Advertisement

Genes of the Major Histocompatibility Complex

Abstract

Since the beginning of this century the curious nature of tissue rejection has intrigued investigators. It was no later than 1936 when Peter Gorer clearly articulated the existence of the MHC using transplanted tumors. Gorer’s work was the culmination of efforts to show that the rejection of transplanted tumor cells in mice involved a set of linked genetic loci, or histocompatibility genes. The term major histocompatibility complex or MHC, evolved from observations that rejection responses could be vigorous or mild, i.e., there were strong and weak histocompatibility loci, or, conversely, that there were major and minor histocompatibility antigens. As it is understood today, the MHC might simply be described as a collection of genes that encode immunologically relevant molecules, particularly those involved in cell-mediated T-lymphocyte immunity. The most fundamental elements of the MHC are a set of highly polymorphic genes that encode molecules involved in the presentation of antigenic peptides to αβ and perhaps γδ T lymphocytes. The extreme polymorphism of these so-called class I and class II genes facilitates display of myriad different antigenic peptides, a repertoire that must vary among different individuals in a population in order to protect from catastrophic disease. Genes encoding functionally diverse molecules such as TNF, LMP, and TAP (see Chapter 2) are also incorporated into the MHC gene cluster, suggesting perhaps a long evolutionary existence of the MHC in the vertebrate immune system. Although it is tempting to speculate that the MHC is a central feature in the evolution of vertebrate immunity, it must be remembered that only about 0.1% of vertebrate species have been investigated. Nonetheless, in all cases there exist MHC regions that share some degree of similarity. In this chapter we provide a brief overview of the MHC by way of discussing the genes and protein products of the class I and II regions. Immune response genes present in the class III region are discussed elsewhere (see chapters on antigen presentation and cytokines).

Keywords

Major Histocompatibility Complex Human Immunodeficiency Virus Type Human Leukocyte Antigen Major Histocompatibility Complex Class Peptide Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stern, L. J., and Wiley, D. C. 1994. Antigenic peptide binding by class I and class II histocompatibility proteins. Structure 2:245–251.PubMedGoogle Scholar
  2. 2.
    Bix, M., and Raulet, D. 1992. Functionally conformed free class I heavy chains exist on the surface of beta 2 microglobulin negative cells. J. Exp. Med. 176:829–834.PubMedGoogle Scholar
  3. 3.
    Zuegel, U., Schoel, B., and Kaufmann, S. H. 1994. Beta 2-microglobulin independent presentation of exogenously added foreign peptide and endogenous self-epitope by MHC class I alpha-chain to a cross-reactive CD8+ CTL clone. J. Immunol. 153:4070–4080.Google Scholar
  4. 4.
    Parker, K. C., DiBrino, M., Hull, L., and Coligan, J. E. 1992. The beta 2-microglobulin dissociation rate is an accurate measure of the stability of MHC class I heterotrimers and depends on which peptide is bound. J. Immunol. 149:1896–1904.PubMedGoogle Scholar
  5. 5.
    Zijlstra, M., Li, E., Sajjadi, F., Subramani, S., and Jaenisch, R. 1989. Germ-line transmission of a disrupted beta 2-microglobulin gene produced by homologous recombination in embryonic stem cells. Nature 342:435–438.PubMedGoogle Scholar
  6. 6.
    David-Watine, B., Israel, A., and Kourilsky, P. 1990. The regulation and expression of MHC class I genes. Immunol. Today 11:286–292.PubMedGoogle Scholar
  7. 7.
    Fabre, J. W. 1991. Regulation of MHC expression. Immunol. Lett. 29:3–8.PubMedGoogle Scholar
  8. 8.
    Geraghty, D. E. 1993. Structure of the HLA class I region and expression of its resident genes. Curr. Opin. Immunol. 5:3–7.PubMedGoogle Scholar
  9. 9.
    Ting, J. P., and Baldwin, A. S. 1993. Regulation of MHC gene expression. Curr. Opin. Immunol. 5:8–16.PubMedGoogle Scholar
  10. 10.
    Vallejo, A. N., and Pease, L. R. 1995. Structure of the MHC A-locus and B locus promoters in hominoids: Insights on the evolution of the class-I MHC multigene family. J. Immunol. 154:3912–3921.PubMedGoogle Scholar
  11. 11.
    Dower, S. K., and Segal, D. M. 1985. Interaction of monoclonal antibodies with MHC class I antigens on mouse spleen cells. II. Levels of expression of H-2K, H-2D, and H-2L in different mouse strains. J. Immunol. 134:431–435.PubMedGoogle Scholar
  12. 12.
    Duran, L. W., and Pease, L. R. 1988. Tracing the evolution of H-2 D region genes using sequences associated with a repetitive element. J. Immunol. 141:295–301.PubMedGoogle Scholar
  13. 13.
    Beck, J. C., Hansen, T. H., Cullen, S. E., and Lee, D. R. 1986. Slower processing, weaker beta 2-M association, and lower surface expression of H-2Ld are influenced by its amino terminus. J. Immunol. 137:916–923.PubMedGoogle Scholar
  14. 14.
    Steinmetz, M., Winoto, A., Minard, K., and Hood, L. 1982. Clusters of genes encoding mouse transplantation antigens. Cell 28:489–498.PubMedGoogle Scholar
  15. 15.
    Weiss, E. H., Golden, L., Fahrner, K., Mellor, A. L., Devlin, J. J., Bullman, H., Tiddens, H., Bud, H., and Flavell, R. A. 1984. Organization and evolution of the class I gene family in the major histocompatibility complex of the C57BL/10 mouse. Nature 310:650–655.PubMedGoogle Scholar
  16. 16.
    O’Neill, A. E., Reid, K., Garberi, J. C., Karl, M., and Flaherty, L. 1986. Extensive deletions in the Q region of the mouse major histocompatibility complex. Immunogenetics 24:368–373.PubMedGoogle Scholar
  17. 17.
    Pontarotti, P. A., Mashimo, H., Zeff, R. A., Fisher, D. A., Hood, L., Mellor, A., Flavell, R. A., and Nathenson, S. G. 1986. Conservation and diversity in the class I genes of the major histocompatibility complex: Sequence analysis of a Tlab gene and comparison with a Tlac gene. Proc. Natl. Acad. Sci. USA 83:1782–1786.PubMedGoogle Scholar
  18. 18.
    Lindahl, K. F. 1993. Peptide antigen presentation by non-classical MHC class I molecules. Semin. Immunol. 5:117–126.Google Scholar
  19. 19.
    Shawar, S. M., Vyas, J. M., Rodgers, J. R., and Rich, R. R. 1994. Antigen presentation by major histocompatibility complex class I-B molecules. Annu. Rev. Immunol. 12:839–880.PubMedGoogle Scholar
  20. 20.
    Stroynowski, I., and Lindahl, K. F. 1994. Antigen presentation by non-classical class I molecules. Curr. Opin. Immunol. 6:38–44.PubMedGoogle Scholar
  21. 21.
    Shawar, S. M., Cook, R. G., Rodgers, J, R., and Rich, R. R. 1990. Specialized functions of MHC class I molecules. I. An N-formyl peptide receptor is required for construction of the class I antigen Mta. J. Exp. Med. 171:897–912.PubMedGoogle Scholar
  22. 22.
    Shawar, S. M., Vyas, J. M., Rodgers, J. R., Cook, R. G., and Rich, R. R. 1991. Specialized functions of major histocompatibility complex class I molecules. II. Hmt binds N-formylated peptides of mitochondrial and prokaryotic origin. J. Exp. Med. 174:941–944.PubMedGoogle Scholar
  23. 23.
    Wang, C. R., Castano, A. R., Peterson, P. A., Slaughter, C., Lindahl, K. F., and Deisenhofer, J. 1995. Nonclassical binding of formylated peptide in crystal structure of the MHC class Ib molecule H2-M3. Cell 82:655–664.PubMedGoogle Scholar
  24. 24.
    Vyas, J. M., Rodgers, J. R., and Rich, R. R. 1995. H-2M3A violates the paradigm for major histocompatibility complex class I peptide binding. J. Exp. Med. 181:1817–1825.PubMedGoogle Scholar
  25. 25.
    Smith, G. P., Dabhi, V. M., Pamer, E. G., and Lindahl, K. F. 1994. Peptide presentation by the MHC class Ib molecule, H2-M3. Int. Immunol. 6:1917–1926.PubMedGoogle Scholar
  26. 26.
    Pamer, E. G., Wang, C. R., Flaherty, L., Lindahl, K. F., and Bevan, M. J. 1992. H-2M3 presents a Listeria monocytogenes peptide to cytotoxic T lymphocytes. Cell 70:215–223.PubMedGoogle Scholar
  27. 27.
    Kurlander, R. J., Shawar, S. M., Brown, M. L., and Rich, R. R. 1992. Specialized role for a murine class I-b MHC molecule in prokaryotic host defenses. Science 257:678–679.PubMedGoogle Scholar
  28. 28.
    Schild, H., Mavaddat, N., Litzenberger, C., Ehrich, E. W., Davis, M. M., Bluestone, J. A., Matis, L., Draper, R. K., and Chien, Y. H. 1994. The nature of major histocompatibility complex recognition by gamma delta T cells. Cell 76:29–37.PubMedGoogle Scholar
  29. 29.
    Moriwaki, S., Korn, B. S., Ichikawa, Y., Van Kaer, L., and Tonegawa, S. 1993. Amino acid substitutions in the floor of the putative antigen-binding site of H-2T22 affect recognition by a gamma delta T-cell receptor. Proc. Natl. Acad. Sci. USA 90:11396–11400.PubMedGoogle Scholar
  30. 30.
    Sharma, P., Joyce, S., Chorney, K. A., Griffith, J. W., Bonneau, R. H., Wilson, F. D., Johnson, C. A., Flavell, R. A., and Chorney, M. J. 1996. Thymus-leukemia antigen interacts with T cells and self-peptides. J. Immunol. 156:987–996.PubMedGoogle Scholar
  31. 31.
    Blazar, B. R., Taylor, P. A., Bluestone, J. A., and Vallera, D. A. 1996. Murine gamma/delta-expressing T cells affect alloengraftment via the recognition of nonclassical major histocompatibility complex class Ib antigens. Blood 87:4463–4472.PubMedGoogle Scholar
  32. 32.
    Blazar, B. R., Taylor, P. A., Panoskaltsis Mortari, A., Barrett, T. A., Bluestone, J. A., and Vallera, D. A. 1996. Lethal murine graft-versus-host disease induced by donor gamma/delta expressing T cells with specificity for host nonclassical major histocompatibility complex class Ib antigens. Blood 87:827–837.PubMedGoogle Scholar
  33. 33.
    Dembic, Z., Singer, P. A., and Klein, J. 1984. Eo: A history of a mutation. EMBO J. 3:1647–1654.PubMedGoogle Scholar
  34. 34.
    Hyldig-Nielsen, J. J., Schenning, L., Hammerling, U., Widmark, E., Heldin, E., Lind, P., Servenius, B., Lund, T., Flavell, R., Lee, J. S., Trowsdale, J., Schreier, P. H., Zablitzky, F., Larhammar, D., Peterson P. A., and Rask, L. 1983. The complete nucleotide sequence of the I-E alpha d immune response gene. Nucleic Acids Res. 11:5055–5071.PubMedGoogle Scholar
  35. 35.
    Mathis, D. J., Benoist, C., Williams, V. E., 2d, Kanter, M., and McDevitt, H. O. 1983. Several mechanisms can account for defective E alpha gene expression in different mouse haplotypes. Proc. Natl. Acad. Sci. USA 80:273–277.PubMedGoogle Scholar
  36. 36.
    Begovich, A. B., and Jones, P. P. 1985. Free Ia E alpha chain expression in the E+ alpha: E-beta recombinant strain A.TFR5. Immunogenetics 22:523–532.PubMedGoogle Scholar
  37. 37.
    Goetze, D., Nadeau, J., Wakeland, E. K., Berry, R. J., Bonhomme, F., Egorov, I. K., Hjorth, J. P., Hoogstraal, H., Vives, J., Winking, H., and Klein, J. 1980. Histocompatibility-2 system in wild mice. X. Frequencies of H-2 and la antigens in wild mice from Europe and Africa. J. Immunol. 124:2675–2681.Google Scholar
  38. 38.
    Dembic, Z., Ayane, M., Klein, J., Steinmetz, M., Benoist, C. O., and Mathis, D. J. 1985. Inbred and wild mice carry identical deletions in their E alpha MHC genes. EMBO J. 4:127–131.PubMedGoogle Scholar
  39. 39.
    Duncan, W. R., Wakeland, E. K., and Klein, J. 1979. Heterozygosity of H-2 loci in wild mice. Nature 281:603–605.PubMedGoogle Scholar
  40. 40.
    Chu, Z. T., Carswell Crumpton, C., Cole, B. C., and Jones, P. P. 1994. The minimal polymorphism of class II E alpha chains is not due to the functional neutrality of mutations. Immunogenetics 40:9–20.PubMedGoogle Scholar
  41. 41.
    Juretic, A., Nagy, Z. A., and Klein, J. 1981. Detection of CML determinants associated with H-2 controlled E beta and E alpha chains. Nature 289:308–310.PubMedGoogle Scholar
  42. 42.
    Trowsdale, J. 1995. “Both man & bird & beast”: Comparative organization of MHC genes. Immunogenetics 41:1–17.PubMedGoogle Scholar
  43. 43.
    Wei, H., Fan, W. F., Xu, H., Parimoo, S., Shukla, H., Chaplin, D. D., and Weissman, S. M. 1993. Genes in one megabase of the HLA class I region. Proc. Natl. Acad. Sci. USA 90:11870–11874.PubMedGoogle Scholar
  44. 44.
    Fan, W., Cai, W., Parimoo, S., Lennon, G. G., and Weissman, S. M. 1996. Identification of seven new human MHC class I region genes around the HLA-F locus. Immunogenetics 44:97–103.PubMedGoogle Scholar
  45. 45.
    Pichon, L., Giffon, T., Chauvel, B., Carn, G., Bouric, P., El Kahloun, A., Legall, J. Y., and David, V. 1996. Physical map of the HLA-A/HLA-F subregion and identification of two new coding sequences. Immunogenetics 43:175–181.PubMedGoogle Scholar
  46. 46.
    Beck, S., Abdulla, S., Alderton, R. P., Glynne, R. J., Gut, I. G., Hosking, L. K., Jackson, A., Kelly, A., Newell, W. R., Sanseau, P., Radley, E., Thorpe, K. L., and Trowsdale, J. 1996. Evolutionary dynamics of non-coding sequences within the class II region of the human MHC. J. Mol. Biol. 255:1–13.PubMedGoogle Scholar
  47. 47.
    Hansen, T. H., Carreno, B. M., and Sachs, D. H. 1993. The major histocompatibility complex. In: Paul, W. E., ed., Fundamental Immunology, New York, Raven Press, pp. 577–628.Google Scholar
  48. 48.
    Bodmer, J. G., Marsh, S. G., Albert, E. D., Bodmer, W. F., Dupont, B., Erlich, H. A., Mach, B., Mayr, W. R., Parham, P., Sasazuki, T., Schreuder, G. M., Strominger, J. L., and Terasaki, P. I. 1994. Nomenclature for factors of the HLA system. 1994. Tissue Antigens 44:1–18.PubMedGoogle Scholar
  49. 49.
    Bjorkman, P. J., and Parham, P. 1990. Structure, function, and diversity of class I major histocompatibility complex molecules. Annu. Rev. Biochem. 59:253–288.PubMedGoogle Scholar
  50. 50.
    Barber, L. D., and Parham, P. 1994. The essence of epitopes. J. Exp. Med. 180:1191–1194.PubMedGoogle Scholar
  51. 51.
    Ulbrecht, M., Kellermann, J., Johnson, J. P., and Weiss, E. H. 1992. Impaired intracellular transport and cell surface expression of nonpolymorphic HLA-E: Evidence for inefficient peptide binding. J. Exp. Med. 176:1083–1090.PubMedGoogle Scholar
  52. 52.
    Ulrecht, M., Honka, T., Person, S., Johnson, J. P., and Weiss, E. H. 1992. The HLA-E gene encodes two differentially regulated transcripts and a cell surface protein. J. Immunol. 149:2945–2953.Google Scholar
  53. 53.
    Otting, N., and Bontrop, R. E. 1993. Characterization of the rhesus macaque (Macaca mulatta) equivalent of HLA-F. Immunogenetics 38:141–145.PubMedGoogle Scholar
  54. 54.
    Geraghty, D. E., Wei, X. H., Orr, H. T., and Koller, B. H. 1990. Human leukocyte antigen F (HLA-F). An expressed HLA gene composed of a class I coding sequence linked to a novel transcribed repetitive element. J. Exp. Med. 171:1–18.PubMedGoogle Scholar
  55. 55.
    Houlihan, J. M., Biro, P. A., Fergar Payne, A., Simpson, K. L., and Holmes, C. H. 1992. Evidence for the expression of non-HLA-A,-B,-C class I genes in the human fetal liver. J. Immunol. 149:668–675.PubMedGoogle Scholar
  56. 56.
    Feder, J. N., Gnirke, A., Thomas, W., Tsuchihashi, Z., Ruddy, D. A., Basava, A., Dormishian, F., Domingo, R., Jr., Ellis, M. C., Fullan, A., Hinton, L. M., Jones, N. L., Kimmel, B. E., Kronmal, G. S., Lauer, P., Lee, V. K., Loeb, D. B., Mapa, F. A., McClelland, E., Meyer, N. C., Mintier, G. A., Moeller, N., Moore, T., Morikang, E., Wolff, R. R., Prass, C. E., Quintana, L., Starnes, S. M., Schatzman, R. C., Brunke, K. J., Drayna, D. T., Risch, N. J., Bacon, B. R., and Wolff, R. K. 1996. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat. Genet. 13:399–408.PubMedGoogle Scholar
  57. 57.
    Kovats, S., Main, E. K., Librach, C., Stubblebine, M., Fisher, S. J., and DeMars, R. 1990. A class I antigen, HLA-G, expressed in human trophoblasts. Science 248:220–223.PubMedGoogle Scholar
  58. 58.
    Ishitani, A., and Geraghty, D. E. 1992. Alternative splicing of HLA-G transcripts yields proteins with primary structures resembling both class I and class II antigens. Proc. Natl. Acad. Sci. USA 89:3947–3951.PubMedGoogle Scholar
  59. 59.
    Mcmaster, M. T., Librach, C. L., Zhou, Y., Lim, K. H., Janatpour, M. J., DeMars, R., Kovats, S., Damsky, C., and Fisher, S. J. 1995. Human placental HLA-G expression is restricted to differentiated cytotrophoblasts. J. Immunol. 154:3771–3778.PubMedGoogle Scholar
  60. 60.
    Chiang, M. H., and Main, E. K. 1994. Nuclear regulation of HLA class-I genes in human trophoblasts. Am. J. Reprod. Immunol. 32:167–172.PubMedGoogle Scholar
  61. 61.
    Jurisicova, A., Casper, R. F., MacLusky, N. J., Mills, G. B., and Librach, C. L. 1996. HLA-G expression during preimplantation human embryo development. Proc. Natl. Acad. Sci. USA 93:161–165.PubMedGoogle Scholar
  62. 62.
    Horuzsko, A., and Mellor, A. L. 1995. Potential functions for nonpolymorphic MHC class-I HLA-g molecules. FASEB J. 9:A819.Google Scholar
  63. 63.
    Horuzsko, A., and Strachan, T. 1994. Transcription of HLA-G transgenes commences shortly after implantation during embryonic development in mice. Immunology 83:324–328.PubMedGoogle Scholar
  64. 64.
    King, A., Boocock, C., Sharkey, A. M., Gardner, L., Beretta, A., Siccardi, A. G., and Loke, Y. W. 1996. Evidence for the expression of HLAA-C class I mRNA and protein by human first trimester trophoblast. J. Immunol. 156:2068–2076.PubMedGoogle Scholar
  65. 65.
    Chumbley, G., King, A., Robertson, K., Holmes, N., and Loke, Y. W. 1994. Resistance of HLA-G and HLA-A2 transfectants to lysis by decidual NK cells. Cell. Immunol. 155:312–322.PubMedGoogle Scholar
  66. 66.
    Yang, Y., Chu, W., Geraghty, D. E., and Hunt, J. S. 1996. Expression of HLA-G in human mononuclear phagocytes and selective induction by IFN-gamma. J. Immunol. 156:4224–4231.PubMedGoogle Scholar
  67. 67.
    Lee, N., Malacko, A. R., Ishitani, A., Chen, M. C., Bajorath, J., Marquardt, H., and Geraghty, D. E. 1995. The membrane-bound and soluble forms of HLA-G bind identical sets of endogenous peptides but differ with respect to TAP association. Immunity 3:591–600.PubMedGoogle Scholar
  68. 68.
    Diehl, M., Munz, C., Keilholz, W., Stevanovic, S., Holmes, N., and Loke, Y. W. 1996. Nonclassical HLA-G molecules are classical peptide presenters. Curr. Biol. 6:305–314.PubMedGoogle Scholar
  69. 69.
    Odum, N., Ledbetter, J. A., Martin, P., Geraghty, D., Tsu, T., Hansen, J. A., and Gladstone, P. 1991. Homotypic aggregation of human cell lines by HLA class II-, class Ia-and HLA-G specific monoclonal antibodies. Eur. J. Immunol. 21:2121–2131.PubMedGoogle Scholar
  70. 70.
    Yano, O., Kanellopoulos, J., Kieran, M., Le Bail, O., Israel, A., and Kourilsky, P. 1987. Purification of KBF1, a common factor binding to both H-2 and beta 2-microglobulin enhancers. EMBO J. 6:3317–3324.PubMedGoogle Scholar
  71. 71.
    Baldwin, A. S., Jr., and Sharp, P. A. 1987. Binding of a nuclear factor to a regulatory sequence in the promoter of the mouse H-2Kb class I major histocompatibility gene. Mol. Cell. Biol. 7:305–313.PubMedGoogle Scholar
  72. 72.
    Baldwin, A. S., Jr., LeClair, K. P., Singh, H., and Sharp, P. A. 1990. A large protein containing zinc finger domains binds to related sequence elements in the enhancers of the class I major histocompatibility complex and kappa immunoglobulin genes. Mol. Cell. Biol. 10:1406–1414.PubMedGoogle Scholar
  73. 73.
    Israel, A., Kimura, A., Fournier, A., Fellous, M., and Kourilsky, P. 1986. Interferon response sequence potentiates activity of an enhancer in the promoter region of a mouse H-2 gene. Nature 27:743–746.Google Scholar
  74. 74.
    Sugita, K., Miyazaki, J., Appella, E., and Ozato, K. 1987. Interferons increase transcription of a major histocompatibility class I gene via a 5’ interferon consensus sequence. Mol. Cell. Biol. 7:2625–2630.PubMedGoogle Scholar
  75. 75.
    Kimura, T., Nakayama, K., Penninger, J., Kitagawa, M., Harada, H., Matsuyama, T., Tanaka, N., Kamijo, R., Vilcek, J., Mak, T. W., and Taniguchi, T. 1994. Involvement of the IRF-1 transcription factor in antiviral responses to interferons. Science 264:1921–1924.PubMedGoogle Scholar
  76. 76.
    Tanaka, N., Ishihara, M., Kitagawa, M., Harada, H., Kimura, T., Matsuyama, T., Lamphier, M. S., Aizawa, S., Mak, T. W., and Taniguchi, T. 1994. Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1. Cell 77:829–839.PubMedGoogle Scholar
  77. 77.
    Trauth, N. N., Kropf, P., and Muller, I. 1996. Susceptibility to Leishmania major infection in interleukin-4-deficient mice. Science 271:987–990.Google Scholar
  78. 78.
    Matsuyama, T., Grossman, A., Mittruecker, H. W., Siderovski, D. P., Kiefer, F., Kawakami, T., Richardson, C. D., Taniguchi, T., Yoshinaga, S. K., and Mak, T. W. 1995. Molecular cloning of LSIRF. a lymphoid-specific member of the interferon regulatory factor family that binds the interferon-stimulated response element (ISRE). Nucleic Acids Res. 23:2127–2136.PubMedGoogle Scholar
  79. 79.
    Eisenbeis, C. F., Singh, H., and Storb, U. 1995. Pip, a novel IRF family member, is a lymphoid specific. PU.l-dependent transcriptional activator. Genes Dev. 9:1377–1387.PubMedGoogle Scholar
  80. 80.
    Schindler, C., Fu, X. Y., Improtu, T., Aebersold, R., and Darnell, J. E., Jr. 1992. Proteins of transcription factor ISGF-3: One gene encodes the 91-and 84-kDa ISGF-3 proteins that are activated by interferon alpha. Proc. Natl. Acad. Sci. USA 89:7836–7839.PubMedGoogle Scholar
  81. 81.
    Girdlestone, J., Isamat, M., Gewert, D., and Milstein, C. 1993. Transcriptional regulation of HLA-A and-B: differential binding of members of the Rel and IRF families of transcription factors. Proc. Natl. Acad. Sci. USA 90:11568–11572.PubMedGoogle Scholar
  82. 82.
    Matsuyama, T., Kimura, T., Kitagawa, M., Pfeffer, K., Kawakami, T., Watanabe, N., Kundig, T. M., Amakawa, R., Kishihara, K., Wakeham, A., Potter, J., Furlonger, C. L., Narendren, A., Suzuki, H., Ohashi, P. S., Paige, C. J., Taniguchi, T., and Mak, T. W. 1993. Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell 75:83–97.PubMedGoogle Scholar
  83. 83.
    Min, W., Pober, J. S., and Johnson, D. R. 1996. Kinetically coordinated induction of TAPI and HLA class 1 by IFN-gamma: The rapid induction of TAPI by IFN-gamma is mediated by StatL alpha. J. Immmunol. 156:3174–3183.Google Scholar
  84. 84.
    Driggers, P. H., Ennist, D. L., Gleason, S. L., Mak, W. H., Marks, M. S., Levi, B. Z., Flanagan, J. R., Appella, H., and Ozato, K. 1990. An interferon gamma-regulated protein thai binds the imerferon-inducible enhancer element of major histocompatibility complex class 1 genes. Proc. Natl. Acad. Sci. USA 87:3743–3747.PubMedGoogle Scholar
  85. 85.
    Weisz, A., Marx, P., Sharf, R., Appella, E., Driggers, P. H., Ozato, K. and Levi, B. Z. 1992. Human interferon consensus sequence binding protein is a negative regulator of enhancer elements common to intcrferon-inducible genes. J. Biol. Chem. 267:25589–25596.PubMedGoogle Scholar
  86. 86.
    Harada, H., Willison, K., Sakakibara, J., Miyamoto, M., Fujita, T., and Taniguchi, T. 1990. Absence of the type I IFN system in EC cells: Transcriptional activator (IRF-1) and represser (IRF-2) genes are developmentally regulated. Cell 63:303–312.PubMedGoogle Scholar
  87. 87.
    Nelson, N., Marks, M. S., Driggers, P. H., and Ozato, K. 1993. Interferon consensus sequence-binding protein, a member of the interferon regulatory factor family, suppresses interferon-induced gene transcription. Mol. Cell. Biol. 13:588–599.PubMedGoogle Scholar
  88. 88.
    Bernards, R., Schrier, P. I., Houweling, A., Bos, J. L., van der Eb, A. J., Zijlstra, M., and Melie, C. J. 1983. Tumorigenicity of cells transformed by adenovirus type 12 by evasion of T-cell immunity. Nature 305:776–779.PubMedGoogle Scholar
  89. 89.
    Tanaka, K., Isselbacher, K. J., Khoury, G., and Jay, G. 1985. Reversal of oncogenesis hy the expression of a major histocompatibility complex class I gene. Science 228:26–30.PubMedGoogle Scholar
  90. 90.
    Vasavada, R., Eager, K. B., Barbanti Brodano, G., Capulo, A., and Ricciardi, R. P. 1986. Adenovirus type 12 early region 1A proteins repress class I HLA expression in transformed human cells. Proc. Natl. Acad. Sci. USA 83:5257–5261.PubMedGoogle Scholar
  91. 91.
    Liu, X. H., Ge, R. W., and Ricciardi, R. P. 1996. Evidence for the involvement of a nuclear NF-kappa-B inhibitor in global down-regulation of the major histocompatibility complex class I enhancer in adenovirus type 12-transformed cells. Mol. Cell. Biol. 16:398–404.PubMedGoogle Scholar
  92. 92.
    Tang, X., Li, H. O., Sakatsume, O., Ohta, T., Tsutsui, H., Smit, A. F., Horikoshi, M., Kourilsky, P., Israel, A., Gachelin, G., et al. 1995. Cooperatively between an upstream TATA-like sequence and a CAA repeated element mediates ElA-dependent negative repression of the H-2Kb class I gene. J. Bioi. Chem. 270:2327–2336.Google Scholar
  93. 93.
    Ozawa, K., Hagiwara, H., Tang, X., Saka, F., Kitabayashi, I., Shiroki, K., Fujinaga, K., Israel, A., Gachelin, G., and Yokoyama, K. 1993. Negative regulation of the gene for H-2Kb class I antigen by adenovirus 12-E1A is mediated by a CAA repeated element. J. Biol. Chem. 268:27258–27268.PubMedGoogle Scholar
  94. 94.
    Goyert, S. M., Shively, J. F., and Silver, J. 1982. Biochemical characterization of a second family of human Ia molecules, HLA-DS, equivalent to murine I-A subregion molecules. J. Exp, Med. 156:550–566.Google Scholar
  95. 95.
    Bell, J. I., Denney, D., Jr., Foster, L., Belt, T., Todd, J. A., and McDevitt, H. O. 1987. Allelic variation in the DR subregion of the human major histocompatibility complex. Proc. Natl. Acad. Sci. USA 84:6234–6238.PubMedGoogle Scholar
  96. 96.
    Kwok, W. W., Kovats, S., Thurtle, P., and Nepom, G. T. 1993. HLA-DQ allelic polymorphisms constrain patterns of class II heterodimer formation. J. Immunol. 150:2263–2272.PubMedGoogle Scholar
  97. 97.
    Grusby, M. J., and Glimcher, L. H. 1995. Immune responses in MHC class II-deficient mice. Annu. Rev. Immunol. 13:417–435.PubMedGoogle Scholar
  98. 98.
    Nepom, G. T., and Erlich, H. 1991. MHC class-II molecules and autoimmunity. Annu. Rev. Immunol. 9:493–525.PubMedGoogle Scholar
  99. 99.
    Kaufman, J. F., Auffray, C., Korman, A. J., Shackelford, D. A., and Strominger, J. 1984. The class II molecules of the human and murine major histocompatibility complex. Cell 36:1–13.PubMedGoogle Scholar
  100. 100.
    Perry, V. H., and Gordon, S. 1988. Macrophages and microglia in the nervous system. Trends Neurosci. 11:273–277.PubMedGoogle Scholar
  101. 101.
    Bo, L., Mork, S., Kong, P. A., Nyland, H., Pardo, C. A., and Trapp, B. D. 1994. Detection of MHC class II-antigens on macrophages and microglia, but not on estrocytes and cndothelia in active multiple sclerosis lesions. J. Neuroimmunol. 51:135–146.PubMedGoogle Scholar
  102. 102.
    Panek, R. B., and Benveniste, E. N. 1996. Class II MHC gene expression in microglia. Regulation by the cytokines IFN-gamma, TNF-alpha, and TGF-beta. J. Immunol. 154:2846–2854.Google Scholar
  103. 103.
    Reith, W., Steimle, V., Durand, B., Kobr, M., and Mach, B. 1995. Regulation of MHC class II gene expression. Immunobiology 193:248–253.PubMedGoogle Scholar
  104. 104.
    Dedrick, R. L., and Jones, P. P. 1990. Sequence elements required for activity of a murine major histocompatibility complex class II promoter bind common and cell-type-specific nuclear factors. Mol. Cell. Biol. 10:593–604.PubMedGoogle Scholar
  105. 105.
    Qiu, X., and Singal, D. P. 1996. Allelic polymorphism in the upstream regulatory region of HLA-DRB genes: Functional role of conserved consensus motifs. Transplant. Proc. 27:682–683.Google Scholar
  106. 106.
    Johnson, S. P., and Adams, D. O. 1996. Sequence elements required for function of the MHC class-II A(beta) gene promoter in murine macrophages. Cell. Immunol. 166:207–216.Google Scholar
  107. 107.
    Singal, D. P., and Qiu, X. H. 1996. Polymorphism in both X-box and Y-box motifs controls level of expression of HLA-DRB 1 genes. Immunogenetics 43:50–56.PubMedGoogle Scholar
  108. 108.
    Boss, J. M., and Strominger, J. L. 1986. Regulation of a transfected human class II major histocompatibility complex gene in human fibroblasts. Proc. Natl. Acad. Sci. USA 83:9139–9143.PubMedGoogle Scholar
  109. 109.
    Tsang, S. Y., Nakanishi, M., and Peterlin, B. M. 1988. B-cell-specific and interferon-gamma-inducible regulation of the HLA-DR alpha gene. Proc. Natl. Acad. Sci. USA 85:8598–8602.PubMedGoogle Scholar
  110. 110.
    Zhang, X. Y., Jabrane Ferrat, N., Asiedu, C. K., Samac, S., Peterlin, B. M., and Ehrlich, M. 1993. The major histocompatibility complex class II promoter-binding protein RFX (NF-X) is a methylated DNA-binding protein. Mol. Cell. Biol. 13:6810–6818.PubMedGoogle Scholar
  111. 111.
    Kern, I., Steimle, V., Siegrist, C. A., and Mach, B. 1995. The two novel MHC class II transactivators RFX5 and CIITA both control expression of HLA-DM genes. Int. Immunol. 7:1295–1299.PubMedGoogle Scholar
  112. 112.
    Siegrist, C. A., and Mach, B. 1993. Antisense oligonucleotides specific for regulatory factor RFX-1 inhibit inducible but not constitutive expression of all major histocompatibility complex class II genes. Eur. J. Immunol. 23:2903–2908.PubMedGoogle Scholar
  113. 113.
    Siegrist, C. A., Durand, B., Emery, P., David, E., Hearing, P., Mach, B., and Reith, W. 1993. RFX1 is identical to enhancer factor C and functions as a transactivator of the hepatitis B virus enhancer. Mol. Cell. Biol. 13:6375–6384.PubMedGoogle Scholar
  114. 114.
    Reith, W., Ucla, C., Barras, E., Gaud, A., Durand, B., Herrero Sanchez, C., Kobr, M., and Mach, B. 1994. RFX1, a transactivator of hepatitis B virus enhancer I, belongs to a novel family of homodimeric and heterodimeric DNA-binding proteins. Mol. Cell. Biol. 14:1230–1244.PubMedGoogle Scholar
  115. 115.
    David, E., Garcia, A. D., and Hearing, P. 1995. Interaction of EF-C/RFX-1 with the inverted repeat of viral enhancer regions is required for transaclivation. J. Biol. Chem. 270:8353–8360.PubMedGoogle Scholar
  116. 116.
    Moreno, C. S., Emery, P., West, J. E., Durand, B., Reith, W., Mach, B., and Boss, J. M. 1995. Purified X2 binding-protein (X2bp) cooperatively binds the class-II MHC X-box region in the presence of purified RFX, the X-box factor deficient in the bare-lymphocyte-syndrome. J. Immunol. 155:4313–4321.PubMedGoogle Scholar
  117. 117.
    Sinha, S., Kim, I. S., Sohn, K. Y., Decrombrugghe, B., and Maity, S. N. 1996. 3 classes of mutations in the A-subunit of the CCAAT-binding factor CBF delineate functional domains involved in the 3-step assembly of the CBF-DNA complex. Mol. Cell. Biol. 16:328–337.PubMedGoogle Scholar
  118. 118.
    Steimle, V., Otlen, L. A., Zufferey, M., and Mach, B. 1993. Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell 75:135–146.PubMedGoogle Scholar
  119. 119.
    Steimle, V., Siegrist, C. A., Mottet, A., Lisowska Grospierre, B., and Mach, B. 1994. Regulation of MHC class II expression by interferon-gamma mediated by the transactivator gene CIITA. Science 265:106–109.Google Scholar
  120. 120.
    Steimle, V., Durand, B., Barras, E., Zufferey, M., Hadam, M. R., Mach, B., and Reith, W. 1995. A novel DNA-binding regulatory factor is mutated in primary MHC class II deficiency (bare lymphocyte syndrome). Genes Dev. 9:1021–1032.PubMedGoogle Scholar
  121. 121.
    Chang, R. J., and Lee, S. H. 1986. Effects of inlerferon-gamma and tumor necrosis factor-alpha on the expression of an la antigen on a murine macrophage cell line. J. Immunol. 137:2853–2856.PubMedGoogle Scholar
  122. 122.
    Pfizenmaier, K., Scheurich, P., Schlueter, C., and Kroenke, M. 1987. Tumor necrosis factor enhances HLA A.B.C and HLA-DR gene expression in human tumor cells. J. Immunol. 138:975–980.PubMedGoogle Scholar
  123. 123.
    Pujol Borrell, R., Todd, I., Doshi, M, Bottazzo, G. F., Sutton, R., Gray, D., Adolf, G. R. and Feldmann, M. 1987. HLA class II induction in human islet cells by interferon-gamma plus tumor necrosis factor or lymphotoxin. Nature 326:304–306.PubMedGoogle Scholar
  124. 124.
    Wright, J. R., Jr., Epstein, H. R., Hauptfeld, V., and Lacy, P. E.1988. Tumor necrosis factor enhances interferon-induced la antigen expression on murine islet parenchymal cells. Am. J. Pathol. 130:427–430.PubMedGoogle Scholar
  125. 125.
    Wedgwood, J. F., Hatam, L., and Bonagura, V. R. 1988. Effect of interferon-gamma and tumor necrosis factor on the expression of class I and class II major histocompatibility molecules by cultured human umbilical vein endothelial cells. Cell. Immunol. 111:1–9.PubMedGoogle Scholar
  126. 126.
    Wynn, T. A., Freund, Y. R. and Paulnock, D. M. 1992. TNF-alpha differentially regulates la antigen expression and macrophage lumoricidal activity in two murine macrophage cell lines. Cell. Immunol. 140:184–196.PubMedGoogle Scholar
  127. 127.
    Melhus, O., Koerner, T. J., and Adams, D. O. 1991. Effects of TNF alpha on the expression of class II MHC molecules in macrophages induced by IFN gamma: Evidence for suppression at the level of transcription. J. Leukoc. Biol. 49:21–28.PubMedGoogle Scholar
  128. 128.
    Zuber, P., Kuppner, M. C., and de Tribolet, N. 1988. Transforming growth factor-beta 2 down-regulates HLA-DR antigen expression on human malignant glioma cells. Eur. J. Immunol. 18:1623–1626.PubMedGoogle Scholar
  129. 129.
    Schluesener, H. J. 1990. Transforming growth factors type beta 1 and beta 2 suppress rat astrocyte autoantigen presentation and antagonize hyperinduction of class II major histocompatibility complex antigen expression by interferon-gamma and tumor necrosis factor-alpha. J. Neuroimmunol. 27:41–47.PubMedGoogle Scholar
  130. 130.
    Devajyothi, C., Kalvakolanu, I., Babcock, G. T., Vasavada, H. A., Howe, P. H., and Ransohoff, R. M. 1993. Inhibition of interferon-gamma-induced major histocompatibility complex class II gene transcription by interferon-beta and type beta 1 transforming growth factor in human aslrocytoma cells. Definition of cis-element. J. Biol. Chem. 268:18794–18800.PubMedGoogle Scholar
  131. 131.
    Madden, D. R. 1995. The three-dimensional structure of peptide-MHC complexes. Annu. Rev. Immunol. 13:587–622.PubMedGoogle Scholar
  132. 132.
    Bouvier, M., and Wiley, D. C. 1994. Importance of peptide amino and carboxyl termini to the stability of MHC class I molecules. Science 265:398–402.PubMedGoogle Scholar
  133. 133.
    Silver, M. L., Guo, H. C., Strominger, J. L., and Wiley, D. C. 1992. Atomic structure of a human MHC molecule presenting an influenza virus peptide. Nature 360:367–369.PubMedGoogle Scholar
  134. 134.
    Matsumura, M., Fremont, D. H., Peterson, P. A., and Wilson, I. A. 1992. Emerging principles for the recognition of peptide antigens by MHC class I molecules. Science 257:927–934.PubMedGoogle Scholar
  135. 135.
    Madden, D. R., Gorga, J. C., Strominger, J. L., and Wiley, D. C. 1992. The three-dimensional structure of HLA-B27 at 2.1 A resolution suggests a general mechanism for tight peptide binding to MHC. Cell 70:1035–1048.PubMedGoogle Scholar
  136. 136.
    Chen, Y., Sidney, J., Southwood, S., Cox, A. L., Sakaguchi, K., Henderson, R. A., Appella, E., Hunt, D. F., Sette, A., and Engelhard, V. H. 1994. Naturally processed peptides longer than nine amino acid residues bind to the class I MHC molecule HLA-A2.1 w ith high affinity and in different conformations. J. Immunol. 152:2874–2881.PubMedGoogle Scholar
  137. 137.
    Falk, K., Rotzschke, O., Stevanovic, S., Jung, G., and Rammensee, H. G. 1991. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351:290–296.PubMedGoogle Scholar
  138. 138.
    Jardetzky, T. S., Lane, W. S., Robinson, R. A., Madden, D. R., and Wiley, D. C. 1991. Identification of self-peptides bound to purified HLA-B27. Nature 353:326–329.PubMedGoogle Scholar
  139. 139.
    van Bleek, G. M., and Nathenson, S. G. 1990. Isolation of an endogenously processed immunodominant viral peptide from the class I H-2Kb molecule. Nature 348:213–216.PubMedGoogle Scholar
  140. 140.
    Garrett, T. P., Saper, M. A., Bjorkman, P. J., Strominger, J. L., and Wiley, D. C. 1989. Specificity pockets for the side chains of peptide antigens in HLA-Aw68. Nature 342:692–696.PubMedGoogle Scholar
  141. 141.
    Guo, H. C., Madden, D. R., Silver, M. L., Jardetzky, T. S., Gorga, J. C., Strominger, J. L., and Wiley, D. C. 1993. Comparison of the P2 specificity pocket in three human histocompatibility antigens: HLA-A6801, HLA-A0201, and HLA-B2705. Proc. Nacl. Acad. Sci. USA 90:8053–8057Google Scholar
  142. 142.
    Parker, K. C., Bednurek, M. A., Hull, L. K., Utz, U., Cunningham, B., Zweerink, H. J., Biddlson, W. E., and Coligan, J. E. 1992. Sequence motifs important for peptide binding to the human MHC class I molecule, HLA-A2. J. Immunol. 149:3580–3587.PubMedGoogle Scholar
  143. 143.
    Parker, K. C., Bednarek, M. A., and Coligan, J. E. 1994. Scheme for ranking potential HLA-A2 binding proteins based on independent binding of individual peptide side-chains. J. Immunol. 152:163–175.PubMedGoogle Scholar
  144. 144.
    Rotzschke, O., Falk, K., Deres, K., Schild, H., Norda, M., Metzger, J., Jung, G., and Rammensee, H. G. 1990. Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature 348:252–254.PubMedGoogle Scholar
  145. 145.
    Falk, K., Rotzschke, O., Deres, K., Metzger, J., Jung, G., and Rammensee, H. G. 1991. Identification of naturally processed viral nonapeptides allows their quantification in infected cells and suggests an allele-specific T cell epitope forecast. J. Exp. Med. 174:425–434.PubMedGoogle Scholar
  146. 146.
    Cerundolo, V., Elliott, T., Elvin, J., Bastin, J., Rammensee, H. G., and Townsend, A. 1991. The binding affinity and dissociation rates of peptides for class I major histocompatibility complex molecules. Eur. J. Immunol. 21:2069–2075.PubMedGoogle Scholar
  147. 147.
    Deckhut, A. M., Lippolis, J. D., and Tevethia, S. S. 1992. Comparative analysis of core amino acid residues of H-2D(b)-restricted cytotoxic T-lymphocyte recognition epitopes in simian virus 40 T antigen. J. Virol. 66:440–447.PubMedGoogle Scholar
  148. 148.
    Kast, W. M., Offringa, R., Peters, P. J., Voordouw, A. C., Meloen, R. H., van der Eb, A.J., and Melief, C. J. 1989. Eradication of adenovirus El-induced tumors by ElA-specific cytotoxic T lymphocytes. Cell 59:603–614.PubMedGoogle Scholar
  149. 149.
    Kast, W. M., and Melief, C. J. 1991. Fine peptide specificity of cytotoxic T lymphocytes directed against adenovirus-induced tumours and peptide-MHC binding. Int. J. Cancer Suppl. 6:90–94.PubMedGoogle Scholar
  150. 150.
    Oldstone, M. B., Whitton, J. L., Lewicki, H., and Tishon, A. 1988. Fine dissection of a nine amino acid glycoprotein epitope, a major determinant recognized by lymphocytic choriomeningitis virus-specific class I-restricted H-2Db cytotoxic T lymphocytes. J. Exp. Med. 168:559–570.PubMedGoogle Scholar
  151. 151.
    Yanagi, Y., Tishon, A., Lewicki, H., Cubitt, B. A., and Oldstone, M. B. 1992. Diversity of T-cell receptors in virus-specific cytotoxic T lymphocytes recognizing three distinct virus epitopes restricted by a single major histocompatibility complex molecule. J. Virol. 66:2527–2531.PubMedGoogle Scholar
  152. 152.
    Corr, M., Boyd, L. F., Padlan, E. A., and Margulies, D. H. 1993. H-2Dd exploits a four residue peptide binding motif. J. Exp. Med. 178:1877–1892.PubMedGoogle Scholar
  153. 153.
    Kozlowski, S., Corr, M., Takeshita, T., Boyd, L. F., Pendleton, C. D., Germain, R. N., Berzofsky, J. A., and Margulies, D. H. 1992. Serum angiotensin-1 converting enzyme activity processes a human immunodeficiency virus 1 gp160 peptide for presentation by major histocompatibility complex class I molecules. J. Exp. Med. 175:1417–1422.PubMedGoogle Scholar
  154. 154.
    Szikora, J. P., Van Pel, A., and Boon, T. 1993. Tum-mutation P35B generates the MHC-binding site of a new antigenic peptide. Immunogenetics 37:135–138.PubMedGoogle Scholar
  155. 155.
    Rotzschke, O., Falk, K., Stevanovic, S., Jung, G., Walden, P., and Rammensee, H. G. 1991. Exact prediction of a natural T cell epitope. Eur. J. Immunol. 21:2891–2894.PubMedGoogle Scholar
  156. 156.
    van Bleek, G. M., and Nathenson, S. G. 1990. Isolation of an endogenously processed immunodominant viral peptide from the class I H-2Kb molecule. Nature 348:213–216.PubMedGoogle Scholar
  157. 157.
    Rammensee, H. G., Falk, K., and Rotzschke, O. 1993. Peptides naturally presented by MHC class I molecules. Annu. Rev. Immunol. 11:213–244.PubMedGoogle Scholar
  158. 158.
    Schumacher, T. N., De Bruijn, M. L., Vernie, L. N., Kast, W. M., Melief, C. J., Neefjes, J. J., and Ploegh, H. L. 1991. Peptide selection by MHC class I molecules. Nature 350:703–706.PubMedGoogle Scholar
  159. 159.
    Falk, K., Rotzschke, O., Stevanovic, S., Jung, G., and Rammensee, H. G. 1991. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351:290–296.PubMedGoogle Scholar
  160. 160.
    Wallny, H. J., Deres, K., Faath, S., Jung, G., Van Pel, A., Boon, T., and Rammensee, H. G. 1992. Identification and quantification of a naturally presented peptide as recognized by cytotoxic T lymphocytes specific for an immunogenic tumor variant. Int. Immunol. 4:1085–1090.PubMedGoogle Scholar
  161. 161.
    Romero, P., Corradin, G., Luescher, I. F., and Maryanski, J. L. 1991. H-2Kd-restricted antigenic peptides share a simple binding motif. J. Exp. Med. 174:603–612.PubMedGoogle Scholar
  162. 162.
    Pamer, E. G., Harty, J. T., and Bevan, M. J. 1991. Precise prediction of a dominant class I MHC-restricted epitope of Listeria monocytogenes. Nature 353:852–855.PubMedGoogle Scholar
  163. 163.
    Kulkarni, A. B., Morse, H. C., III, Bennink, J. R., Yewdell, J. W., and Murphy, B. R. 1993. Immunization of mice with vaccinia virus-M2 recombinant induces epitope-specific and cross-reactive Kd-restricted CD8+ cytotoxic T cells. J. Virol. 67:4086–4092.PubMedGoogle Scholar
  164. 164.
    Hahn, Y. S., Hahn, C. S., Braciale, V. L., Braciale, T. J., and Rice, C. M. 1992. CDK8 T cell recognition of an endogenously processed epitope is regulated primarily by residues within the epilope. J. Exp. Med. 176:1335–1341.PubMedGoogle Scholar
  165. 165.
    Reddehase, M. J., Rothbard, J. B., and Koszinowski, U. H. 1989. A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature 337:651–653.PubMedGoogle Scholar
  166. 166.
    Gould, K. G., Scotney, H., and Brownlee, G. G. 1991. Characterization of two distinct major histocompatibility complex class I Kk-restricted T-cell epitopes within the influenza A/PR/8/34 virus hemagglutinin. J. Virol. 65:5401–5409.PubMedGoogle Scholar
  167. 167.
    Cossins, J., Gould, K. G., Smith, M., Driscoll, P., and Brownlee, G. G. 1993. Precise prediction of a Kk-restricted cytotoxic T cell epitope in the NS1 protein of influenza virus using an MHC allele-specific motif. Virology 193:289–295.PubMedGoogle Scholar
  168. 168.
    Udaka, K., Tsomides, T. J., and Eisen, H. N. 1992. A naturally occurring peptide recognized by alloreactive CD8 + cytotoxic T lymphocytes in association with a class I MHC protein. Cell 69:989–998.PubMedGoogle Scholar
  169. 169.
    Corr, M., Boyd, L. F., Frankel, S. R., Kozlowski, S., Padlan, E. A., and Margulies, D. H. 1992. Endogenous peptides of a soluble major histocompatibility complex class I molecule, H-2Lds: sequence motif, quantitative binding, and molecular modeling of the complex. J. Exp. Med. 176:1681–1692.PubMedGoogle Scholar
  170. 170.
    Lethe, B., Van den Eynde, B., Van Pel, A., Corradin, G., and Boon, T. 1992. Mouse tumor rejection antigens P815A and P8I5B: two epitopes carried by a single peptide. Eur. J. Immunol. 22:2283–2288.PubMedGoogle Scholar
  171. 171.
    Schulz, M., Aichele, P., Vollenweider, M., Bobe, F. W., Cardinaux, F., Hengartner, H., and Zinkernagel, R. M. 1989. Major histocompatibility complex-dependent T cell epitopes of lymphocytic choriomeningitis virus nucleoprotein and their protective capacity against viral disease. Eur. J. Immunol. 19:1657–1667.PubMedGoogle Scholar
  172. 172.
    Traversari, C., van der Bruggen, P., Luescher, I. F., Lurquin, C., Chomez, P., Van Pel, A., De Plaen, E., Amar Costesec, A., and Boon, T. 1992. A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J. Exp. Med. 176:1453–1457.PubMedGoogle Scholar
  173. 173.
    Hunt, D. F., Henderson, R. A., Shabanowitz, J., Sakaguchi, K., Michel, H., Sevilir, N., Cox, A. L., Appella, E., and Engelhard, V. H. 1992. Characterization of peptides bound to the class I MHC molecule H1.A-A2.1 by mass spectrometry. Science 255:1261–1263.PubMedGoogle Scholar
  174. 174.
    Engelhard, V. H., Appella, E., Benjamin, D. C., Bodnar, W. M., Cox, A. L., Chen, Y., Henderson, R. A., Huczko, E. L., Michel, H., Sakaguichi, K., Shabanowitz, J., Sevilir, N., Slingluff, C. L., and Hunt, D. F. 1993. Mass spectrometric analysis of peptides associated with the human class I MHC molecules HLA A2.1 and HLA-B7 and identification of structural features that determine binding. Chem. Immunol. 57:39–62.PubMedGoogle Scholar
  175. 175.
    Henderson, R. A., Michel, H., Sakaguchi, K., Shabanowitz., J., Appella, E., Hunt, D. F. and Engelhard, V. H. 1992. HLA-A2.1-associated peptides from a mutant cell line: a second pathway of antigen presentation. Science 255:1264–1266.PubMedGoogle Scholar
  176. 176.
    Utz, U., Koenig, S., Coligan, J. E., and Biddison, W. E. 1992. Presentation of three different viral peptides, HTL.V-1 Tax, HCMV gB. and influenza virus M1, is determined by common structural features of the HLA-A2.1 molecule. J. Immunol. 149:214–221.PubMedGoogle Scholar
  177. 177.
    Nayersina, R., Fowler, P., Guilhot, S., Missale, G., Cerny, A., Schlicht, H. J., Vitiello, A., Chesnut, R., Person, J. L., Redeker, A. G., and Chisari, F. V. 1993. HLA A2 restricted cytotoxic T lymphocyte responses to multiple hepatitis B surface antigen epitopes during hepatitis B virus infection. J. Immunol. 150:4659–4671.PubMedGoogle Scholar
  178. 178.
    Bednarek, M. A., Sauma, S. Y., Gammon, M. C., Porter, G., Tamhankar, S., Williamson, A. R., and Zweerink, H. J. 1991. The minimum peptide epitope from the influenza virus matrix protein. Extra and intracellular loading of HLA-A2. J. Immunol. 147:4047–4053.PubMedGoogle Scholar
  179. 179.
    Morrison, J., Elvin, J., Latron, F., Gotch, F., Moots, R., Strominger, J. L., and McMichael, A. 1992. Identification of the nonamer peptide from influenza A matrix protein and the role of pockets of HLA-A2 in its recognition by cylotoxic T lymphocytes. Eur. J. Immunol. 22:903–907.PubMedGoogle Scholar
  180. 180.
    Tsomides, T. J., Walker, B. D., and Eisen, H. N. 1991. An optimal viral peptide recognized by CD8 + T cells binds very tightly to the restricting class I major histocompatibilily complex protein on intact cells but not to the purified class I protein. Proc. Natl. Acad. Sci. USA 88:11276–11280.PubMedGoogle Scholar
  181. 181.
    Bertoletti, A., Chisari, F. V., Penna, A., Guilhot, S., Galati, L., Missale, G., Fowler, P., Schlicht, H. J., Vitiello, A., Chesnut, R. C., et al. 1993. Definition of a minimal optimal cytotoxic T-cell epitope within the hepatitis B virus nucleocapsid protein. J. Virol 67:2376–2380.PubMedGoogle Scholar
  182. 182.
    DiBrino, M., Parker, K. C., Shiloach, J., Knierman, M., Lukszo, J., Turner, R. V., Biddison, W. E., and Coligan, J. E. 1993. Endogenous peptides bound to HLA-A3 possess a specific combination of anchor residues that permit identification of potential antigenic peptides. Proc. Natl. Acad. Sci. USA 90:1508–1512.PubMedGoogle Scholar
  183. 183.
    Takahashi, K., Dai, L. C., Fuerst, T. R., Biddison, W. E., Earl, P. L., Moss, B., and Ennis, F. A. 1991. Specific lysis of human immunodeficiency virus type 1-infected cells by a HLA-A3.1-restricted CD8 + cytotoxic T-lymphocyte clone that recognizes a conserved peptide sequence within the gp41 subunit of the envelope protein. Proc. Natl. Acad. Sci. USA 88:10277–10281.PubMedGoogle Scholar
  184. 184.
    Zhang, Q. J., Gavioli, R., Klein, G, and Masucci, M. G. 1993. An HLA-A11-specific motif in nonamer peptides derived from viral and cellular proteins. Proc. Natl. Acad. Sci. USA 90:2217–2221.PubMedGoogle Scholar
  185. 185.
    Gavioli, R., Kurilla, M. G., de Campos Lima, P. O., Wallace, L. E., Dolcetti, R., Murray, R. J., Rickinson, A. B., and Masucci, M. G. 1993. Multiple HLA A11-restricted cytotoxic T-lymphocyte epitopes of different immunogenicities in the Epstein-Barr virus-encoded nuclear antigen 4. J. Virol. 67:1572–1578.PubMedGoogle Scholar
  186. 186.
    Dai, L. C., West, K., Littaua, R., Takahashi, K., and Ennis, F. A. 1992. Mutation of human immunodeficiency virus type 1 at amino acid 585 on gp4l results in loss of killing by CD8+ A24-restricted cytotoxic T lymphocytes. J. Virol. 66:3151–3154.PubMedGoogle Scholar
  187. 187.
    Missale, G., Redeker, A., Person, J., Fowler, P., Guilhot, S., Schlicht, H. J., Ferrari, C., and Chisari, F. V. 1993. HLA-A31-and HLA-Aw68-restricted cytotoxic T cell responses to a single hepatitis B virus nucleocapsid epitope during acute viral hepatitis. J. Exp. Med. 177:751–762.PubMedGoogle Scholar
  188. 188.
    Guo, H. C., Jardetzky, T. S., Garrett, T. P., Lane, W. S., Strominger, J. L., and Wiley, D. C. 1992. Different length peptides bind to HLA-Aw68 similarly at their ends but bulge out in the middle. Nature 360:364–366.PubMedGoogle Scholar
  189. 189.
    Silver, M. L., Guo, H. C., Strominger, J. L., and Wiley, D. C. 1992. Atomic structure of a human MHC molecule presenting an influenza virus peptide. Nature 360:367–369.PubMedGoogle Scholar
  190. 190.
    Huczko, E. L., Bodnar, W. M., Benjamin, D., Sakaguchi, K., Zhu, N. Z., Shabanowitz, J., Henderson, R. A., Appella, E., Hunt, D. F., and Engelhard, V. H. 1993. Characteristics of endogenous peptides eluted from the class I MHC molecule HLA-B7 determined by mass spectrometry and computer modeling. J. Immunol. 151:2572–2587.PubMedGoogle Scholar
  191. 191.
    Johnson, R. P., Trocha, A., Buchanan, T. M., and Walker, B. D. 1992. Identification of overlapping HLA class I-restricted cytotoxic Tcell epitopes in a conserved region of the human immunodeficiency virus type 1 envelope glycoprotein: definition of minimum epitopes and analysis of the effects of sequence variation. J. Exp. Med. 175:961–971.PubMedGoogle Scholar
  192. 192.
    Burrows, S. R., Rodda, S. J., Suhrbier, A., Geysen, H. M., and Moss, D. J. 1992. The specificity of recognition of a cytotoxic T lymphocyte epitope. Eur. J. Immunol. 22:191–195.PubMedGoogle Scholar
  193. 193.
    Sutton, J., Rowland Jones, S., Rosenberg, W., Nixon, D., Gotch, F., Gao, X. M., Murray, N., Spoonas, A., Driscoll, P., Smith, M., et al. 1993. A sequence pattern for peptides presented to cytotoxic T lymphocytes by HLA B8 revealed by analysis of epitopes and eluted peptides. Eur. J. Immunol. 23:447–453.PubMedGoogle Scholar
  194. 194.
    Suhrbier, A., Schmidt, C., and Fernan, A. 1993. Prediction of an HLA B8-restricted influenza epitope by motif. Immunology 79:171–173.PubMedGoogle Scholar
  195. 195.
    Jardetzky, T. S., Lane, W. S., Robinson, R. A., Madden, D. R., and Wiley, D. C. 1991. Identification of self-peptides bound to purified HLA-B27. Nature 353:326–329.PubMedGoogle Scholar
  196. 196.
    Huet, S., Nixon, D. F., Rothbard, J. B., Townsend, A., Ellis, S. A., and McMichael, A. J. 1990. Structural homologies between two HLA B27-restricted peptides suggest residues important for interaction with HLA B27. Int. Immunol. 2:311–316.PubMedGoogle Scholar
  197. 197.
    Brooks, J. M., Murray, R. J., Thomas, W. A., Kurilla, M. G., and Rickinson, A. B. 1993. Different HLA-B27 subtypes present the same immunodominant Epstein-Barr virus peptide. J. Exp. Med. 178:879–887.PubMedGoogle Scholar
  198. 198.
    van Binnendijk, R. S., Versteeg van Oosten, J. P., Poelen, M. C., Brugghe, H. F., Hoogerhout, P., Osterhaus, A. D., and Uytdehaag, F. G. 1993. Human HLA class I-and HLA class II-restricted cloned cytotoxic T lymphocytes identify a cluster of epitopes on the measles virus fusion protein. J. Virol. 67:2276–2284.PubMedGoogle Scholar
  199. 199.
    Hill, A. V., Elvin, J., Willis, A. C., Aidoo, M., Allsopp, C. E., Gotch, F. M., Gao, X. M., Takiguchi, M., Greenwood, B. M., Townsend, A. R., McMichael, A. J., and Whittle, H. C. 1992. Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature 360:434–439.PubMedGoogle Scholar
  200. 200.
    Johnson, R. P., Trocha, A., Buchanan, T. M., and Walker, B. D. 1993. Recognition of a highly conserved region of human immunodeficiency virus type 1 gp 120 by an HLA-Cw4-restricted cytotoxic T-lymphocyte clone. J. Virol. 67:438–445.PubMedGoogle Scholar
  201. 201.
    Fremont, D. H., Matsumura, M., Stura, E. A., Peterson, P. A., and Wilson, I. A. 1992. Crystal structure of two viral peptides in complex with murine MHC class I H-2Khb. Science 257:919–927.PubMedGoogle Scholar
  202. 202.
    Guo, H. C., Jardetzky, T. S., Garrett, T. P., Lane, W. S., Strominger, J. L., and Wiley, D. C. 1992. Different length peptides bind to HLA-Aw68 similarly at their ends but bulge out in the middle. Nature 360:364–366.PubMedGoogle Scholar
  203. 203.
    Madden, D. R., Garboczi, D. N., and Wiley, D. C. 1993. The anligenic identity of peptide-MHC complexes: A comparison of the conformations of five viral peptides presented by HLA-A2. Cell 75:693–708.PubMedGoogle Scholar
  204. 204.
    Kikuchi, A., Sakaguchi, T., Miwa, K., Takamiya, Y., Rammensee, H. G., and Kaneko, Y. 1996. Binding of nonamer peptides to 3 HLA-B51 molecules which differ by a single amino-acid substitution in the A-pocket. Immunogenetics 43:268–276.PubMedGoogle Scholar
  205. 205.
    Brown, J. H., Jardetzky, T. S., Gorga, J. C., Stern, L. J., Urban, R. G., Strominger, J. L., and Wiley, D. C. 1993. Three-dimensional structure of the human class II histocompatibility antigen HLA-DRI. Nature 364:33–39.PubMedGoogle Scholar
  206. 206.
    Stern, L. J., Brown, J. H., Jardetzky, T. S., Gorga, J. C., Urban, R. G., Strominger, J. L., and Wiley, D. C. 1994. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 368:215–221.PubMedGoogle Scholar
  207. 207.
    Hammer, J., Valsasnini, P., Tolba, K., Bolin, D., Higelin, J., Takacs, B., and Sinigaglia, F. 1993. Promiscuous and allele-specific anchors in HLA-DR-binding peptides. Cell 74:197–203.PubMedGoogle Scholar
  208. 208.
    Marshall, K. W., Liu, A. F., Canales, J., Perahia, B., Jorgensen, R. D., Gantzos, R. D., Aguilar, B., Devaux, B., and Rothbard, J. B. 1994. Role of the polymorphic residues in HLA-DR molecules in alleles-specific binding of peptide ligands. J. Immunol. 152:4946–4957.PubMedGoogle Scholar
  209. 209.
    Sette, A., Sidney, J., Oseroff, C., del Guercio, M. F., Southwood, S., Arrhenius, T., Powell, M. F., Colon, S. M., Gaeta, F. C., and Grey, H. M. 1993. HLA DR4w4-binding motifs illustrate the biochemical basis of degeneracy and specificity in peptide-DR interactions. J. Immunol. 151:3163–3170.PubMedGoogle Scholar
  210. 210.
    Sidney, J., Oseroff, C., delGuereio, M. F., Southwood, S., Krieger, J. I., Ishioka, G. Y., Sakaguchi, K., Appella, E., and Sette, A. 1994. Definition of a DQ3.1-specific binding motif. J. Immunol. 152:4516–4525.PubMedGoogle Scholar
  211. 211.
    Hammer, J., Takacs, B., and Sinigaglia, F. 1992. Identification of a motif for HLA-DR1 binding peptides using M13 display libraries. J. Exp. Med. 176:1007–1013.PubMedGoogle Scholar
  212. 212.
    Hammer, J., Valsasnini, P., Tolba, K., Bolin, D., Higelin, J., Takacs, B., and Sinigaglia, F. 1993. Promiscuous and allele-specific anchors in HLA-DR-binding peptides. Cell 74:197–203.PubMedGoogle Scholar
  213. 213.
    Hill, C. M., Liu, A., Marshall, K. W., Mayer, J., Jorgensen, B., Yuan, B., Cubbon, R. M., Nichols, E. A., Wicker, L.S., and Rothbard, J. B. 1994. Exploration of requirements for peptide binding to HLA DRB10101 and DRB10401. J. Immunol. 152:2890–2898.PubMedGoogle Scholar
  214. 214.
    Falk, K., Rotzschke, O., Stevanovic, S., Jung, G., and Rammensee, H. G. 1994. Pool sequencing of natural HLA-DR, DQ, and DP ligands reveals detailed peptide motifs, constraints ot processing, and general rules. Immunogenetics 39:230–242.PubMedGoogle Scholar
  215. 215.
    Malcherek, G., Falk, K., Rotzschke, O., Rammensee, H. G., Stevanovic, S., Gnau, V., Jung, G., and Melms, A. 1993. Natural peptide ligand motifs of two HLA molecules associated with myasthenia gravis. Int. Immunol. 5:1229–1237.PubMedGoogle Scholar
  216. 216.
    Geluk, A., van Meijgaarden, K. E., Southwood, S., Oseroff, C., Drijfhout, J. W., de Vries, R. R., Ottenhoff, T. H., and Sette, A. 1994. HLA-DR3 molecules can hind peptides carrying two alternative specific submotifs. J. Immunol. 152:5742–5748.PubMedGoogle Scholar
  217. 217.
    Setle, A., Sidney, J., Oseroff, C., del Guercio, M. F., Southwood, S., Arrhenius, T., Powell, M. F., Colon, S. M., Gaeta, F. C., and Grey, H. M. 1993. HLA DR4w4-binding motifs illustrate the biochemical basis of degeneracy and specificity in peptide-DR interactions. J. Immunol. 151:3163–3170.Google Scholar
  218. 218.
    Rudensky, A. Y., Preston Hurlburt, P., Hong, S.C., Barlow, A., and Janeway, C. A., Jr. 1991. Sequence analysis of peptides bound to MHC class II molecules. Nature 353:622–627.PubMedGoogle Scholar
  219. 219.
    Hunt, D. F., Henderson, R. A., Shabanowitz, J., Sakaguchi, K., Michel, H., Sevilir, N., Cox, A. L., Appella, E., and Engelhard, V. H. 1992. Characterization of peptides bound to the class I MHC molecule HLA A2.1 by mass spectrometry. Science 255:1261–1263.PubMedGoogle Scholar
  220. 220.
    Chicz, R. M., Urban, R. G., Lane, W. S., Gorga, J. C., Stern, L. J., Vignali, D. A., and Strominger, J. L. 1992. Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. Nature 358:764–768.PubMedGoogle Scholar
  221. 221.
    Chicz, R. M., Urban, R. G., Gorga, J. C., Vignali, D. A., Lane, W. S., and Strominger, J. L. 1993. Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J. Exp. Med. 178:27–47.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1998

Personalised recommendations