Biol. Chem. 271:17390–17396.

    Article  PubMed  CAS  Google Scholar 

  782. Starling, G. C., Whitney, G. S., Siadak, A. W., Llewellyn, M. B., Bowen, M. A., Farr, A. G., and Aruffo, A. A. 1996. Characterization of mouse CD6 with novel monoclonal antibodies which enhance the allogeneic mixed leukocyte reaction. Eur. J. Immunol. 26:738–746.

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Plenum Press, New York

About this chapter

Cite this chapter

(1998). Leukocyte Cluster of Differentiation Antigens. In: Handbook of Imune Response Genes. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-31180-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-31180-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45647-3

  • Online ISBN: 978-0-585-31180-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics